請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78269完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳佩燁(Pei-Yeh Chen) | |
| dc.contributor.author | Yi-Chen Lee | en |
| dc.contributor.author | 李奕辰 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:48:43Z | - |
| dc.date.available | 2025-08-17 | |
| dc.date.copyright | 2020-09-24 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-13 | |
| dc.identifier.citation | Abdallah, A., Wang, P., Richt, J. A., Sreevatsan, S. (2012). Y145Stop is sufficient to induce de novo generation prions using protein misfolding cyclic amplification. Prion, 6(1), 81-88. Chabry, J., Caughey, B., Chesebro, B. (1998). Specific inhibition of in vitro formation of protease-resistant prion protein by synthetic peptides. J Biol Chem, 273(21), 13203-13207. Chatterjee, B., Lee, C. Y., Lin, C., Chen, E. H., Huang, C. L., Yang, C. C., Chen, R. P. (2013). Amyloid core formed of full-length recombinant mouse prion protein involves sequence 127-143 but not sequence 107-126. PLoS One, 8(7), e67967. Chiti, F., Dobson, C. M. (2017). Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu Rev Biochem, 86, 27-68. Cobb, N. J., Sonnichsen, F. D., McHaourab, H., Surewicz, W. K. (2007). Molecular architecture of human prion protein amyloid: a parallel, in-register beta-structure. Proc Natl Acad Sci U S A, 104(48), 18946-18951. Collee, J. G., Bradley, R., Liberski, P. P. (2006). Variant CJD (vCJD) and bovine spongiform encephalopathy (BSE): 10 and 20 years on: part 2. Folia Neuropathol, 44(2), 102-110. Glynn, C., Sawaya, M. R., Ge, P., Gallagher-Jones, M., Short, C. W., Bowman, R., . . . Rodriguez, J. A. (2020). Cryo-EM structure of a human prion fibril with a hydrophobic, protease-resistant core. Nat Struct Mol Biol, 27(5), 417-423. Holscher, C., Delius, H., Burkle, A. (1998). Overexpression of nonconvertible PrPc delta114-121 in scrapie-infected mouse neuroblastoma cells leads to trans-dominant inhibition of wild-type PrP(Sc) accumulation. J Virol, 72(2), 1153-1159. Imran, M., Mahmood, S. (2011). An overview of animal prion diseases. J Virol, 8, 493. Ironside, J. W. (2012). Variant Creutzfeldt-Jakob disease: an update. Folia Neuropathol, 50(1), 50-56. Jones, E. M., Surewicz, W. K. (2005). Fibril conformation as the basis of species- and strain-dependent seeding specificity of mammalian prion amyloids. Cell, 121(1), 63-72. Kernich, C. A. (2007). Patient and family fact sheet: Creutzfeldt-Jakob disease. Neurologist, 13(5), 329-330. Kupfer, L., Hinrichs, W., Groschup, M. H. (2009). Prion protein misfolding. Curr Mol Med, 9(7), 826-835. Kyle, R. A. (2001). Amyloidosis: a convoluted story. Br J Haematol, 114(3), 529-538. Lee, L. Y., Chen, R. P. (2007). Quantifying the sequence-dependent species barrier between hamster and mouse prions. J Am Chem Soc, 129(6), 1644-1652. Lin, Y.-S. (2018). Structural analysis of the amyloid fibrils formed of syrian hamster prion peptide (108-144) by using electron spin resonance spectroscopy. Master Master thesis, Natonal Taiwan University. Lu, X., Wintrode, P. L., Surewicz, W. K. (2007). Beta-sheet core of human prion protein amyloid fibrils as determined by hydrogen/deuterium exchange. Proc Natl Acad Sci U S A, 104(5), 1510-1515. Muramoto, T., Scott, M., Cohen, F. E., Prusiner, S. B. (1996). Recombinant scrapie-like prion protein of 106 amino acids is soluble. Proc Natl Acad Sci U S A, 93(26), 15457-15462. Pastore, A., Zagari, A. (2007). A structural overview of the vertebrate prion proteins. Prion, 1(3), 185-197. Priola, S. A., Chesebro, B. (1995). A single hamster PrP amino acid blocks conversion to protease-resistant PrP in scrapie-infected mouse neuroblastoma cells. J Virol, 69(12), 7754-7758. Saba, R., Booth, S. A. (2013). The genetics of susceptibility to variant Creutzfeldt-Jakob disease. Public Health Genomics, 16(1-2), 17-24. Scott, M., Foster, D., Mirenda, C., Serban, D., Coufal, F., Walchli, M., . . . Prusiner, S. B. (1989). Transgenic mice expressing hamster prion protein produce species-specific scrapie infectivity and amyloid plaques. Cell, 59(5), 847-857. Shen, H. C., Chen, Y. H., Lin, Y. S., Chu, B. K., Liang, C. S., Yang, C. C., Chen, R. P. (2019). Segments in the Amyloid Core that Distinguish Hamster from Mouse Prion Fibrils. Neurochem Res, 44(6), 1399-1409. Shindoh, R., Kim, C. L., Song, C. H., Hasebe, R., Horiuchi, M. (2009). The region approximately between amino acids 81 and 137 of proteinase K-resistant PrPSc is critical for the infectivity of the Chandler prion strain. J Virol, 83(8), 3852-3860. Supattapone, S., Bouzamondo, E., Ball, H. L., Wille, H., Nguyen, H. O., Cohen, F. E., . . . Scott, M. (2001). A protease-resistant 61-residue prion peptide causes neurodegeneration in transgenic mice. Mol Cell Biol, 21(7), 2608-2616. Theint, T., Nadaud, P. S., Aucoin, D., Helmus, J. J., Pondaven, S. P., Surewicz, K., . . . Jaroniec, C. P. (2017). Species-dependent structural polymorphism of Y145Stop prion protein amyloid revealed by solid-state NMR spectroscopy. Nat Commun, 8(1), 753. Tycko, R., Savtchenko, R., Ostapchenko, V. G., Makarava, N., Baskakov, I. V. (2010). The alpha-helical C-terminal domain of full-length recombinant PrP converts to an in-register parallel beta-sheet structure in PrP fibrils: evidence from solid state nuclear magnetic resonance. Biochemistry, 49(44), 9488-9497. Vanik, D. L., Surewicz, K. A., Surewicz, W. K. (2004). Molecular basis of barriers for interspecies transmissibility of mammalian prions. Mol Cell, 14(1), 139-145. Vazquez-Fernandez, E., Vos, M. R., Afanasyev, P., Cebey, L., Sevillano, A. M., Vidal, E., . . . Wille, H. (2016). The Structural Architecture of an Infectious Mammalian Prion Using Electron Cryomicroscopy. PLoS Pathog, 12(9), e1005835. Wang, L. Q., Zhao, K., Yuan, H. Y., Wang, Q., Guan, Z., Tao, J., . . . Liang, Y. (2020). Cryo-EM structure of an amyloid fibril formed by full-length human prion protein. Nat Struct Mol Biol, 27(6), 598-602. Will, R. G. (2003). Acquired prion disease: iatrogenic CJD, variant CJD, kuru. Br Med Bull, 66, 255-265. Zabel, M. D., Reid, C. (2015). A brief history of prions. Pathog Dis, 73(9), ftv087. Zahn, R., Liu, A., Luhrs, T., Riek, R., von Schroetter, C., Lopez Garcia, F., . . . Wuthrich, K. (2000). NMR solution structure of the human prion protein. Proc Natl Acad Sci U S A, 97(1), 145-150. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78269 | - |
| dc.description.abstract | 普立昂疾病是一種因普立昂蛋白不正常堆疊形成澱粉樣纖維所造成的神經退化性疾病。其臨床上的症狀包含失智,肌肉抽搐,共濟失調…等等。而因目前對於此疾病的相關知識仍嚴重不足,導致目前並無任何方式可以醫治此種疾病。對此,我們針對現有大眾所普遍接受的普立昂蛋白假說進行深入研究。普立昂蛋白在正常形態下(PrPC)以膜蛋白的形式存在於細胞膜上,但當它經過了一個未知原因的構型轉變後,即會轉變為致病型態的普立昂蛋白(PrPSc)。此結構轉變會導致普立昂蛋白產生了許多特性像是不易被蛋白酶水解、不易溶於水…而這些特性則導致了其無法藉由X射線晶體學或是核磁共振等通俗方式解出或看出結構。 在本研究中我們選取了小鼠普立昂蛋白108-144這個普遍被認為是形成澱粉樣纖維的中心片段的胜肽,其後我們選取了五個胺基酸位點做了突變以利於我們接上可以被電子自旋共振所偵測到的含有自由電子的(1-氧-2,2,5,5-四甲基吡咯口林-3-甲基)甲基硫代硫磺酸酯(MTSSL)自旋標記。接著我們利用野生型普立昂蛋白所形成的澱粉樣纖維為晶種去誘使各胜肽形成澱粉樣纖維,最後再以電子自旋共振光譜ESR來解析各突變胜肽的自旋標記之間的相對距離為何,藉此探討致病型普立昂蛋白在形成澱粉樣纖維後之結構特性。 根據得到的結果我們推測出了一個模型,那就是在中性環境下,澱粉樣纖維的產生可能是先以一條胜肽折兩折形成一個S型的形態,再以這個形態整齊排列而成。而在酸性環境下所得到的ESR跟CD圖譜則跟中性有差別,此發現亦代表普立昂的澱粉樣纖維可能會因環境不同而以不同的形態存在。本研究希望能藉由電子自旋共振光譜來找出小鼠的致病型普立昂蛋白在形成澱粉樣纖維的關鍵位點及區域,其後推展到人類的普立昂蛋白上,希望能以此發展有利於針對普立昂疾病的深度研究,疾病預防或藥物開發…等等。 | zh_TW |
| dc.description.abstract | Prion diseases are a group of neurodegenerative diseases caused by abnormal aggregations of prion protein into amyloid fibrils. The clinical symptoms of these diseases include dementia, muscle twitching, ataxia…etc. Knowledge relating to prion diseases is still severely insufficient, which results in the lack of effective treatments for these diseases. To this extend, we looked deeper into the protein-only hypothesis of prion which is generally accepted by the community. Prion protein exists as a membrane protein on the cellular membrane when it is in its normal cellular form (PrPC). However, when PrPC undergoes an unknown-reasoned structural conversion, it becomes the disease-causing form of prion protein (PrPSc). This major structural conversion not only renders PrPSc more prone to aggregate, but also creates a lot of additional features of PrPSc such as difficult to be hydrolyzed by proteases, hard to be dissolved in water…etc. These additional features further impede the application of conventional protein structural studies such as X-ray crystallization or NMR on PrPSc. Here in this study, we chose mouse prion peptide (108-144) as our target of interest since this region is believed to be of the critical region regarding amyloid fibril formation. We synthesized 5 different mutant peptides separately and added spin-labels named (1-oxyl-2,2,5,5-tetramethylpyrroline-3-methyl)-methanethiosulfonate (MTSSL) onto the cysteine mutations of these peptides. These MTSSL labels contained free radicals, which can be detected by ESR spectroscopy. After labeling, fibrils were formed by these peptides in vitro by adding buffers containing salt which facilitates fibril formation. Seeds formed by the sonication of wildtype fibrils were also added as templates to further increase the propensity of different mutant peptides to form wildtype-like fibrils. Finally, by doing ESR spectroscopy, we could detect the intensity of interactions between labels, and by doing spin-dilutions, we could further estimate the distance between two labels in amyloid fibrils. This information could help us better understand the structural nature of PrPSc. According to our results, we proposed a structural model of fibrils formed by mPrP(108-144), which is that the peptide monomers first self-folds into an S-like structure before stacking on one another uniformly to build the whole fibril. As for the results done under the acidic condition, the ESR spectra obtained were different than the ones done under the neutral condition, which indicate that prion peptide might adopt different conformations of amyloid fibrils under different environment. This study aims to find out the critical sites and regions of the amyloid core formed by mouse prion peptide, and hopefully, one day to further extend the research to the level of human prion. The information obtained by this study could be useful in prion disease prevention or therapy. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:48:43Z (GMT). No. of bitstreams: 1 U0001-1108202015402100.pdf: 15366101 bytes, checksum: d8df0b3f03c7c3c2e99a0c67f58b6d07 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 中文摘要 i Abstract ii Abbreviations iv Chapter 1 Introduction 1 1.1 Introduction to prion diseases 1 1.2 Introduction to prion protein 6 1.3 Amyloidogenesis of prion protein 12 1.4 The critical regions of prion amyloidogenesis 14 1.5 Electron Spin Resonance spectroscopy 22 1.6 Aim of this study 26 Chapter 2 Material and Methods 28 2.1 Materials 28 2.1.1 Water 28 2.1.2 Chemicals 28 2.1.3 Laboratory Instruments 30 2.2 Methods 33 2.2.1 Solid-phase peptide synthesis 33 2.2.2 Peptide purification and identification 34 2.2.3 MTSSL labeling, purification, and identification 35 2.2.4 Seed preparation 36 2.2.5 Amyloid fibril formation 37 2.2.6 ThT binding assay by fluorescence spectroscopy 37 2.2.7 TEM sample preparation and observation 38 2.2.8 ESR sample preparation and spectroscopy measurement 39 2.2.9 CD sample preparation and spectroscopy measurement 39 2.2.9 Data analysis 39 Chapter 3 Results 41 3.1 Peptide preparations 41 3.1.1 Peptide synthesis, purifications, and identifications 41 3.1.2 MTSSL labeling, purification, and identification 44 3.2 Spontaneous and seeded ThT amyloid fibril formation tests 48 3.2.1 ThT amyloid fibril formation tests under neutral condition 48 3.2.2 ThT amyloid fibril formation tests under acidic condition 54 3.3 Transmission Electron Microscopy 59 3.3.1 Morphologies of fibrils grown under neutral condition 59 3.3.2 Morphologies of fibrils grown under acidic condition 66 3.4 ESR spectroscopy 72 3.5 CD spectroscopy 79 Chapter 4 Discussion 82 4.1 Comprehensive comparisons. 83 4.2 Proposed model of mPrP(108-144) fibril 87 4.3 Comparison of mPrP(108-144) and haPrP(108-144) 89 4.4 Others 92 References 95 | |
| dc.language.iso | en | |
| dc.subject | 普立昂疾病 | zh_TW |
| dc.subject | 電子自旋共振光譜 | zh_TW |
| dc.subject | 小鼠普立昂胜肽 | zh_TW |
| dc.subject | 澱粉樣纖維 | zh_TW |
| dc.subject | 普立昂蛋白 | zh_TW |
| dc.subject | ESR spectroscopy | en |
| dc.subject | prion disease | en |
| dc.subject | prion protein | en |
| dc.subject | amyloid fibril | en |
| dc.subject | amyloid core | en |
| dc.subject | mouse prion peptide | en |
| dc.title | 以電子自旋共振光譜探討小鼠普立昂胜肽片段108-144所生成的澱粉樣纖維之結構特性 | zh_TW |
| dc.title | Exploring the Structural Features of the Amyloid Fibrils Formed by Mouse Prion Peptide(108-144)Using Electron Spin Resonance Spectroscopy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖永豐(Yung-Feng Liao),江昀緯(Yun-Wei Chiang),王勝仕(Sheng-Shih Wang) | |
| dc.subject.keyword | 普立昂疾病,普立昂蛋白,澱粉樣纖維,小鼠普立昂胜肽,電子自旋共振光譜, | zh_TW |
| dc.subject.keyword | prion disease,prion protein,amyloid fibril,amyloid core,mouse prion peptide,ESR spectroscopy, | en |
| dc.relation.page | 98 | |
| dc.identifier.doi | 10.6342/NTU202002966 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-14 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-17 | - |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1108202015402100.pdf 未授權公開取用 | 15.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
