請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78264完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡永傑(Wing-Kit Choi) | |
| dc.contributor.author | Shi-Rui Chen | en |
| dc.contributor.author | 陳世睿 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:48:27Z | - |
| dc.date.available | 2025-08-20 | |
| dc.date.copyright | 2020-08-28 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-12 | |
| dc.identifier.citation | [1] Reinitzer, Friedrich. 'Beiträge zur kenntniss des cholesterins.' Monatshefte für Chemie und verwandte Teile anderer Wissenschaften 9.1 (1888): 421-441. [2] Lehmann, Otto. 'Über fliessende krystalle.' Zeitschrift für physikalische Chemie 4.1 (1889): 462-472. [3] Friedel, Georges. 'Les états mésomorphes de la matière.' AnPh 9.18 (1922): 273-474. [4] Shin-Tson Wu. (1994). Nematic liquid crystals. Optical Engineering-New York-Marcel Dekker Incorporated. 47: 1-1. [5] Goodby, John W., and Thomas M. Leslie. 'Smectic liquid crystals.' U.S. Patent No. 4,613,209. 23 Sep. 1986. [6] Oswald, Patrick, and Pawel Pieranski. Nematic and cholesteric liquid crystals: concepts and physical properties illustrated by experiments. CRC press, 2005. [7] Wu, Shin-Tson. 'Birefringence dispersions of liquid crystals.' Physical Review A 33.2 (1986): 1270. [8] Vertogen, G. 'Elastic constants and the continuum theory of liquid crystals.' Physica A: Statistical Mechanics and its Applications 117.1 (1983): 227-231. [9] Chen, Haiwei, Yating Gao, and Shin‐Tson Wu. '49.1: Invited Paper: n‐FFS vs. p‐FFS: Who wins?.' SID Symposium Digest of Technical Papers. Vol. 46. No. 1. 2015. [10] Dae Hyung Kim, Young Jin Lim, Da Eun Kim, Hongwen Ren, Seon Hong Ahn, and Seung Hee Lee. 'Past, present, and future of fringe-field switching-liquid crystal display.' Journal of Information Display 15.2 (2014): 99-106. [11] Jakeman, E., and E. P. Raynes. 'Electro-optic response times in liquid crystals.' Physics Letters A 39.1 (1972): 69-70. [12] Choi, Wing Kit, and Shin-Tson Wu. 'Fast response liquid crystal mode.' U.S. Patent No. 7,369,204. 6 May 2008. [13] Nakamura, Hajime, and Kazuo Sekiya. '51.1: Overdrive method for reducing response times of liquid crystal displays.' SID Symposium Digest of Technical Papers. Vol. 32. No. 1. Oxford, UK: Blackwell Publishing Ltd, 2001. [14] Tae-Hoon Choi, Jae-Hyeon Woo, Yeongyu Choi, and Tae-Hoon Yoon. 'Effect of two-dimensional confinement on switching of vertically aligned liquid crystals by an in-plane electric field.' Optics Express 24.18 (2016): 20993-21000. [15] Tae-Hoon Choi, Yeongyu Choi, Jae-Hyeon Woo, Seung-Won Oh, and Tae-Hoon Yoon. 'Electro-optical characteristics of an in-plane-switching liquid crystal cell with zero rubbing angle: dependence on the electrode structure.' Optics express 24.14 (2016): 15987-15996. [16] Wing-Kit Choi, Chih-Wei Hsu, Chia-Hsiang Tung, and Bo-Kai Tseng. 'Effects of electrode structure and dielectric anisotropy on the performance of VA-FFS LC mode.' Optics Express 27.23 (2019): 34343-34358. [17] Meizi Jiao, Zhibing Ge, Shin-Tson Wu, and Wing-Kit Choi. 'Submillisecond response nematic liquid crystal modulators using dual fringe field switching in a vertically aligned cell.' Applied Physics Letters 92.11 (2008): 111101. [18] Tae-Hoon Choi, Jae-Hyeon Woo, Yeongyu Choi, and Tae-Hoon Yoon. 'Interdigitated pixel electrodes with alternating tilts for fast fringe-field switching of liquid crystals.' Optics Express 24.24 (2016): 27569-27576. [19] Seung-Won Oh, Ahn-Ki Kim, Byung Wok Park, and Tae-Hoon Toon. 'Optical compensation methods for the elimination of off-axis light leakage in an in-plane-switching liquid crystal display.' Journal of Information Display 16.1 (2015): 1-10.. [20] Seong-Woo Oh, Dong-Jin Lee, Min-Kyu Park, Kyoung Ho Park, Joun-Ho Lee, Byeong Koo Kim, and Hak-Rin Kim. 'Enhancement of viewing angle properties of a single-domain fringe-field switching mode using zero pretilt alignment.' Journal of Physics D: Applied Physics 48.40 (2015): 405502. [21] Chen, Yuan, Fenglin Peng, and Shin-Tson Wu. 'Submillisecond-response vertical-aligned liquid crystal for color sequential projection displays.' Journal of Display Technology 9.2 (2013): 78-81. [22] Tae-Hoon Choi, Jae-Hyeon Woo, Yeongyu Choi, Seung-Won Oh, and Tae-Hoon Yoon. '27‐3 2‐D Confinement of LCs with Virtual Walls for a Fast Response LCD.' SID Symposium Digest of Technical Papers. Vol. 48. No. 1. 2017. [23] Tae-Hoon Choi, Seung-Won Oh, Young-Jin Park, Yeongyu Choi, and Tae-Hoon Yoon. 'Fast fringe-field switching of a liquid crystal cell by two-dimensional confinement with virtual walls.' Scientific reports 6.1 (2016): 1-9. [24] Daming Xu, Haiwei Chen, Shin-Tson Wu, Ming-Chun Li, Seok-Lyul Lee, Wen-Ching Tsai. 'A fringe field switching liquid crystal display with fast grayscale response time.' Journal of Display Technology 11.4 (2015): 353-359. [25] Artur R. Geivandov, Mikhail I. Barnik, Irina V. Kasyanova, and Serguei P. Palto. 'Study of the vertically aligned in-plane switching liquid crystal mode in microscale periodic electric fields.' Beilstein journal of nanotechnology 9.1 (2018): 11-19. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78264 | - |
| dc.description.abstract | 目前液晶顯示器在市面上仍是顯示器中的主流,其優點包含高解析度、低功耗而且輕薄,但相比其他類型的顯示器,其有個較主要的缺點,那就是液晶的響應時間慢,而這會導致影像在快速移動時造成影像劣化(image degradation)。在現今趨勢如AR/VR 等將有更多顯示器的應用要求更快的響應時間以達到影像近乎即時零延遲的成像,因此對於液晶顯示器這無疑是個重大的挑戰,而本篇論文將針對水平配向的邊緣場效驅動顯示器並改善其響應時間。 本篇論文採用光配向的方式,將電極邊緣處的液晶使之與電極排列方向夾一小角度,在施加電場後液晶即能夠隨著電場方向而轉向不同的方向以產生虛擬牆幫助響應時間的縮短。分析不同的電極寬度和電極間距所帶來的影響,發現無論是電極寬度或是間距增加,都會同時造成穿透率提升但響應時間變慢,之後探討了虛擬牆間距帶來的影響,發現同樣的虛擬牆間距下其響應時間會在同一個水平上下,並且虛擬牆間距越小則響應時間越快。 接著探討各種配向參數對此結構的影響,發現配向區域的比例對結果幾乎沒有影響,這也提升了其在製程上對位的誤差容忍率,而配向區域的寬度和角度對整體影響不大,僅會稍微影響臨界電壓和上升時間,因此選擇較小的寬度和角度才不會造成在暗態漏光更嚴重,而相鄰的配向區域方向若一致會導致虛擬牆間距變長,使得響應時間變慢,故讓相鄰兩配向區域的液晶交錯排列才能夠得到較快響應時間的結構。最後比較此結構和傳統邊緣場效驅動發現此結構的響應時間確實大幅下降,而利用雙層電極的方式亦可讓原先穿透率不高的單層結構提升穿透率。雖然此結構的液晶初始排列並非均勻,但其在可視角上還是有不錯的表現。 | zh_TW |
| dc.description.abstract | Liquid crystal displays are still the mainstream of the displays on the market. Their advantages include high resolution, low power consumption, thinness and light weight. In contrast to others displays, they have a major drawback which is their slow response time. Slow response time will cause the image degradation of fast-moving pictures. The application of displays like virtual reality or augmented reality will require faster response time to achieve nearly zero latency so it must be a big challenge to the liquid crystal displays without a doubt. Therefore, this thesis focuses on parallel-aligned fringe field switching liquid crystal displays and help to improve their response time. In this thesis, we made the liquid crystals near the fringe of the pixels have a small angle related to the pixel alignment direction. They can rotate in the different directions to generate the virtual walls which can help to reduce the response time. First, we analyzed the effect of the pixel width and the electrode gap width. We found that whether pixel width or electrode gap width increased, it would cause higher transmittance but slower response time. Subsequently, we studied the effect of virtual wall. Same virtual wall pitch caused a same level of the response time, and smaller the virtual wall pitch, faster the response time. After that, we investigated the effects of various parameters of the alignment area. We found that the proportion of the alignment area almost had no effects on the result, and it can rise the allowable deviation in processing. Same did the width and the angle of the alignment area. They only can affect the threshold voltage and the rise time a little bit so we chose smaller width and angle of alignment area to reduce the light leakage in the dark state. Moreover, same direction of the adjacent alignment area would make virtual wall pitch be longer and response time be slower. Therefore, it can help to gain a faster response time structure by making the liquid crystal of adjacent area of alignment area aligned alternately in the different directions. Finally, we compared this structure we proposed with the conventional fringe field switching. The structure we proposed actually have the response time reduced significantly. We can also use the double-layer structure to enhance the transmittance of the single layer structure which has lower transmittance. Although the initial alignment is not uniform in this structure, they still have acceptable performance. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:48:27Z (GMT). No. of bitstreams: 1 U0001-1108202023190200.pdf: 5162751 bytes, checksum: 5e083b9c6d393adb5ddf29aac959120e (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 摘要 i ABSTRACT ii 目錄 iv 圖目錄 vi 表目錄 ix 第一章 簡介 1 1.1 何謂液晶 1 1.2 液晶種類 2 1.2.1 向列型液晶(Nematic)[4] 3 1.2.2 層列型液晶(Smectic)[5] 3 1.2.3 膽固醇液晶(Cholesteric)[6] 4 1.3 液晶物理特性 5 1.3.1 雙折射性(Birefringence)[7] 5 1.3.2 介電係數(Dielectric Constant) 6 1.3.3 秩序參數(Order Parameter) 7 1.3.4 連續彈性理論(Elastic Continuum Theory)[8] 8 1.3.5 黏滯係數異向性 9 1.4 液晶顯示器介紹 10 1.4.1 液晶顯示器的結構 10 1.4.2 液晶顯示器的技術 11 1.5 液晶顯示器平面驅動模式 11 1.5.1 平面驅動顯示技術 11 1.5.2 邊緣場效驅動顯示技術[9][10] 12 第二章 文獻回顧與研究動機 14 2.1 垂直排列邊緣場效驅動 14 2.2 垂直排列雙層邊緣場效驅動 15 2.3 水平排列邊緣場效驅動 16 2.4 研究動機 18 第三章 模擬實驗架構及各項參數 19 3.1 簡介 19 3.2 實驗設計流程 19 3.2.1 材料參數 19 3.2.2 結構設計 20 3.2.3 計算網格生成 22 3.2.4 液晶分析 23 i. 電壓訊號(Voltage Signal) 23 ii. 液晶初始條件(Condition) 25 iii. 訊號資料庫(Signal Data Base) 25 3.2.5 光學分析 26 3.3 本論文使用的各項材料參數 27 3.3.1 液晶材料參數 27 3.3.2 絕緣層材料參數 27 3.3.3 電極材料參數 27 3.3.4 偏振片材料參數 28 第四章 模擬結果與數據分析 29 4.1 結構設計概念 29 4.1.1 概念發想 29 4.1.2 改變畫素電極上液晶排列方向 29 4.1.3 改變電極邊緣液晶排列方向 32 4.2 不同電極寬度(W)和間距(L)之影響探討 35 4.2.1 不同電極寬度(W)之光電曲線及響應時間 35 4.2.2 不同電極間距(L)之光電曲線及響應時間 39 4.2.3 虛擬牆間距(Pitch)對響應時間的影響 42 i. 虛擬牆間距(P)為2.5 μm 42 ii. 虛擬牆間距(P)為3 μm 44 iii. 虛擬牆間距(P)為4 μm 45 iv. 不同虛擬牆間距(P)間的歸納與統整 46 4.2.4 結論 47 4.3 不同配向條件之影響探討 49 4.3.1 不同比例的配向區域之影響 49 4.3.2 不同寬度的配向區域之影響 51 4.3.3 不同角度的配向之影響 52 4.3.4 不同方向的配向之影響 56 4.3.5 結論 60 4.4 模擬結果之比較 61 4.5 雙層結構 63 4.6 可視角對比度模擬結果 67 4.6.1 單層結構的視角對比圖 67 4.6.2 雙層結構的視角對比圖 69 第五章 結論與未來目標 71 參考文獻 73 | |
| dc.language.iso | zh-TW | |
| dc.subject | 快速響應時間 | zh_TW |
| dc.subject | 多重配向 | zh_TW |
| dc.subject | 虛擬牆 | zh_TW |
| dc.subject | 水平配向邊緣場效驅動 | zh_TW |
| dc.subject | 正型液晶 | zh_TW |
| dc.subject | virtual wall | en |
| dc.subject | Multi-rubbing | en |
| dc.subject | positive dielectric liquid crystal | en |
| dc.subject | fast response time | en |
| dc.subject | parallel-aligned fringe field switching | en |
| dc.title | 多重配向角應用於快速響應之水平配向邊緣場效驅動液晶顯示器 | zh_TW |
| dc.title | Fast Response Parallel-Aligned Fringe Field Switching Liquid Crystal Display with Multi-Rubbing Angle | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林晃巖(Hoang-Yan Lin),黃定洧(Ding-Wei Huang) | |
| dc.subject.keyword | 多重配向,虛擬牆,水平配向邊緣場效驅動,快速響應時間,正型液晶, | zh_TW |
| dc.subject.keyword | Multi-rubbing,virtual wall,parallel-aligned fringe field switching,fast response time,positive dielectric liquid crystal, | en |
| dc.relation.page | 74 | |
| dc.identifier.doi | 10.6342/NTU202003024 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-12 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-20 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1108202023190200.pdf 未授權公開取用 | 5.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
