Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78254
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林柏翰(Po-Han Lin)
dc.contributor.authorTien Yu Jessica Hoen
dc.contributor.author何天瑜zh_TW
dc.date.accessioned2021-07-11T14:47:59Z-
dc.date.available2025-08-01
dc.date.copyright2020-09-10
dc.date.issued2020
dc.date.submitted2020-08-14
dc.identifier.citation1. Jou A, Hess J. Epidemiology and Molecular Biology of Head and Neck Cancer. Oncol Res Treat. 2017;40(6):328-332. doi:10.1159/000477127
2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. doi:10.3322/caac.21492
3. Shared heritability and functional enrichment across six solid cancers | Nature Communications. Accessed June 17, 2019. https://www.nature.com/articles/s41467-018-08054-4
4. Hedberg ML, Goh G, Chiosea SI, et al. Genetic landscape of metastatic and recurrent head and neck squamous cell carcinoma. J Clin Invest. 2015;126(1):169-180. doi:10.1172/JCI82066
5. Chang J-H, Wu C-C, Yuan KS-P, Wu ATH, Wu S-Y. Locoregionally recurrent head and neck squamous cell carcinoma: incidence, survival, prognostic factors, and treatment outcomes. Oncotarget. 2017;8(33). doi:10.18632/oncotarget.16340
6. India Project Team of the International Cancer Genome Consortium. Mutational landscape of gingivo-buccal oral squamous cell carcinoma reveals new recurrently-mutated genes and molecular subgroups. Nat Commun. 2013;4(1):2873. doi:10.1038/ncomms3873
7. Vettore AL, Ramnarayanan K, Poore G, et al. Mutational landscapes of tongue carcinoma reveal recurrent mutations in genes of therapeutic and prognostic relevance. Genome Med. 2015;7(1):98. doi:10.1186/s13073-015-0219-2
8. Treatment of metastatic and recurrent head and neck cancer - UpToDate. Accessed April 12, 2020. https://www.uptodate.com/contents/treatment-of-metastatic-and-recurrent-head-and-neck-cancer
9. Forster MD, Devlin M-J. Immune Checkpoint Inhibition in Head and Neck Cancer. Front Oncol. 2018;8:310. doi:10.3389/fonc.2018.00310
10. Oliva M, Spreafico A, Taberna M, et al. Immune biomarkers of response to immune-checkpoint inhibitors in head and neck squamous cell carcinoma. Ann Oncol. 2019;30(1):57-67. doi:10.1093/annonc/mdy507
11. Ferris RL, Blumenschein G, Fayette J, et al. Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. N Engl J Med. 2016;375(19):1856-1867. doi:10.1056/NEJMoa1602252
12. Cohen EEW, Soulières D, Le Tourneau C, et al. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study. The Lancet. 2019;393(10167):156-167. doi:10.1016/S0140-6736(18)31999-8
13. Campbell BB, Light N, Fabrizio D, et al. Comprehensive Analysis of Hypermutation in Human Cancer. Cell. 2017;171(5):1042-1056.e10. doi:10.1016/j.cell.2017.09.048
14. Blank CU, Haanen JB, Ribas A, Schumacher TN. The “cancer immunogram.” Science. 2016;352(6286):658-660. doi:10.1126/science.aaf2834
15. Neoantigens in cancer immunotherapy | Science. Accessed April 12, 2020. https://science.sciencemag.org/content/348/6230/69
16. Martin SD, Coukos G, Holt RA, Nelson BH. Targeting the undruggable: immunotherapy meets personalized oncology in the genomic era. Ann Oncol. 2015;26(12):2367-2374. doi:10.1093/annonc/mdv382
17. Rizvi NA, Hellmann MD, Snyder A, et al. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science. 2015;348(6230):124-128. doi:10.1126/science.aaa1348
18. Ayers M, Lunceford J, Nebozhyn M, et al. IFN-γ–related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127(8):2930-2940. doi:10.1172/JCI91190
19. Karasaki T, Nagayama K, Kuwano H, et al. An Immunogram for the Cancer-Immunity Cycle: Towards Personalized Immunotherapy of Lung Cancer. J Thorac Oncol. 2017;12(5):791-803. doi:10.1016/j.jtho.2017.01.005
20. Kim JY, Kronbichler A, Eisenhut M, et al. Tumor Mutational Burden and Efficacy of Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis. Cancers. 2019;11(11). doi:10.3390/cancers11111798
21. Jiang P, Gu S, Pan D, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. 2018;24(10):1550-1558. doi:10.1038/s41591-018-0136-1
22. Pouncey AL, Scott AJ, Alexander JL, Marchesi J, Kinross J. Gut microbiota, chemotherapy and the host: the influence of the gut microbiota on cancer treatment. ecancermedicalscience. 2018;12. doi:10.3332/ecancer.2018.868
23. Belkaid Y, Harrison OJ. Homeostatic Immunity and the Microbiota. Immunity. 2017;46(4):562-576. doi:10.1016/j.immuni.2017.04.008
24. Tsilimigras MCB, Fodor A, Jobin C. Carcinogenesis and therapeutics: the microbiota perspective. Nat Microbiol. 2017;2(3):17008. doi:10.1038/nmicrobiol.2017.8
25. Raza MH, Gul K, Arshad A, et al. Microbiota in cancer development and treatment. J Cancer Res Clin Oncol. 2019;145(1):49-63. doi:10.1007/s00432-018-2816-0
26. Vetizou M, Pitt JM, Daillere R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350(6264):1079-1084. doi:10.1126/science.aad1329
27. Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science. 2018;359(6371):97-103. doi:10.1126/science.aan4236
28. Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science. 2018;359(6371):91-97. doi:10.1126/science.aan3706
29. Daillère R, Vétizou M, Waldschmitt N, et al. Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects. Immunity. 2016;45(4):931-943. doi:10.1016/j.immuni.2016.09.009
30. Analysis of gut microbiota profiles and microbe-disease associations in children with autism spectrum disorders in China | Scientific Reports. Accessed April 12, 2020. https://www.nature.com/articles/s41598-018-32219-2
31. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228-247. doi:10.1016/j.ejca.2008.10.026
32. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinforma Oxf Engl. 2014;30(15):2114-2120. doi:10.1093/bioinformatics/btu170
33. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106. doi:10.1186/gb-2010-11-10-r106
34. Zhu A, Ibrahim JG, Love MI. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinforma Oxf Engl. 2019;35(12):2084-2092. doi:10.1093/bioinformatics/bty895
35. Sirén J, Välimäki N, Mäkinen V. Indexing graphs for path queries with applications in genome research. IEEE/ACM Trans Comput Biol Bioinform. 2014;11(2):375–388. doi:10.1109/TCBB.2013.2297101
36. Liao Y, Smyth GK, Shi W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 2019;47(8):e47. doi:10.1093/nar/gkz114
37. Diversity in gut bacterial community of school-age children in Asia. - PubMed - NCBI. Accessed April 12, 2020. https://www.ncbi.nlm.nih.gov/pubmed/25703686
38. Segata N, Izard J, Waldron L, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60. doi:10.1186/gb-2011-12-6-r60
39. Segata N, Izard J, Waldron L, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60. doi:10.1186/gb-2011-12-6-r60
40. Galaxy. Accessed July 9, 2020. https://huttenhower.sph.harvard.edu/galaxy/
41. The human pathology proteome - The Human Protein Atlas. Accessed July 12, 2020. https://www.proteinatlas.org/humanproteome/pathology
42. Diehl A, Yarchoan M, Hopkins A, Jaffee E, Grossman SA. Relationships between lymphocyte counts and treatment-related toxicities and clinical responses in patients with solid tumors treated with PD-1 checkpoint inhibitors. Oncotarget. 2017;8(69):114268-114280. doi:10.18632/oncotarget.23217
43. Singh S, Pillai S, Chellappan S. Nicotinic Acetylcholine Receptor Signaling in Tumor Growth and Metastasis. Journal of Oncology. doi:https://doi.org/10.1155/2011/456743
44. Expression of KRT4 in cancer - Summary - The Human Protein Atlas. Accessed July 14, 2020. https://www.proteinatlas.org/ENSG00000170477-KRT4/pathology
45. Expression of MYL1 in head and neck cancer - The Human Protein Atlas. Accessed July 14, 2020. https://www.proteinatlas.org/ENSG00000168530-MYL1/pathology/head+and+neck+cancer
46. Expression of MYL2 in cancer - Summary - The Human Protein Atlas. Accessed July 14, 2020. https://www.proteinatlas.org/ENSG00000111245-MYL2/pathology
47. Expression of SLN in cancer - Summary - The Human Protein Atlas. Accessed July 14, 2020. https://www.proteinatlas.org/ENSG00000170290-SLN/pathology
48. Expression of CLCNKB in cancer - Summary - The Human Protein Atlas. Accessed July 14, 2020. https://www.proteinatlas.org/ENSG00000184908-CLCNKB/pathology
49. Jin Y, Dong H, Xia L, et al. The Diversity of Gut Microbiome is Associated With Favorable Responses to Anti–Programmed Death 1 Immunotherapy in Chinese Patients With NSCLC. J Thorac Oncol. 2019;14(8):1378-1389. doi:10.1016/j.jtho.2019.04.007
50. Rea D, Coppola G, Palma G, et al. Microbiota effects on cancer: from risks to therapies. Oncotarget. 2018;9(25):17915-17927. doi:10.18632/oncotarget.24681
51. Ozato N, Saito S, Yamaguchi T, et al. Blautia genus associated with visceral fat accumulation in adults 20–76 years of age. Npj Biofilms Microbiomes. 2019;5(1):1-9. doi:10.1038/s41522-019-0101-x
52. Jenq RR, Taur Y, Devlin SM, et al. Intestinal Blautia Is Associated with Reduced Death from Graft-versus-Host Disease. Biol Blood Marrow Transplant. 2015;21(8):1373-1383. doi:10.1016/j.bbmt.2015.04.016
53. Li J, Sung CYJ, Lee N, et al. Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proc Natl Acad Sci U S A. 2016;113(9):E1306-E1315. doi:10.1073/pnas.1518189113
54. Zhang Z, Tang H, Chen P, Xie H, Tao Y. Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. Signal Transduct Target Ther. 2019;4. doi:10.1038/s41392-019-0074-5
55. Assessing the Gut Microbiome of Patients With Lung Cancer Receiving Immunotherapy. Cancer Therapy Advisor. Published October 12, 2019. Accessed July 13, 2020. https://www.cancertherapyadvisor.com/home/news/conference-coverage/iaslc-north-america/iaslc-north-america-2019/gut-microbiome-lung-cancer-risk-immunotherapy-treatment/
56. Barlow JT, Bogatyrev SR, Ismagilov RF. A quantitative sequencing framework for absolute abundance measurements of mucosal and lumenal microbial communities. Nat Commun. 2020;11(1):2590. doi:10.1038/s41467-020-16224-6
57. Heshiki Y, Vazquez-Uribe R, Li J, et al. Predictable modulation of cancer treatment outcomes by the gut microbiota. Microbiome. 2020;8(1):28. doi:10.1186/s40168-020-00811-2
58. Matteo Pallocca, Davide Angeli, Fabio Palombo, Francesca Sperati, Michele Milella, Frauke Goeman, Francesca De Nicola, Maurizio Fanciulli, Paola Nisticò, Concetta Quintarelli, Gennaro Ciliberto. Combinations of Immuno-Checkpoint Inhibitors Predictive Biomarkers Only Marginally Improve Their Individual Accuracy. J Transl Med. 2019;17(1):131. doi:10.1186/s12967-019-1865-8
59. Sayers E, MacGregor A, R. Carding S, 1 Gut Health and Food Safety Programme, Quadram Institute Bioscience, Norwich, Norfolk, NR4 7UA, UK, 2 Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK. Drug-microbiota interactions and treatment response: Relevance to rheumatoid arthritis. AIMS Microbiol. 2018;4(4):642-654. doi:10.3934/microbiol.2018.4.642
60. Chaput N, Lepage P, Coutzac C, et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol Off J Eur Soc Med Oncol. 2017;28(6):1368-1379. doi:10.1093/annonc/mdx108
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78254-
dc.description.abstract免疫檢查點抑制劑是近年治療癌症的最新突破,其中吉舒達 (Pembrolizumab)不但是復發性頭頸癌患者的處方藥物,更少見的成為跨癌腫處方藥物。免疫檢查點抑制劑固然提升了無惡化存活率和整體存活率,其費用高昂且常有免疫相關的副作用產生,為了能夠有效的預測免疫檢查點抑制劑治療反應,許多研究針對免疫檢查點抑制劑的作用位置免疫檢查點或者針對病人的免疫系統狀態進行多方位的評估。已有研究報導之免疫系統的狀態評估項目包含腫瘤組織中免疫抑制配體表現量、腫瘤組織微環境中T細胞浸潤程度以及腫瘤突變負荷。另外,腸道菌相也因為與全身免疫系統狀態息息相關而成為免疫檢查點抑制劑的治療預測因子研究中重要的一環。此研究透過比較免疫檢查點抑制劑治療有效與無效的復發性頭頸癌病之間的基因體差異與腸道菌相差異來辨識可能的基因體標記以及腸道菌相標記,並利用這些治療有效的基因標記和腸道菌相標記各自建立一套二項式廣義線性模型來觀察該標記的治療預後預測效力,最後,再將兩類不同的標記整合為一套二項式廣義線性模型,並討論個別以及整合後的預後預測效力。基因體標記主要以兩種方法分析由腫瘤組織石蠟切片中所得核糖核酸而得,第一種方法為差異表現基因分析 (Differential expression of RNA-Seq, DESeq),藉此鑑別治療有效個案中表現量較高的基因作為基因體標記,此分析結果得到112個校正後仍顯著在治療有效與無效個案間有差異表現的基因,最後透過篩選得到了20個已有文獻報導且在治療有效個案中表現顯著較多的基因,依據文獻報導將20個基因分為四大類,腫瘤組織特異性、疾病進展標記、預後標記以及腫瘤調控相關之非編碼核糖核酸。第二種基因體標記則是透過基因組分析工具 (Genome analysis toolkit, GATK)將核糖核酸的定序結果進行變異型判讀 (variant calling),並且計算造成功能異常的變異在排除種族特有變異 (變異型頻率 >0.01) 在每一千鹼基對中所有的變異數量,得到腫瘤突變負荷的數值,雖然在此研究中所得到的治療有效與無效兩組間腫瘤變異負荷並無顯著差異,但兩組間的腫瘤突變負荷平均值可以觀察到治療無效的個案平均值較高,代表治療無效病人中的腫瘤突變負荷較高。以上兩個透過核糖核酸定序所得到的基因體分析結果皆用於建立最後的二項式廣義線性模型。腸道菌相的探討則透過16S rRNA的基因全長進行定序以及細菌物種的比對,並完成個體間的微生物多樣性、豐富度和治療有效與無效者之間的差異菌分析。差異菌最後分析得四個細菌屬為治療有效者富有的特異標記,分別為伊格爾茲氏菌屬(Eggerthella) 、多瘤胃球菌屬(Ruminococcus) 、顫螺旋菌屬(Oscillibacter) 和Soleaferrea菌數。此四類菌屬皆作為預測因子來建立腸道菌相標記之二項式廣義線性模型。在基因體標記所建立的預測模型中,考量預測因子間的相關性後,最後僅使用疾病進展標記和預後標記兩類作為預測因子,所得的曲線下面積 (Area under curve, AUC)為1.00,依據各項獨立分類與治療結果的相關性加權後總和各分類成為單一獨立變相後的預測結果則有0.9028的AUC。腸道菌相標記的預測模型則因所辨識的四個治療有效組中富含之菌屬以不同組合進行了模型的建立,四個菌屬皆納入預測模型的預測曲線下面積為0.875,而僅使用文獻中已有佐證之多瘤胃球菌屬單一屬建立的預測模型則有0.75的曲線下面積,將四個菌屬總和為一項腸道菌相變相則得到 0.7841 AUC。將上述的兩類基因體標記與腸道菌多瘤胃球菌屬所整合建立的預測模型得到了0.8667。合併以上的基因體標記與腸道菌相標記發現基因體標記有較佳的預測效力,如使用整合的預測模型則可以提昇單獨由腸道菌相標記所建立之預測模型效力。整體而論,此研究雖然僅以有限的個案數進行預測模型的建立以及評估,其預測效力與其他針對各種癌腫的免疫治療預後預測文獻中相較有較佳的預測效力。zh_TW
dc.description.abstractImmune checkpoint inhibitors (ICI) are the latest breakthrough in cancer treatment, and Pembrolizumab was prescribed for recurrent head and neck squamous carcinoma (recurrent HNSCC) as well as becoming a prescription available for more than 1 type of cancer. Despite the promising prolonged progression free and overall survival rate, ICI treatments are high in cost and also with a certain degree of side effects. In order to identify patients who will benefit the most from immune checkpoint inhibitors, immune status of a patient is broadly recognized as an indicator with a wide variety of specific prediction targets. Such as, tumor expression level of immune checkpoint inhibiting ligands, tumor microenvironment considering T cell infiltration and tumor mutation burden (TMB). Last but not least, gut microbiome has also gained focus since it is well known to modulate host systemic immune response. In this study, we aim to identify genomic based and gut microbiome-based ICI treatment response predictors and evaluate their individual and integrated prediction power. Genomic based treatment responder biomarkers were identified through 2 main aspects focusing on original HNSCC tumor tissue RNA profile. First, the differentially expressed genes between responders and progressive non-responders. Among the 112 differentially expressed genes with significant p value (FDR adjusted p<0.05), final 20 genes were identified to be expressed higher in responder group and with reference reports of either enriched in cancer, acts as a progression marker or plays a role in prognostic prediction. Secondly, the tumor mutation burden of responder and progressive non-responders were also generated based on RNA sequencing data. Although the difference of 2 groups were not significant, progressive non-responders showed a generally higher TMB compared with responders. Based on previous evidence, significant difference between responder and progressive non-responders based on DESeq were further used as genomic based predictors for the establishment of prediction model. For gut microbiome, 16S rRNA full length DNA sequencing was used to identify bacterial species and comparison of treatment responder and progressive non-responder for the diversity, richness and differentially composed species were conducted. Gut microbiome biomarkers were identified with 4 genus that were more abundant in responders, Eggerthella, Ruminococcus, Oscillibacter and Soleaferrea, while no significant difference was observed between responder and progressive non-responders regarding diversity or richness. Prediction model was established by generalized linear model (GLM) with logit link to not only individually evaluate genomic and gut microbiome biomarker-based prediction, but also to combine the 2 different aspects of biomarkers for a more comprehensive prediction scope. The genomic biomarker based GLM prediction resulted with AUC 1.0000 by including the progression markers and prognostic markers identified through responder and non-responder differentially expressed genes analysis, and an AUC of 0.9028 for GLM based on the same 20 genes but summed by gene expression levels as in 1 preditor. The gut microbiome based GLM prediction resulted in a higher AUC at 0.8750 if all 4 genera were used as individual variables. A lower AUC of 0.7841 was found for a summed relative abundance of the 4 genera. The integrated GLM prediction model using both the singular genomic based predictor with the addition of singular gut microbiome-based predictor each with summed expression level or relative abundance gave an AUC of 0.8667. In sum, genomic biomarkers found in recurrent HNSCC were highly predictable for ICI treatment response. The gnomic biomarker-based model combined with gut microbiome improved the prediction solely established by gut microbiome biomarkers. In general, the prediction models were established and evaluated through limited samples, but with better performance compared with currently reported models which were not aimed for predicting HNSCC patient ICI treatment response alone.en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:47:59Z (GMT). No. of bitstreams: 1
U0001-1208202015542600.pdf: 1235590 bytes, checksum: 4c136195ae2bcce96ba20d4aaad4a895 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents目 錄 8
CHAPTER 1: RESEARCH BACKGROUND AND MOTIVATION 12
1.1 Introduction of head and neck carcinoma and recurrent head and neck carcinoma 12
1.2 Immune checkpoint inhibitors (ICI) 13
1.3 Immune checkpoint inhibitors treatment prognosis in HNSCC 13
1.4 Genomic factors in patients under immune checkpoint inhibitor treatments 14
1.5 Role of microbiota in patients under immune checkpoint inhibitors 15
CHAPTER 2: RESEARCH METHODOLOGY 18
2.1 Study cohort and recruitment 18
2.2 Sample collection and storage 19
2.2.1 Tissue biopsy collection and storage 19
2.2.2 Stool sample collection and storage 19
2.3 RNA extraction from tumor tissue biopsy and RNA sequencing 20
2.3.1 RNA extraction from tumor tissue biopsy 20
2.3.2 RNA sequencing 20
2.3.3 RNAseq data analysis 21
2.4 Gut microbiota study and analysis 22
2.4.1 Fecal DNA extraction and gut microbiota library preparation 22
2.4.2 Gut microbiota sequencing 23
2.4.3 Gut microbiota profile analysis 23
2.5 Prediction model of immune-checkpoint-inhibitor (ICI) treatment response 24
CHAPTER 3: RESULTS 25
3.1 Study cohort 25
3.1.1 Recurrent HNSCC cohort 25
3.1.2 GEO database cohort 25
3.2 ICI treatment genomic biomarkers for recurrent HNSCC 26
3.2.1 RNA extraction and bioanalyzer analysis 26
3.2.2 ICI treatment responder genomic biomarkers selected in recurrent HNSCC 26
3.2.3 Tumor mutation burden of ICI treated patients 26
3.3 ICI treated gut microbiome biomarkers for recurrent HNSCC 27
3.3.1 DNA extraction and bioanalyzer quality 27
3.3.2 Gut microbiome profiles and composition difference between responders and progressive non-responders in ICI treated recurrent HNSCC patients 27
3.3.3 Biomarkers composition change among pre-treatment, post-treatment and relapse or 1 year follow-up samples 28
3.3.4 ICI treatment responder gut microbiome biomarkers selected in recurrent HNSCC 29
3.4 GLM prediction models for ICI treatment response in HNSCC patients 30
3.4.1 Prediction model with genomic biomarkers 30
3.4.2 Prediction model with microbiome biomarkers 30
3.4.3 Prediction with integrated biomarkers 31
CHAPTER 4: DISCUSSION 32
4.1 Immune-checkpoint inhibitor treated patients study cohort 32
4.2 Genomic difference between responder and non-responder of pembrolizumab and afatinab combined therapy treated recurrent HNSCC patients 32
4.3 Gut microbiome profile difference between responder and non-responder of pembrolizumab and afatinab combined therapy treated recurrent HNSCC patients 35
4.4 Prediction model for immune checkpoint inhibitors 36
CHAPTER 5: CONCLUSION 38
REFERENCES 40
APPENDIX 68
SUPPLEMENTARY TABLES 68
SUPPLEMENTARY FIGURES 75
dc.language.isoen
dc.subject復發性頭頸癌zh_TW
dc.subject免疫檢查點抑制劑zh_TW
dc.subject基因體標記zh_TW
dc.subject腸道菌相標記zh_TW
dc.subject廣義線性模型zh_TW
dc.subject預測模型zh_TW
dc.subjectgeneralized linear modelen
dc.subjectimmune checkpoint inhibitorsen
dc.subjectgenomic biomarkeren
dc.subjectgut microbiome biomarkeren
dc.subjectRecurrent head and neck squamous carcinomaen
dc.title探討復發性頭頸癌患者免疫治療結果和微生物相和腫瘤基因體之間的關係zh_TW
dc.titleExploration of the relationship between therapeutic outcome of immunotherapy and gut microbiome and tumor genomics in patients with recurrent head-and-neck squamous cell carcinomaen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.coadvisor郭柏秀(Po-Hsiu Kuo)
dc.contributor.oralexamcommittee胡務亮(Wuh-Liang Hwu),洪瑞隆(Ruey-Long Hong)
dc.subject.keyword復發性頭頸癌,免疫檢查點抑制劑,基因體標記,腸道菌相標記,廣義線性模型,預測模型,zh_TW
dc.subject.keywordRecurrent head and neck squamous carcinoma,immune checkpoint inhibitors,genomic biomarker,gut microbiome biomarker,generalized linear model,en
dc.relation.page67
dc.identifier.doi10.6342/NTU202003114
dc.rights.note有償授權
dc.date.accepted2020-08-15
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
dc.date.embargo-lift2025-08-01-
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-1208202015542600.pdf
  未授權公開取用
1.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved