Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78277
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor舒貽忠(Yi-Chung Shu)
dc.contributor.authorTsen-Hsuan Yenen
dc.contributor.author顏岑軒zh_TW
dc.date.accessioned2021-07-11T14:49:03Z-
dc.date.available2025-08-10
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-10
dc.identifier.citation[1] M. Garbarino, M. Lai, D. Bender, R. W. Picard and S. Tognetti. Empatica E3-A Wearable Wireless Multi-Sensor Device for Real-Time Computerized Biofeedback and Data Acquisition. 2014 4th International Conference on Wireless Mobile Communication and Healthcare-Transforming Healthcare Through Innovations in Mobile and Wireless Technologies (MOBIHEALTH), 2014.
[2] S. Pirbhulal, H. Zhang, W. Wu, S. C. Mukhopadhyay and Y. T. Zhang. Heartbeats Based Biometric Random Binary Sequences Generation to Secure Wireless Body Sensor Networks. IEEE Transactions on Biomedical Engineering, 65: 2751-2759, 2018.
[3] L. Wang, G. Luo, Z. Jiang, F. Zhang, L. Zhao, P. Yang, Q. Lin, and R. Maeda1. Broadband Vibration Energy Harvesting for Wireless Sensor Node Power Supply in Train Container. Review of Scientific Instruments, 90: 125003, 2019.
[4] L. G. W. Tvedt, D. S. Nguyen and E. Halvorsen. Nonlinear Behavior of an Electrostatic Energy Harvester Under Wide- and Narrowband Excitation. Journal of Microelectromechanical Systems, 19: 305-316, 2010.
[5] P. Basset, D. Galayko, F. Cottone, R. Guillemet, E. Blokhina, F. Marty and T. Bourouina. Electrostatic Vibration Energy Harvester with Combined Effect of Electrical Nonlinearities and Mechanical Impact. Journal of Micromechanics and Microengineering, 24: 035001, 2014.
[6] V. Dorzhiev, A. Karami, P. Basset, F. Marty, V. Dragunov and D. Galayko. Electret-Free Micromachined Silicon Electrostatic Vibration Energy Harvester with the Bennet’s Doubler as Conditioning Circuit. IEEE Electron Device Letters, 36: 183-185, 2015.
[7] O. M. Ramahi, T. S. Almoneef, M. AlShareef and M. S. Boybay. Metamaterial Particles for Electromagnetic Energy Harvesting. Applied Physics Letters, 101: 173903, 2012.
[8] Z. Li, L. Zuo, G. Luhrs, L. Lin and Y. X. Qin. Electromagnetic Energy-Harvesting Shock Absorbers: Design, Modeling, and Road Tests. IEEE Transactions on Vehicular Technology, 62: 1065-1074, 2013.
[9] A. Costanzo, M. Dionigi, D. Masotti, M. Mongiardo, G. Monti, L. Tarricone and R. Sorrentino. Electromagnetic Energy Harvesting and Wireless Power Transmission: A Unified Approach. Proceedings of the IEEE, 102: 1692-1711, 2014.
[10] C. K. Thein, F. M. Foong and Y. C. Shu. Spring Amplification and Dynamic Friction Modelling of a 2DOF/2SDOF System in an Electromagnetic Vibration Energy Harvester-Experiment, Simulation, and Analytical Analysis. Mechanical Systems and Signal Processing, 132: 232-252, 2019.
[11] C. K. Thein, F. M. Foong, and Y. C. Shu. Damping Ratio and Power Output Prediction of an Electromagnetic Energy Harvester Designed Through Finite Element Analysis. Sensors and Actuators A: Physical, 286: 220-231, 2019.
[12] H. S. Kim, J. H. Kim and J. A. Kim. A Review of Piezoelectric Energy Harvesting Based on Vibration. International Journal of Precision Engineering and Manufacturing, 12: 1129-1141, 2011.
[13] C. Dagdeviren, B. D. Yang, Y. Su, P. L. Tran, P. Joe, E. Anderson, J. Xia, V. Doraiswamy, B. Dehdashti, X. Feng, B. Lu, R. Poston, Z. Khalpey, R. Ghaffari, Y. Huang, M. J. Slepian and J. A. Rogers. Conformal Piezoelectric Energy Harvesting and Storage from Motions of the Heart, Lung, and Diaphragm. Proceedings of the National Academy of Sciences, 111: 1927-1932, 2014.
[14] R. Caliò, U. B. Rongala, D. Camboni, M. Milazzo, C. Stefanini, G. De Petris and C. M. Oddo. Piezoelectric Energy Harvesting Solutions. Sensors, 14: 4755-4790, 2014.
[15] S. Rajala, R. Mattila, I. Kaartinen and J. Lekkala. Designing, Manufacturing and Testing of a Piezoelectric Polymer Film In-Sole Sensor for Plantar Pressure Distribution Measurements. IEEE Sensors Journal, 17: 6798-6805, 2017.
[16] T. Xu, J. Miao, Z. Wang, L. Yu and C. M. Li. Micro-Piezoelectric Immunoassay Chip for Simultaneous Detection of Hepatitis B Virus and α-Fetoprotein. Sensors and Actuators B: Chemical, 151: 370-376, 2011.
[17] J. S. Han, C. W. Gal, J. H. Kim and S. J. Park. Fabrication of High-Aspect-Ratio Micro Piezoelectric Array by Powder Injection Molding. Ceramics International, 42: 9475-9481, 2016.
[18] C. S. W. Yang, Y. A. Lai and J. Y. Kim. A Piezoelectric Brace for Passive Suppression of Structural Vibration and Energy Harvesting. Smart Materials and Structures, 26: 085005, 2017.
[19] Y. C. Shu, and I. C. Lien. Analysis of Power Output for Piezoelectric Energy Harvesting Systems. Smart Materials and Structures, 15: 1499-1512, 2006.
[20] D. Guyomar, A. Badel, E. Lefeuvre and C. Richard. Toward Energy Harvesting Using Active Materials and Conversion Improvement by Nonlinear Processing. IEEE Transactions on Uultrasonics, Ferroelectrics, and Frequency Control, 52: 584-595, 2005.
[21] Y. C. Shu, I. C. Lien and W. J. Wu. An Improved Analysis of the SSHI Interface in Piezoelectric Energy Harvesting. Smart Materials and Structures, 16: 2253, 2007.
[22] I. C. Lien, Y. C. Shu, W. J. Wu, S. M. Shiu and H. C. Lin. Revisit of Series-SSHI with Comparisons to Other Interfacing Circuits in Piezoelectric Energy Harvesting. Smart Materials and Structures, 19: 125009, 2010.
[23] J. Liang and W. H. Liao. Improved Design and Analysis of Self-Powered Synchronized Switch Interface Circuit for Piezoelectric Energy Harvesting Systems. IEEE Transactions on Industrial Electronics, 59: 1950-1960, 2011.
[24] E. Lefeuvre, A. Badel, C. Richard and D. Guyomar. Piezoelectric Energy Harvesting Device Optimization by Synchronous Electric Charge Extraction. Journal of Intelligent Material Systems and Structures, 16: 865-876, 2005.
[25] L. Tang and Y. Yang. Analysis of Synchronized Charge Extraction for Piezoelectric Energy Harvesting. Smart Materials and Structures, 20: 085022, 2011.
[26] Y. C. Lo, P. H. Huang and Y. C. Shu. Self-Powered SECE-Based Piezoelectric Energy Harvesting for Sensor Supply under Shock Excitations. In Active and Passive Smart Structures and Integrated Systems IX, 11376: 1137609, 2020.
[27] Y. Xia, G. Shi, H. Xia and Y. Ye. Extensible Multi-Input Synchronous Electronic Charge Extraction Circuit Based on Triple Stack Resonance for Piezoelectric and Thermoelectric Energy Harvesting. IEEE Transactions on Industrial Electronics, 2020.
[28] M. Lallart, Y. C. Wu, C. Richard, D. Guyomar and E. Halvorsen. Broadband Modeling of a Nonlinear Technique for Energy Harvesting. Smart Materials and Structures, 21: 115006, 2012.
[29] H. Wu, L. Tang, Y. Yang and C. K. Soh. Development of a Broadband Nonlinear Two-Degree-of-Freedom Piezoelectric Energy Harvester. Journal of Intelligent Material Systems and Structures, 25: 1875-1889, 2014.
[30] D. Upadrashta and Y. Yang. Finite Element Modeling of Nonlinear Piezoelectric Energy Harvesters with Magnetic Interaction. Smart Materials and Structures, 24: 045042, 2015.
[31] X. Wang, C. Chen, N. Wang, H. San, Y. Yu, E. Halvorsen and X. Chen. A Frequency and Bandwidth Tunable Piezoelectric Vibration Energy Harvester Using Multiple Nonlinear Techniques. Applied Energy, 190: 368-375, 2017.
[32] Z. C. Ong, Y. X. Ooi, S. Y. Khoo and Y. H. Huang. Two-Stage Multi-Modal System for Low Frequency and Wide Bandwidth Vibration Energy Harvesting. Measurement, 149: 106981, 2020.
[33] I. C. Lien and Y. C. Shu. Array of Piezoelectric Energy Harvesting by the Equivalent Impedance Approach. Smart Materials and Structures, 21: 082001, 2012.
[34] H. C. Lin, P. H. Wu, I. C. Lien and Y. C. Shu. Analysis of an Array of Piezoelectric Energy Harvesters Connected in Series. Smart Materials and Structures, 22: 094026, 2013.
[35] P. H. Wu and Y. C. Shu. Wideband Energy Harvesting by Multiple Piezoelectric Oscillators with an SECE Interface. ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS2015-8862, 2015.
[36] P. H. Wu, Y. J. Chen, B. Y. Li and Y. C. Shu. Wideband Energy Harvesting Based on Mixed Connection of Piezoelectric Oscillators. Smart Materials and Structures, 26: 094005, 2017.
[37] J. Vázquez, P. Sanz and J. L. Sánchez-Rojas. Behaviour of Forbidden Modes in the Impedance Characterization and Modeling of Piezoelectric Microcantilevers. Sensors and Actuators A: Physical, 136: 417-425, 2007.
[38] A. Erturk and D. J. Inman. On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters. Journal of Intelligent Material Systems and Structures, 19: 1311-1325, 2008.
[39] A. Erturk, P. A. Tarazaga, J. R. Farmer and D. J Inman. Effect of Strain Nodes and Electrode Configuration on Piezoelectric Energy Harvesting from Cantilevered Beams. Journal of Vibration and Acoustics, 131: 011010, 2009.
[40] V. Ostasevicius, G. Janusas, I. Milasauskaite, M. Zilys and L. Kizauskiene. Peculiarities of the Third Natural Frequency Vibrations of a Cantilever for the Improvement of Energy Harvesting. Sensors, 15: 12594-12612, 2015.
[41] R. Kashyap, T. R. Lenka and S. Baishya. A Model for Doubly Clamped Piezoelectric Energy Harvesters with Segmented Electrodes. IEEE Electron Device Letters, 36: 1369-1372, 2015.
[42] D. Zizys, R. Gaidys, R. Dauksevicius, V. Ostasevicius and V. Daniulaitis. Segmentation of a Vibro-Shock Cantilever-Type Piezoelectric Energy Harvester Operating in Higher Transverse Vibration Modes. Sensors, 16: 11, 2016.
[43] M. Krishnasamy and T. R. Lenka. Distributed Parameter Model for Assorted Piezoelectric Harvester to Prevent Charge Cancellation. IEEE Sensors Letters, 1: 1-4, 2017.
[44] M. Krishnasamy, F. Qian, L. Zuo and T. R. Lenka. Distributed Parameter Modeling to Prevent Charge Cancellation for Discrete Thickness Piezoelectric Energy Harvester. Solid-State Electronics, 141: 74-83, 2018.
[45] C. J. Rupp, A. Evgrafov, K. Maute and M. L. Dunn. Design of Piezoelectric Energy Harvesting Systems: A Topology Optimization Approach Based on Multilayer Plates and Shells. Journal of Intelligent Material Systems and Structures, 20: 1923-1939, 2009.
[46] C. De Marqui, A. Erturk and D. J. Inman. An Electromechanical Finite Eement Model for Piezoelectric Energy Harvester Plates. Journal of Sound and Vibration, 327: 9-25, 2009.
[47] C. De Marqui, A. Erturk and D. J. Inman. Piezoaeroelastic Modeling and Analysis of a Generator Wing with Continuous and Segmented Electrodes. Journal of Intelligent Material Systems and Structures, 21: 983-993, 2010.
[48] C. De Marqui, W. G. Vieira, A. Erturk and D. J. Inman. Modeling and Analysis of Piezoelectric Energy Harvesting from Aeroelastic Vibrations Using the Doublet-Lattice Method. Journal of Vibration and Acoustics, 133: 011003, 2011.
[49] A. Erturk. Piezoelectric Energy Harvesting for Civil Infrastructure System Applications: Moving Loads and Surface Strain Fluctuations. Journal of Intelligent Material Systems and Structures, 22: 1959-1973, 2011.
[50] R. Ahmed and S. Banerjee. Predictive Electromechanical Model for Energy Scavengers Using Patterned Piezoelectric Layers. Journal of Engineering Mechanics, 141: 04014113, 2015.
[51] C. C. Ma, H. Y. Lin, Y. C. Lin and Y. H. Huang. Experimental and Numerical Investigations on Resonant Characteristics of a Single-Layer Piezoceramic Plate and a Cross-Ply Piezolaminated Composite Plate. The Journal of the Acoustical Society of America, 119: 1476-1486, 2006.
[52] C. C. Ma, Y. C. Lin, Y. H. Huang and H. Y. Lin. Experimental Measurement and Numerical Analysis on Resonant Characteristics of Cantilever Plates for Piezoceramic Bimorphs. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 54: 227-239, 2007.
[53] Y. H. Huang and C. C. Ma. Experimental and Numerical Investigations of Vibration Characteristics for Parallel-Type and Series-Type Triple-Layered Piezoceramic Bimorphs. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 56: 2598-2611, 2009.
[54] Y. H. Huang. Electromechanical Coupling Efficiency of Transverse Vibration in Piezoelectric Plates According to Electrode Configuration. Journal of the Chinese Institute of Engineers, 36: 842-855, 2013.
[55] Y. H. Huang, C. K. Chao and W. T. Chou. The Application of Electrode Design in Vibrating Piezoceramic Plate for Energy Harvesting System. In Dynamic Systems and Control Conference. 56130, 2013.
[56] Y. C. Wu, Y. H. Huang and C. C. Ma. Theoretical Analysis and Experimental Measurement of Flexural Vibration and Dynamic Characteristics for Piezoelectric Rectangular Plate. Sensors and Actuators A: Physical, 264: 308-332, 2017.
[57] U. Aridogan, I. Basdogan and A. Erturk. Analytical Modeling and Experimental Validation of a Structurally Integrated Piezoelectric Energy Harvester on a Thin Plate. Smart Materials and Structures, 23: 045039, 2014.
[58] U. Aridogan, I. Basdogan and A. Erturk. Multiple Patch-Based Broadband Piezoelectric Energy Harvesting on Plate-Based Structures. Journal of Intelligent Material Systems and Structures, 25: 1664-1680, 2014.
[59] B. Bayik, A. Aghakhani, I. Basdogan1 and A. Erturk. Equivalent Circuit Modeling of a Piezo-Patch Energy Harvester on a Thin Plate with AC-DC Conversion. Smart Materials and Structures, 25: 055015, 2016.
[60] A. Aghakhani, I. Basdogan. Equivalent Impedance Electroelastic Modeling of Multiple Piezo-Patch Energy Harvesters on a Thin Plate with AC-DC Conversion. IEEE/ASME Transactions on Mechatronics, 22: 1575-1584, 2017.
[61] M. F. Lumentut and Y. C. Shu. A Unified Electromechanical Finite Element Dynamic Analysis of Multiple Segmented Smart Plate Energy Harvesters: Circuit Connection Patterns. Acta Mechanica, 229: 4575-4604, 2018.
[62] R. Darleux, B. Lossouarn and J. F. Deü. Broadband Vibration Damping of Non-Periodic Plates by Piezoelectric Coupling to Their Electrical Analogues. Smart Materials and Structures, 29: 054001, 2020.
[63] M. Pearson, C. A. Featherston, R. Pullin and K. M. Holford. Optimized Placement of Parasitic Vibration Energy Harvesters for Autonomous Structural Health Monitoring. Journal of Intelligent Material Systems and Structures, 31: 1403-1415, 2020.
[64] A. Erturk, and D. J. Inman. Piezoelectric Energy Harvesting. Chichester: Wiley, 2011.
[65] A. Erturk and D. J. Inman. A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters. Journal of Vibration and Acoustics, 130: 041002, 2008.
[66] A. Erturk and D. J. Inman. An Experimentally Validated Bimorph Cantilever Model for Piezoelectric Energy Harvesting from Base Excitations. Smart materials and structures, 18: 025009, 2009.
[67] S. Timoshenko and S. Woinowsky-Krieger. Theory of Plates and Shells. 2nd ed. New York: McGraw-Hill, 1959.
[68] Y. Xing and B. Liu. New Exact Solutions for Free Vibrations of Thin Orthotropic Rectangular Plates. Composite structures, 89: 567-574, 2009.
[69] J. L. Humar. Dynamics of Structures. 2nd ed. Lisse; Exton, PA: A.A. Balkema Publishers, 2002.
[70] P. H. Wu and Y. C. Shu. Finite Element Modeling of Electrically Rectified Piezoelectric Energy Harvesters. Smart Materials and Structures, 24: 094008, 2015.
[71] 陳冠廷, 以有限元素法探討壓電振動能量擷取系統之機電行為, 國立臺灣大學工學院應用力學研究所碩士論文, 2011.
[72] 吳宏仁, 以有限元素法模擬並聯陣列式壓電振動子之機電行為, 國立臺灣大學工學院應用力學研究所碩士論文, 2012.
[73] 余帝嶢, 壓電能量擷取振子有限元素模型之實驗驗證與等效參數模擬評估, 國立臺灣大學工學院應用力學研究所碩士論文, 2016.
[74] 莊為傑, 不同力電耦合強度壓電振子應用於能量擷取之研究, 國立臺灣大學工學院應用力學研究所碩士論文, 2016.
[75] 陳彥禎, 混合陣列式壓電振子應用於能量擷取之實驗驗證, 國立臺灣大學工學院應用力學研究所碩士論文, 2017.
[76] 林政廷, 陣列式壓電能量擷取於同步電荷提取電路架構下之實驗研究, 國立臺灣大學工學院應用力學研究所碩士論文, 2019.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78277-
dc.description.abstract本論文研究旨在探討分佈式壓電片於四邊固定之平板上給予一簡諧力並搭配標準能量擷取電路,並且在不同模態下利用開關切換來控制電路連接,使其達到較高的輸出功率。方法上是藉由平板的邊界條件得知其應變分佈,但由於在高模態下,會產生應變節點之區域,因此壓電片的位置將會受到限制,不當之位置將會有電荷抵消之問題,使其輸出功率降低,故本研究將透過改變壓電片位置,得知其在不同模態下應變節點區域對於標準電路之輸出功率所造成的影響。首先,利用分佈參數法以及板殼理論進行推導壓電系統之力電耦合統御方程式,並使用本研究團隊舒貽忠教授所提出之等效阻抗法,以及用於陣列式能量擷取系統之廣義歐姆定律的矩陣形式,在此將其應用於多模態之矩陣形式,以推導出分佈式壓電片於平板上之結構搭配標準電路的數學理論解。接著,使用有限元素軟體進行模擬驗證。結果顯示,若壓電片位於含有應變節點之區域時,會造成等效力電耦合係數降低,此時,將其並聯至後端標準電路反而會使輸出功率降低,發生使用較少片壓電片之輸出功率高於使用較多片壓電片之情形,因此探討在固定面積下壓電片分佈對多模態能量擷取的重要性。zh_TW
dc.description.abstractThis thesis investigates the electric response of a plate with multiple piezoelectric patches attached to the standard energy harvesting circuit. These patches are connected electrically by switches for achieving the higher power output when a time varying harmonic concentrated load is applied to the plate whose edges are fixed. The methodology is based on solving the modal formulation of the plate to obtain the distribution of strain nodes. The locations of the piezoelectric patches over the strain nodes will reduce the power output. Therefore, the purpose of the present thesis is to study the multi-frequency energy harvesting by the investigation of the effect of the locations of the piezoelectric patches on the output power. Precisely, the theoretical formulations are derived by applying the parametric distribution method and the plate theory. The analytic estimate of the output power is realized by applying the equivalent impedance approach of the piezoelectric array attached to the standard interface. Next, the theoretical results are validated by COMSOL simulations. The results show that if the locations of the piezoelectric patches occupy parts of the strain nodes, the equivalent piezoelectric coefficients will be decreased, causing the output power smaller than that with fewer number of patches. Thus, it demonstrates the importance of the topology of piezoelectric patches on harvested power under the constraint of the fixed area.en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:49:03Z (GMT). No. of bitstreams: 1
U0001-1008202017040600.pdf: 8476804 bytes, checksum: 634f01acde26c240c3343133b877f7e3 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vi
表目錄 x
Chapter 1 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 論文架構 5
Chapter 2 壓電理論 6
2.1 壓電效應 6
2.2 線彈性壓電材料之組成律 8
2.3 壓電片於平板上之數學理論分析 10
2.3.1 壓電片於平板上之力學方程式 11
2.3.2 壓電片於平板上之電學方程式 17
2.4 交流分析 20
2.5 標準電路之直流分析 22
2.6 等效阻抗模型 24
Chapter 3 分佈式系統搭配標準電路之數學理論分析 27
3.1 分佈式系統之數學理論分析 27
3.1.1 分佈式系統之力學方程式 28
3.1.2 分佈式系統之電學方程式 29
3.2 分佈式系統搭配標準電路之數學理論分析 31
Chapter 4 有限元素模型之建立 37
4.1 單片系統之交流模型 37
4.2 單片系統搭配標準電路之等效阻抗模型 38
4.3 分佈式系統搭配標準電路之之等效阻抗模型 39
4.4 實例操作 40
Chapter 5 模擬驗證與參數分析 45
5.1 單片系統之模擬驗證 45
5.2 分佈式系統之模擬驗證與參數分析 49
5.2.1 CASE A 52
5.2.2 CASE B 62
5.2.3 CASE C 72
Chapter 6 結論與未來展望 80
6.1 結論 80
6.2 未來展望 82
REFERENCE 83
附錄A 93
附錄B 98
dc.language.isozh-TW
dc.subject平板zh_TW
dc.subject等效阻抗法zh_TW
dc.subject多模態能量擷取zh_TW
dc.subject壓電片zh_TW
dc.subject應變節點zh_TW
dc.subjectEquivalent Impedanceen
dc.subjectMulti-Frequency Energy Harvestingen
dc.subjectPiezoelectric Patchesen
dc.subjectPlateen
dc.subjectStrain Nodeen
dc.title分佈式壓電片於平板上之能量擷取研究zh_TW
dc.titleEnergy Harvesting by the Use of Multiple Piezoelectric Patches on a Plate
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃育熙(Yu-Hsi Huang),賴勇安(Yong-An Lai)
dc.subject.keyword等效阻抗法,多模態能量擷取,壓電片,平板,應變節點,zh_TW
dc.subject.keywordEquivalent Impedance,Multi-Frequency Energy Harvesting,Piezoelectric Patches,Plate,Strain Node,en
dc.relation.page107
dc.identifier.doi10.6342/NTU202002843
dc.rights.note有償授權
dc.date.accepted2020-08-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
dc.date.embargo-lift2025-08-10-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
U0001-1008202017040600.pdf
  未授權公開取用
8.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved