Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78249
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡文聰(Andrew Wo)
dc.contributor.authorChen-Bin Hsuen
dc.contributor.author許宸賓zh_TW
dc.date.accessioned2021-07-11T14:47:47Z-
dc.date.available2025-08-11
dc.date.copyright2020-09-24
dc.date.issued2020
dc.date.submitted2020-08-12
dc.identifier.citation1. Zaorsky, N.G., T.M. Churilla, B.L. Egleston, S.G. Fisher, J.A. Ridge, E.M. Horwitz, and J.E. Meyer, Causes of death among cancer patients. Annals of oncology : official journal of the European Society for Medical Oncology, 2017. 28(2): p. 400-407.
2. Palmirotta, R., D. Lovero, P. Cafforio, C. Felici, F. Mannavola, E. Pellè, D. Quaresmini, M. Tucci, and F. Silvestris, Liquid biopsy of cancer: a multimodal diagnostic tool in clinical oncology. Therapeutic advances in medical oncology, 2018. 10: p. 1758835918794630-1758835918794630.
3. Marrugo-Ramírez, J., M. Mir, and J. Samitier, Blood-Based Cancer Biomarkers in Liquid Biopsy: A Promising Non-Invasive Alternative to Tissue Biopsy. International journal of molecular sciences, 2018. 19(10): p. 2877.
4. Li, X., A.L. Corbett, E. Taatizadeh, N. Tasnim, J.P. Little, C. Garnis, M. Daugaard, E. Guns, M. Hoorfar, and I.T.S. Li, Challenges and opportunities in exosome research-Perspectives from biology, engineering, and cancer therapy. APL bioengineering, 2019. 3(1): p. 011503-011503.
5. Doyle, L.M. and M.Z. Wang, Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells, 2019. 8(7): p. 727.
6. Huang, X., T. Yuan, M. Tschannen, Z. Sun, H. Jacob, M. Du, M. Liang, R.L. Dittmar, Y. Liu, M. Liang, M. Kohli, S.N. Thibodeau, L. Boardman, and L. Wang, Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics, 2013. 14: p. 319.
7. Sauter, E.R., Exosomes in blood and cancer. Translational Cancer Research, 2017: p. S1316-S1320.
8. Haque, S. and S.R. Vaiselbuh, Exosomes molecular diagnostics: Direct conversion of exosomes into the cDNA for gene amplification by two-step polymerase chain reaction. Journal of Biological Methods; Vol 5, No 3 (2018), 2018.
9. Huang, T. and C.-X. Deng, Current Progresses of Exosomes as Cancer Diagnostic and Prognostic Biomarkers. International journal of biological sciences, 2019. 15(1): p. 1-11.
10. Braicu, C., C. Tomuleasa, P. Monroig, A. Cucuianu, I. Berindan-Neagoe, and G.A. Calin, Exosomes as divine messengers: are they the Hermes of modern molecular oncology? Cell death and differentiation, 2015. 22(1): p. 34-45.
11. Hong, P., H. Yang, Y. Wu, K. Li, and Z. Tang, The functions and clinical application potential of exosomes derived from adipose mesenchymal stem cells: a comprehensive review. Stem cell research therapy, 2019. 10(1): p. 242-242.
12. Jalalian, S.H., M. Ramezani, S.A. Jalalian, K. Abnous, and S.M. Taghdisi, Exosomes, new biomarkers in early cancer detection. Analytical Biochemistry, 2019. 571: p. 1-13.
13. <Aki-1967-Journal_of_Geophysical_Research (1).pdf>.
14. Kalra, H., C.G. Adda, M. Liem, C.-S. Ang, A. Mechler, R.J. Simpson, M.D. Hulett, and S. Mathivanan, Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma. 2013. 13(22): p. 3354-3364.
15. Yoo, Y.K., J. Lee, H. Kim, K.S. Hwang, D.S. Yoon, and J.H. Lee, Toward Exosome-Based Neuronal Diagnostic Devices. Micromachines, 2018. 9(12).
16. Li, P., M. Kaslan, S.H. Lee, J. Yao, and Z. Gao, Progress in Exosome Isolation Techniques. Theranostics, 2017. 7(3): p. 789-804.
17. Size-exclusion Chromatography, in eLS.
18. Adawy, A. and M. Groves, The Use of Size Exclusion Chromatography to Monitor Protein Self-Assembly. Crystals, 2017. 7: p. 331.
19. Hussain, B., M. Yüce, N. Ullah, and H. Budak, 3 - Bioconjugated nanomaterials for monitoring food contamination, in Nanobiosensors, A.M. Grumezescu, Editor. 2017, Academic Press. p. 93-127.
20. Bhunia, A.K., C.R. Taitt, and M.S. Kim, 1 - High throughput screening strategies and technology platforms for detection of pathogens: an introduction, in High Throughput Screening for Food Safety Assessment, A.K. Bhunia, M.S. Kim, and C.R. Taitt, Editors. 2015, Woodhead Publishing. p. 1-9.
21. Front Matter, in Animal Biotechnology, A.S. Verma and A. Singh, Editors. 2014, Academic Press: San Diego. p. iii.
22. Copyright, in Animal Biotechnology, A.S. Verma and A. Singh, Editors. 2014, Academic Press: San Diego. p. iv.
23. Sharma, P., S. Ludwig, L. Muller, C. Hong, J. Kirkwood, S. Ferrone, and T. Whiteside, Immunoaffinity-based isolation of melanoma cell-derived exosomes from plasma of patients with melanoma. Journal of Extracellular Vesicles, 2018. 7: p. 1435138.
24. Ziaei, P., C. Berkman, and M. Norton, Review: Isolation and Detection of Tumor-Derived Extracellular Vesicles. ACS Applied Nano Materials, 2018. 1.
25. Wan, Y., M. Maurer, H. He, Y. Xia, W. Zhang, S. Hao, N.S. Yee, and S. Zheng. Enrichment of Extracellular Vesicles Via Lipid Nanoprobe-Functionalized Nanostructured Silica Microdevice. in 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems Eurosensors XXXIII (TRANSDUCERS EUROSENSORS XXXIII). 2019.
26. Kricka, L.J., Clinical applications of chemiluminescence. Analytica Chimica Acta, 2003. 500(1): p. 279-286.
27. Zhang, W., Nanoparticle Aggregation: Principles and Modeling, in Nanomaterial: Impacts on Cell Biology and Medicine, D.G. Capco and Y. Chen, Editors. 2014, Springer Netherlands: Dordrecht. p. 19-43.
28. Mekaru, H., Effect of Agitation Method on the Nanosized Degradation of Polystyrene Microplastics Dispersed in Water. ACS Omega, 2020. 5(7): p. 3218-3227.
29. Efe-Sanden, G., N. Gallant, N. Alcantar, and R. Toomey, Adhesion and Particle Removal from Surface-Tethered Poly(N-Isopropylacrylamide) Coatings Using Hydrodynamic Shear Forces. Langmuir, 2019. 35(48): p. 15751-15758.
30. Burdick, G.M., N.S. Berman, and S.P. Beaudoin, Describing Hydrodynamic Particle Removal from Surfaces Using the Particle Reynolds Number. Journal of Nanoparticle Research, 2001. 3(5): p. 453-465.
31. Kharisov, B., O. Kharissova, and U. Ortiz Mendez, CRC Concise Encyclopedia of Nanotechnology. 2015.
32. Burdick, G.M., N.S. Berman, and S.P. Beaudoin, Hydrodynamic particle removal from surfaces. Thin Solid Films, 2005. 488(1): p. 116-123.
33. Hubbe, M.A., Theory of detachment of colloidal particles from flat surfaces exposed to flow. Colloids and Surfaces, 1984. 12: p. 151-178.
34. de la Torre Gomez, C., R.V. Goreham, J.J. Bech Serra, T. Nann, and M. Kussmann, “Exosomics”—A Review of Biophysics, Biology and Biochemistry of Exosomes With a Focus on Human Breast Milk. 2018. 9(92).
35. Ringhieri, P., S. Mannucci, G. Conti, E. Nicolato, G. Fracasso, P. Marzola, G. Morelli, and A. Accardo, Liposomes derivatized with multimeric copies of KCCYSL peptide as targeting agents for HER-2-overexpressing tumor cells. International journal of nanomedicine, 2017. 12: p. 501-514.
36. Mattheolabakis, G., T. Nie, P.P. Constantinides, and B. Rigas, Sterically stabilized liposomes incorporating the novel anticancer agent phospho-ibuprofen (MDC-917): preparation, characterization, and in vitro/in vivo evaluation. Pharmaceutical research, 2012. 29(6): p. 1435-1443.
37. Kovacs, W.J. and S.R. Ojeda, Textbook of endocrine physiology. 2012, Oxford: Oxford University Press.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78249-
dc.description.abstract癌症是造成現代人死亡的重要疾病之一,由於其偵測困難以至難以早期診斷。傳統的腫瘤活體檢測風險高又可能因為採取部位差異導致診斷誤差,這些問題難以突破,而液態活體檢測技術提供了癌症診斷及監控一個全新的方向,技術的方便、即時性高且低侵入性的優點,比起傳統侵入式檢測,更能加入伴隨性檢測中,近年相關研究與應用越發廣泛。
外泌體(Exosomes)是液態活體檢測重要的檢測標的物,其中含有與原細胞相關且豐富的遺傳物質mRNA, miRNA,蛋白質等訊息,有細胞與細胞間傳遞訊息的功能,接受到這些外泌體的細胞也會有所改變。近年來,研究顯示液態活體檢測技術的高度發展,也有許多外泌體在癌症早期診斷的相關應用,使得外泌體越來越受醫學界重視。然而,因於血液中外泌體體積百分比低,再加上粒徑微小,約為30~150 nm,使得抓取或純化一直都是一項艱鉅的任務。
本研究中,使用了奈米探針裝置,藉由其親和力來抓取微小的外泌體,此技術的價格相對抗體抓取與超高速離心等現今較常使用的抓取技術而言都相對低廉,且實驗過程都是由軟體操控的完整的機械化過程,除了減少操作者的誤差外,也降低環境的汙染及干擾。實驗方面,使用的是AU565的細胞株(1.13×10^10±1.7×10^9particles/ml),設計一系列的實驗,藉由白金漢π定理分析後獲得的無因次參數進行優化,選擇出固定時間中最高且穩定的光強度參數,設計為擾動優化下最佳的樣品孵化過程,進而進行不同濃度的定量實驗,最後加入脂蛋白,進行干擾物實驗,證實加入粒徑較小的特定濃度(5×10^9particles/ml)干擾物後擾動仍具有優化的效果。另外,也利用COMSOL軟體進行動態分析,解釋well的幾何設計,以及剪切力與well粗糙度對樣品接合的影響。
對液態活體檢測技術而言,現今機械化的設備並不普及,結合奈米探針系統的抓取機制更是不普遍,綜合研究中討論到的優點,希望在經過不同種類的癌症測試後,可以在往後應用於臨床上。
zh_TW
dc.description.abstractLiquid biopsy provides cancer a new direction of diagnosis and monitoring. The advantages of this technology are minimally invasive, real time monitoring and cost effective. Exosome is an important detection target for liquid biopsy, containing abundant genetic material mRNA, miRNA, protein and other information related to the original cells. In recent years, studies have substantially advanced the development of exosomes in liquid biopsy, for example in early diagnosis of cancer. However, the clinical usage of exosomes remains technically challenging, particularly in developing technology for exosomes isolation.
In this thesis, the nanoprobe technology was used to apply in an automatic process of exosomes capture. Sample loading, antibodies and reagents reaction, washing and releasing the residual particles away from the well and the detection of the chemiluminescence signal were controlled in order to reduce operator error and environmental contamination. Exosomes from a breast cancer cell line AU565 (1.13×10^10±1.7×10^9particles/ml) was used to test non-dimensional parameters analyzed by the Buckingham π theorem. Moreover, selection of the parameter with the highest and most stable intensity in a fixed time was used to optimize the incubation protocol. Then, different concentration of exosomes was used and lipoproteins were added to conduct interference experiments. In addition, COMSOL Multiphysics was also utilized for dynamic analysis to explain the geometric design of the well and the effect of shear force related to well roughness on the sample conjugation.
In conclusion, the platform for capturing exosomes has completed preliminary tests. Further effort is needed to apply the technology in clinical applications.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:47:47Z (GMT). No. of bitstreams: 1
U0001-1208202018434500.pdf: 4390828 bytes, checksum: e9b58a9b8a056d7486f23b87020a0ea1 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents目錄Table of Contents
致謝 ii
中文摘要 iv
Abstract v
目錄Table of Contents vii
圖目錄 List of Figures ix
表目錄 List of Tables xi
Chapter 1. Introduction 1
1.1 The biology and clinical potential of extracellular vesicles 1
1.2 Recent advances and challenges in the enrichment and detection of exosomes 4
Chapter 2. Features and methodology 9
2.1 Nanoprobe technology for exosome capture 9
2.2 Automated system for exosome capture and detection 10
2.2.1 Machine composition 10
2.2.2 Executive program 13
2.2.3 Chemiluminescence system 15
2.3 Improvement of exosome capture by periodic agitation approaches 17
2.3.1 Effect of agitation method on nanoparticles during incubation 17
2.3.2 Effect of agitation to increase shear force on conjugation 20
2.3.3 Optimization of the system with agitation design 23
Chapter 3. Material and methods 25
3.1 Fabrication of Nanoprobe device 25
3.2 Preparation of culture cell derived exosomes and artificial liposomes 26
3.3 Reagent and antibodies 28
3.4 Experimental protocol 29
3.5 Enzyme-linked immunosorbent assay 30
3.6 Plasma cleaner 31
3.7 Nanoparticle tracking analysis 32
3.8 ChemStudio PLUS Chemiluminescent image system 33
Chapter 4. Results and discussion 34
4.1 Geometry of Nanoprobe device 34
4.2 Effect of periodic agitation during sample incubation 38
4.2.1 Amplitude of agitation 38
4.2.2 Duty cycle of agitation 40
4.2.3 Number of agitation cycles during incubation 41
4.2.4 Agitation frequency 42
4.3 Evaluation of capture efficiency 46
4.3.1 Capture efficiency analyzed by artificial liposomes 46
4.3.2 Capture efficiency analyzed by cell culture derived exosomes 48
4.4 Batch-to-batch reproducibility of nanoprobe device 50
4.5 Analytical sensitivity and detection range 51
4.6 Interference analysis 52
Chapter 5. Conclusions 54
References 56
dc.language.isoen
dc.subject擾動優化zh_TW
dc.subject奈米高分子探針系統zh_TW
dc.subject自動化zh_TW
dc.subject外泌體zh_TW
dc.subjectoptimizationen
dc.subjectexosomesen
dc.subjectautomationen
dc.subjectpolymer nanoprobe deviceen
dc.subjectagitationen
dc.title使用奈米探針裝置進行細胞外囊泡的全自動化晶片抓取與檢測zh_TW
dc.titleFully automated, on-chip capture and detection of extracellular vesicles using nanoprobe deviceen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許聿翔(Yu-Hsiang Hsu),李雨(U Lei)
dc.subject.keyword外泌體,自動化,奈米高分子探針系統,擾動優化,zh_TW
dc.subject.keywordexosomes,automation,polymer nanoprobe device,agitation,optimization,en
dc.relation.page58
dc.identifier.doi10.6342/NTU202003141
dc.rights.note有償授權
dc.date.accepted2020-08-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
dc.date.embargo-lift2025-08-11-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
U0001-1208202018434500.pdf
  未授權公開取用
4.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved