請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78276
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李弘文(Hung-Wen Li) | |
dc.contributor.author | Ping-Yu Hsu | en |
dc.contributor.author | 徐秉鈺 | zh_TW |
dc.date.accessioned | 2021-07-11T14:49:01Z | - |
dc.date.available | 2022-08-31 | |
dc.date.copyright | 2020-08-28 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-11 | |
dc.identifier.citation | Mao, Z., Bozzella, M., Seluanov, A. Gorbunova, V. Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair 7, 1765-1771 (2008). Inagaki, A., Schoenmakers, S. Baarends, W. M. DNA double strand break repair, chromosome synapsis and transcriptional silencing in meiosis. Epigenetics 5, 255-266 (2010). Sung, P. Klein, H. Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat. Rev. Mol. Cell Biol. 7, 739-750 (2006). Heyer, W.-D., Ehmsen, K. T. Liu, J. Regulation of homologous recombination in eukaryotes. Annu. Rev. Genet. 44, 113-139 (2010). Masson, J. Y. West, S. C. The Rad51 and Dmc1 recombinases: a non-identical twin relationship. Trends Biochem Sci 26, 131-136 (2001). Bishop, D. K., Park, D., Xu, L. Kleckner, N. DMC1: A meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69, 439-456 (1992). Huisman, O. et al. A Tn10-lacZ-kanR-URA3 gene fusion transposon for insertion mutagenesis and fusion analysis of yeast and bacterial genes. Genetics 116, 191-199 (1987). Ogawa, T., Yu, X., Shinohara, A. Egelman, E. H. Similarity of the yeast RAD51 filament to the bacterial RecA filament. Science 259, 1896-1899 (1993). Okorokov, A. L. et al. Structure of the hDmc1-ssDNA filament reveals the principles of its architecture. PLoS One 5, e8586 (2010). Sheridan, S. D. et al. A comparative analysis of Dmc1 and Rad51 nucleoprotein filaments. Nucleic Acids Res. 36, 4057-4066 (2008). Xu, J. et al. Cryo-EM structures of human RAD51 recombinase filaments during catalysis of DNA-strand exchange. Nat. Struct. Mol. Biol. 24, 40-46 (2017). Conway, A. B. et al. Crystal structure of a Rad51 filament. Nat. Struct. Mol. Biol. 11, 791-796 (2004). Lee, J. Y. et al. Base triplet stepping by the Rad51/RecA family of recombinases. Science 349, 977-981 (2015). Sung, P. Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science 265, 1241-1243 (1994). Sehorn, M. G., Sigurdsson, S., Bussen, W., Unger, V. M. Sung, P. Human meiotic recombinase Dmc1 promotes ATP-dependent homologous DNA strand exchange. Nature 429, 433-437 (2004). Tarsounas, M., Morita, T., Pearlman, R. E. Moens, P. B. RAD51 and DMC1 form mixed complexes associated with mouse meiotic chromosome cores and synaptonemal complexes. J. Cell Biol. 147, 207-220 (1999). Brown, M. S., Grubb, J., Zhang, A., Rust, M. J. Bishop, D. K. Small Rad51 and Dmc1 complexes often co-occupy both ends of a meiotic DNA double strand break. PLoS Genet. 11, e1005653 (2015). Masson, J.-Y. et al. The meiosis-specific recombinase hDmc1 forms ring structures and interacts with hRad51. EMBO J. 18, 6552-6560 (1999). Schwacha, A. Kleckner, N. Interhomolog bias during meiotic recombination: meiotic functions promote a highly differentiated interhomolog-only pathway. Cell 90, 1123-1135 (1997). VanLoock, M. S. et al. ATP-mediated conformational changes in the RecA filament. Structure 11, 187-196 (2003). Cordes, T., Vogelsang, J. Tinnefeld, P. On the mechanism of trolox as antiblinking and antibleaching reagent. J. Am. Chem. Soc. 131, 5018-5019 (2009). Howarter, J. A. Youngblood, J. P. Optimization of silica silanization by 3-aminopropyltriethoxysilane. Langmuir 22, 11142-11147 (2006). Hermanson, G. T. in Bioconjugate Techniques (Third Edition) (ed Greg T. Hermanson) 229-258 (Academic Press, 2013). Liao, T.-W. Developing single-molecule fluorescence imaging platform to study dissociation dynamics of RAD51 recombinase filament Master thesis, National Taiwan University, (2018). Roy, R., Hohng, S. Ha, T. A practical guide to single-molecule FRET. Nat. Methods 5, 507-516 (2008). Yang, H.-L. Single molecule FRET identified the dynamic nature of human telomere-binding protein CST complex Master thesis, National Taiwan University, (2019). Chang, T.-T. Single-molecule FRET studies on nucleoprotein filament dynamics of RecA E38K mutant protein Master thesis, National Taiwan University, (2016). Bronson, J. E., Fei, J., Hofman, J. M., Gonzalez, R. L., Jr. Wiggins, C. H. Learning rates and states from biophysical time series: a Bayesian approach to model selection and single-molecule FRET data. Biophys. J. 97, 3196-3205 (2009). Lu, C.-H. et al. Swi5–Sfr1 stimulates Rad51 recombinase filament assembly by modulating Rad51 dissociation. Proc. Natl. Acad. Sci. U.S.A. 115, E10059-E10068 (2018). Bergman, C., Kashiwaya, Y. Veech, R. L. The effect of pH and free Mg2+ on ATP linked enzymes and the calculation of Gibbs free energy of ATP hydrolysis. J. Phys. Chem. B 114, 16137-16146 (2010). Alberty, R. A., Smith, R. M. Bock, R. M. The apparent ionization constants of the adenosinephosphates and related compounds. J. Biol. Chem. 193, 425-434 (1951). Chen, Z., Yang, H. Pavletich, N. P. Mechanism of homologous recombination from the RecA–ssDNA/dsDNA structures. Nature 453, 489-494 (2008). Busygina, V. et al. Functional attributes of the Saccharomyces cerevisiae meiotic recombinase Dmc1. DNA Repair (Amst) 12, 707-712 (2013). Kim, H. K., Morimatsu, K., Nordén, B., Ardhammar, M. Takahashi, M. ADP stabilizes the human Rad51-single stranded DNA complex and promotes its DNA annealing activity. Genes Cells 7, 1125-1134 (2002). Borgogno, M. V. et al. Tolerance of DNA mismatches in Dmc1 recombinase-mediated DNA strand exchange. J. Biol. Chem. 291, 4928-4938 (2016). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78276 | - |
dc.description.abstract | 同源重組反應是DNA雙股斷裂時主要的修復途徑。在真核細胞中主要有兩個重組酶:Rad51和特定於減數分裂時作用的Dmc1。Rad51已經被證明與大腸桿菌重組酶EcRecA相似,可於單股DNA上可形成延長的核蛋白絲而Dmc1在電子顯微鏡下觀察到還具有一個特有的疊環結構。在此篇論文中,我們利用單分子螢光共振能量轉移實驗探討酵母菌體系中,ScDmc1結合於單股DNA上的構型變化。Rad51在結合至單股DNA上形成核蛋白絲時,會將在單股兩端的螢光修飾距離拉開,使訊號讀得一較低的FRET狀態;在Dmc1存在的條件下,除此之外還可以觀察到另一個使FRET較DNA本身訊號高的狀態。這個High-FRET狀態可以受到核苷酸的調控,暗示著其為一個在Dmc1催化ATP水解過程中中間體的複合構型ADP、或是不含核苷酸的Dmc1-ssDNA型態。我們進一步利用同源雙股捕捉試驗證實,無論是延長DNA的核蛋白絲、亦或是形成High-FRET的狀態,ScDmc1-ssDNA皆具有捕捉同源雙股的能力,且這兩個捕捉器對於雙股的親和力及維持雙股的穩定性相當。我們也確認這兩種Dmc1構型皆能進行後續的股交換。由於已知股交換反應需要ATP催化才可以進行,表示ADP或不含核苷酸狀態的ScDmc1-ssDNA具有黏合同源雙股的能力,但須要轉換到ATP時才能進行股交換反應。 | zh_TW |
dc.description.abstract | Homologous recombination is the major pathway to repair double-stranded break DNA damage. In eukaryotic cells, there exist two recombinases: Rad51 and meiosis-specific Dmc1. Rad51, similar to bacteria RecA recombinases, has been shown to form extended nucleoprotein filaments on ssDNA, but electron microscopy studies showed an additional stacked-ring structure for Dmc1. Here, we used single-molecule fluorescence resonance energy transfer (smFRET) experiments to study the Saccharomyces cerevisiae Dmc1-DNA complex. Rad51 binding to single-stranded DNA leads to an increase in separation of dye pairs labeled on DNA ends and results in a low FRET state. However, in the presence of Dmc1 recombinases, an additional high FRET state is observed. The high FRET state can be regulated by nucleotide cofactors, suggesting this high FRET state is a intermediate during ATP hydrolysis, ADP or no nucleotide state, promoted by Dmc1. Surprisingly, both ScDmc1-ssDNA states are biochemically functional, capable of capturing duplex DNA with similar affinity and stability with homologous duplex. Furthermore, we demonstrate that both Dmc1 states can proceed to complete strand exchange reaction, implying that potential strand annealing activity of ADP states promotes strand exchange efficiency when ATP is included. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T14:49:01Z (GMT). No. of bitstreams: 1 U0001-1008202017202700.pdf: 5370738 bytes, checksum: 9a0958301fa5dbce693c9bccbc98350f (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 謝辭 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vii 表目錄 viii 第一章 緒論 1 1-1 同源重組反應 (Homologous Recombination) 1 1-2 Dmc1與Rad51蛋白 2 1-4 研究動機 7 第二章 實驗方法與設計 9 2-1 蛋白質的純化與保存 9 2-2 DNA基質設計 9 2-3 溶液配方及製備 12 緩衝溶液及反應溶液配方 12 除氧系統 (Oxygen scavenging system) 配置 13 蛋白質的反應條件 15 同源捕捉試驗雙股DNA反應條件 15 2-4 反應玻片製備 16 玻片清洗 16 聚乙二醇修飾 16 反應渠道製作 18 2-5 單分子螢光實驗之架設 19 光學顯微鏡架設 19 EMCCD 設定 20 單分子螢光共振能量轉移 (smFRET)理論 21 螢光溢漏 (leakage)校正 22 2-6 單分子螢光實驗流程 24 2-7 數據分析 25 影像Cy3-Cy5分子配對 25 單分子時間軌跡選取 26 蛋白與單股DNA反應比例計算 26 蛋白與單股DNA結合FRET躍遷停留時間分析 27 同源捕捉試驗雙股共位時間分析 28 2-8 同源捕捉產物控制實驗 29 第三章 實驗結果與討論 31 3-1 非延長核蛋白絲之ScDmc1-ssDNA複合物與核苷酸有關 31 比較ScDmc1及ScRad51與單股DNA之結合 31 核苷酸狀態影響重組酶與單股DNA的結合狀態 33 3-2 同源捕捉試驗 (Homology capturing assay)設計 42 以大腸桿菌同源重組酶RecA作為同源捕捉試驗之測試 45 3-3 以ScDmc1進行同源捕捉試驗 47 ScDmc1可藉由兩種與單股結合之構型捕捉雙股DNA 47 ScDmc1-ssDNA的兩種捕捉過程於雙股親和力無顯著差異 51 兩種ScDmc1-ssDNA捕捉方式皆可以進行後續股交換反應 53 ADP及不含核苷酸的反應條件下也可看到high-FRET捕捉雙股 56 第四章 實驗總結與未來展望 60 4-1 實驗總結 60 4-2 未來展望 62 ScDmc1行股交換反應之探討 62 High-FRET真實結構探索 63 探索其它可調控ScDmc1-ssDNA聚縮狀態的因素 64 參考文獻 65 附錄 69 附錄一、His-ScDmc1的high-FRET比例隨pH下降而上升 69 附錄二、ScDmc1在pH=6.4不同條件下各State比例隨濃度變化 70 附錄三、ScDmc1於不同pH下對單股結合能力隨核苷酸改變 71 附錄四、重組酶於反應條件下對雙股無顯著結合能力 72 附錄五、重組酶hRAD51進行同源捕捉試驗即時單分子軌跡 73 | |
dc.language.iso | zh-TW | |
dc.title | 利用單分子螢光共振能量轉移探討同源重組酶Dmc1核蛋白絲之構型 | zh_TW |
dc.title | Characterizing Conformations of Dmc1 Recombinase Nucleoprotein Filament Using Single Molecule Fluorescence Resonance Energy Transfer | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 冀宏源(Hung-Yuan Chi),王廷方(Ting-Fang Wang),高承福(Cheng-Fu Kao) | |
dc.subject.keyword | 同源重組,Dmc1,Rad51,單分子螢光共振能量轉移, | zh_TW |
dc.subject.keyword | homologous recombination,Dmc1,Rad51,single-molecule fluorescence resonance energy transfer, | en |
dc.relation.page | 74 | |
dc.identifier.doi | 10.6342/NTU202002845 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-11 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1008202017202700.pdf 目前未授權公開取用 | 5.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。