請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78244完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張明富(Ming-Fu Chang) | |
| dc.contributor.author | Yi-Hsuan Lin | en |
| dc.contributor.author | 林奕瑄 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:47:33Z | - |
| dc.date.available | 2025-08-17 | |
| dc.date.copyright | 2020-09-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-17 | |
| dc.identifier.citation | 1. Blumberg, B.S., H.J. Alter, and S. Visnich, A 'New' Antigen in Leukemia Sera. JAMA, 1965. 191: p. 541-6. 2. Blumberg, B. S., B. J. Gerstley, D. A. Hungerford, W. T. London and A. I. Sutnick, A serum antigen (Australia antigen) in Down's syndrome, leukemia, and hepatitis. Ann Intern Med, 1967. 66(5): p. 924-31. 3. Blumberg B.S.,: Hepatitis B - The hunt for a killer virus. Princeton: Princeton University Press; 2002. 4. Dane, D.S., C.H. Cameron, and M. Briggs, Virus-like particles in serum of patients with Australia-antigen-associated hepatitis. Lancet, 1970. 1(7649): p. 695-8. 5. Almeida, J.D., D. Rubenstein, and E.J. Stott, New antigen-antibody system in Australia-antigen-positive hepatitis. Lancet, 1971. 2(7736): p. 1225-7. 6. Zheng, Y., Y. Lu, Q. Ye, Y. Xia, Y. Zhou, Q. Yao and S. Wei, Should chronic hepatitis B mothers breastfeed? a meta analysis. BMC Public Health, 2011. 11: p. 502. 7. Liang, T.J., Hepatitis B: the virus and disease. Hepatology, 2009. 49(5 Suppl): p. S13-21. 8. Venkatakrishnan, B. and A. Zlotnick, The Structural Biology of Hepatitis B Virus: Form and Function. Annu Rev Virol, 2016. 3(1): p. 429-451. 9. Heermann, K. H., U. Goldmann, W. Schwartz, T. Seyffarth, H. Baumgarten and W. H. Gerlich, Large surface proteins of hepatitis B virus containing the pre-s sequence. J Virol, 1984. 52(2): p. 396-402. 10. Watashi, K. and T. Wakita, Hepatitis B Virus and Hepatitis D Virus Entry, Species Specificity, and Tissue Tropism. Cold Spring Harb Perspect Med, 2015. 5(8): p. a021378. 11. Sureau, C. and J. Salisse, A conformational heparan sulfate binding site essential to infectivity overlaps with the conserved hepatitis B virus a-determinant. Hepatology, 2013. 57(3): p. 985-94. 12. Yan, H., B. Peng, Y. Liu, G. Xu, W. He, B. Ren, Z. Jing, J. Sui and W. Li, Viral entry of hepatitis B and D viruses and bile salts transportation share common molecular determinants on sodium taurocholate cotransporting polypeptide. J Virol, 2014. 88(6): p. 3273-84. 13. Huang, H. C., C. C. Chen, W. C. Chang, M. H. Tao and C. Huang, Entry of hepatitis B virus into immortalized human primary hepatocytes by clathrin-dependent endocytosis. J Virol, 2012. 86(17): p. 9443-53. 14. Hatton, T., S. Zhou, and D.N. Standring, RNA- and DNA-binding activities in hepatitis B virus capsid protein: a model for their roles in viral replication. J Virol, 1992. 66(9): p. 5232-41. 15. Milich, D. and T.J. Liang, Exploring the biological basis of hepatitis B e antigen in hepatitis B virus infection. Hepatology, 2003. 38(5): p. 1075-86. 16. Jones, S.A. and J. Hu, Hepatitis B virus reverse transcriptase: diverse functions as classical and emerging targets for antiviral intervention. Emerg Microbes Infect, 2013. 2(9): p. e56. 17. Cross, J.C., P. Wen, and W.J. Rutter, Transactivation by hepatitis B virus X protein is promiscuous and dependent on mitogen-activated cellular serine/threonine kinases. Proc Natl Acad Sci U S A, 1993. 90(17): p. 8078-82. 18. Zhang, Z., N. Torii, Z. Hu, J. Jacob and T. J. Liang, X-deficient woodchuck hepatitis virus mutants behave like attenuated viruses and induce protective immunity in vivo. J Clin Invest, 2001. 108(10): p. 1523-31. 19. Hu, Z., Z. Zhang, J. W. Kim, Y. Huang and T. J. Liang, Altered proteolysis and global gene expression in hepatitis B virus X transgenic mouse liver. J Virol, 2006. 80(3): p. 1405-13. 20. Stoeckl, L., A. Funk, A. Kopitzki, B. Brandenburg, S. Oess, H. Will, H. Sirma and E. Hildt, Identification of a structural motif crucial for infectivity of hepatitis B viruses. Proc Natl Acad Sci U S A, 2006. 103(17): p. 6730-4. 21. Grimm, D., R. Thimme, and H.E. Blum, HBV life cycle and novel drug targets. Hepatol Int, 2011. 5(2): p. 644-53. 22. Urban, S., A. Schulze, M. Dandri and J. Petersen, The replication cycle of hepatitis B virus. J Hepatol, 2010. 52(2): p. 282-4. 23. Sells, M.A., M.L. Chen, and G. Acs, Production of hepatitis B virus particles in Hep G2 cells transfected with cloned hepatitis B virus DNA. Proc Natl Acad Sci U S A, 1987. 84(4): p. 1005-9. 24. Zeisel, M. B., J. Lucifora, W. S. Mason, C. Sureau, J. Beck, M. Levrero, M. Kann, P. A. Knolle, M. Benkirane, D. Durantel, M. L. Michel, B. Autran, F. L. Cosset, H. Strick-Marchand, C. Trepo, J. H. Kao, F. Carrat, K. Lacombe, R. F. Schinazi, F. Barre-Sinoussi, J. F. Delfraissy and F. Zoulim, Towards an HBV cure: state-of-the-art and unresolved questions--report of the ANRS workshop on HBV cure. Gut, 2015. 64(8): p. 1314-26. 25. Gripon, P., S. Rumin, S. Urban, J. Le Seyec, D. Glaise, I. Cannie, C. Guyomard, J. Lucas, C. Trepo and C. Guguen-Guillouzo, Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci U S A, 2002. 99(24): p. 15655-60. 26. Yan, H., G. Zhong, G. Xu, W. He, Z. Jing, Z. Gao, Y. Huang, Y. Qi, B. Peng, H. Wang, L. Fu, M. Song, P. Chen, W. Gao, B. Ren, Y. Sun, T. Cai, X. Feng, J. Sui and W. Li, Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife, 2012. 1: p. e00049. 27. Lin, H., J. W. Qiu, Y. M. Rauf, G. Z. Lin, R. Liu, L. J. Deng, M. Deng and Y. Z. Song, Sodium taurocholate cotransporting polypeptide (NTCP) deficiency hidden behind citrin deficiency in early infancy: A report of three cases. Front Genet, 2019. 10: p. 1108. 28. Yan, H., B. Peng, W. He, G. Zhong, Y. Qi, B. Ren, Z. Gao, Z. Jing, M. Song, G. Xu, J. Sui and W. Li, Molecular determinants of hepatitis B and D virus entry restriction in mouse sodium taurocholate cotransporting polypeptide. J Virol, 2013. 87(14): p. 7977-91. 29. Wang, X., P. Wang, W. Wang, J. W. Murray and A. W. Wolkoff, The Na(+)-taurocholate cotransporting polypeptide traffics with the epidermal growth factor receptor. Traffic, 2016. 17(3): p. 230-44. 30. Iwamoto, M., W. Saso, R. Sugiyama, K. Ishii, M. Ohki, S. Nagamori, R. Suzuki, H. Aizaki, A. Ryo, J. H. Yun, S. Y. Park, N. Ohtani, M. Muramatsu, S. Iwami, Y. Tanaka, C. Sureau, T. Wakita and K. Watashi, Epidermal growth factor receptor is a host-entry cofactor triggering hepatitis B virus internalization. Proc Natl Acad Sci U S A, 2019. 116(17): p. 8487-8492. 31. Somiya, M., Q. Liu, N. Yoshimoto, M. Iijima, K. Tatematsu, T. Nakai, T. Okajima, K. Kuroki, K. Ueda and S. Kuroda, Cellular uptake of hepatitis B virus envelope L particles is independent of sodium taurocholate cotransporting polypeptide, but dependent on heparan sulfate proteoglycan. Virology, 2016. 497: p. 23-32. 32. Wieland, S.F., The chimpanzee model for hepatitis B virus infection. Cold Spring Harb Perspect Med, 2015. 5(6). 33. Dandri, M., M. R. Burda, E. Torok, J. M. Pollok, A. Iwanska, G. Sommer, X. Rogiers, C. E. Rogler, S. Gupta, H. Will, H. Greten and J. Petersen, Repopulation of mouse liver with human hepatocytes and in vivo infection with hepatitis B virus. Hepatology, 2001. 33(4): p. 981-8. 34. Clark, R.M., P.C. Marker, and D.M. Kingsley, A novel candidate gene for mouse and human preaxial polydactyly with altered expression in limbs of Hemimelic extra-toes mutant mice. Genomics, 2000. 67(1): p. 19-27. 35. Tseng, L.T., C.L. Lin, K.Y. Tzen, S.C. Chang and M.F. Chang, LMBD1 protein serves as a specific adaptor for insulin receptor internalization. J Biol Chem, 2013. 288(45): p. 32424-32. 36. Tseng, L.T., C.L. Lin, K.H. Pan, K.Y. Tzen, M.J. Su, C.T. Tsai, Y.H. Li, P.C. Li, F.T. Chiang, S.C. Chang and M.F. Chang, Single allele Lmbrd1 knockout results in cardiac hypertrophy. J Formos Med Assoc, 2018. 117(6): p. 471-479. 37. Deme, J. C., M. A. Hancock, X. Xia, C. A. Shintre, M. Plesa, J. C. Kim, E. P. Carpenter, D. S. Rosenblatt and J. W. Coulton, Purification and interaction analyses of two human lysosomal vitamin B12 transporters: LMBD1 and ABCD4. Mol Membr Biol, 2014. 31(7-8): p. 250-61. 38. Kawaguchi, K., T. Okamoto, M. Morita and T. Imanaka, Translocation of the ABC transporter ABCD4 from the endoplasmic reticulum to lysosomes requires the escort protein LMBD1. Sci Rep, 2016. 6: p. 30183. 39. Chun-Wei Chang, LMBD1 Protein involves in multiplication of hepatitis C virus. Master Thesis, National Taiwan University, 2012 40. Kam-Chio Chek, Role of LMBD1 protein in hepatitis B virus infection. Master Thesis, National Taiwan University, 2018 41. Verrier, E. R., C. C. Colpitts, C. Bach, L. Heydmann, A. Weiss, M. Renaud, S. C. Durand, F. Habersetzer, D. Durantel, G. Abou-Jaoude, M. M. Lopez Ledesma, D. J. Felmlee, M. Soumillon, T. Croonenborghs, N. Pochet, M. Nassal, C. Schuster, L. Brino, C. Sureau, M. B. Zeisel and T. F. Baumert, A targeted functional RNA interference screen uncovers glypican 5 as an entry factor for hepatitis B and D viruses. Hepatology, 2016. 63(1): p. 35-48. 42. Hu, Q., F. Zhang, L. Duan, B. Wang, Y. Ye, P. Li, D. Li, S. Yang, L. Zhou and W. Chen, E-cadherin plays a role in hepatitis B virus entry through affecting glycosylated sodium-taurocholate cotransporting polypeptide distribution. Front Cell Infect Microbiol, 2020. 10: p. 74. 43. Scott, B.L., J.S. Van Komen, S. Liu, T. Weber, T.J. Melia and J.A. McNew., Liposome fusion assay to monitor intracellular membrane fusion machines. Methods Enzymol, 2003. 372: p. 274-300. 44. Somiya, M., Y. Sasaki, T. Matsuzaki, Q. Liu, M. Iijima, N. Yoshimoto, T. Niimi, A. D. Maturana and S. Kuroda, Intracellular trafficking of bio-nanocapsule-liposome complex: Identification of fusogenic activity in the pre-S1 region of hepatitis B virus surface antigen L protein. J Control Release, 2015. 212: p. 10-8. 45. Ho, R. H., B. F. Leake, R. L. Roberts, W. Lee and R. B. Kim, Ethnicity- dependent polymorphism in Na+-taurocholate cotransporting polypeptide (SLC10A1) reveals a domain critical for bile acid substrate recognition. J Biol Chem, 2004. 279(8): p. 7213-22. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78244 | - |
| dc.description.abstract | B型肝炎病毒 (hepatitis B virus, HBV),屬於嗜肝病毒科 (hepadnaviridae),為具有套模及部分雙股DNA之病毒,其主要為造成人類肝臟疾病之主要原因。目前研究指出人類的鈉依賴性牛磺膽酸鹽共同運輸蛋白質(human Na+-dependent taurocholate co transporting polypeptide;hNTCP)為HBV主要感染之功能性受體。最近的研究中指出HBV大型表面抗原可以被內吞至缺乏表現hNTCP之HepG2細胞中,因此HBV早期感染之機制尚待進一步研究。本實驗室過去的研究指出由LMBRD1基因所編碼的LMBD1蛋白質會與hNTCP有交互作用。此外,在Hus-E/2細胞中當把LMBRD1基因表現減弱(knockdown),HBV感染Hus-E/2細胞的數量會下降,但當表現過量的LMBD1蛋白質則可以回復HBV感染的現象。因此推測LMBD1會調節HBV的感染。本研究是探討hNTCP與LMBD1蛋白質參與HBV感染過程之角色。qPCR結果顯示在感染HBV 20小時後,缺乏表現hNTCP之HepG2細胞中仍能偵測到HBV基因體DNA。共軛焦顯微鏡分析結果顯示在HepG2細胞感染HBV 20小時後EGFR會與HBV有共位現象。上述結果推測在無hNCTP的情況下HBV仍然能夠被內吞至宿主細胞中。然而在HepG2細胞中感染HBV 72小時後則無法偵測到HBV基因體DNA,只有在添加溶酶體酵素抑制劑chloroquine後才能偵測到HBV基因體DNA。此外,在過量表現hNTCP的HepG2細胞中可以使HBV貼附於細胞上的數量上升了三倍,並且在感染HBV 72小時後仍可偵測到HBV的複製。上述結果猜測hNTCP不只參與在病毒貼附於細胞表面的過程,其可能也參與在HBV從晚期胞內體或溶酶體中釋放到細胞質的脫殼過程。最近的研究指出EGF受體會當作HBV的輔助因子幫助HBV藉由NCTP而被一起內吞至宿主細胞當中。本研究顯示在無hNTCP的情況下,經EGF的誘導HBV就可以被內吞至無血清培養基之HepG2細胞中。此外,共軛焦顯微鏡分析結果也顯示在EGF的誘導下HBV會與EGFR一起內吞至HepG2細胞中。另外利用GST pulldown與免疫沉澱法證實EGFR會與LMBD1及大型表面抗原之pre-S1區域皆具有交互作用。這些結果顯示EGFR可能會參與在非依賴hNTCP介導之內吞作用。為了探討LMBD1蛋白質是否參與在HBV早期感染的過程中,本研究利用帶有LMBRD1 shRNA之慢病毒去減弱HepG2與會表現hNTCP之Hus-E/2細胞中的LMBRD1基因表現。當Hus-E/2細胞中LMBRD1被減弱後,hNTCP表現與HBV貼附於細胞表面數量有顯著性下降。然而在HepG2細胞中,當LMBRD1被減弱後,HBV貼附於細胞表面數量並不會受影響,但是在EGF誘導後HBV內吞至細胞中的數量有顯著性減少。上述結果說明LMBD1蛋白質可能參與在EGF誘導之內吞作用及影響hNTCP的表現量。綜合以上結果,HBV可以透過非依賴性hNTCP及EGFR所介導之內吞作用進入宿主細胞中。而hNTCP會幫助HBV貼附於細胞表面以及可能參與在HBV從溶酶體中釋放到細胞質的脫殼過程。此外,LMBD1可能參與在EGFR介導之內吞作用進而促進HBV的感染。 | zh_TW |
| dc.description.abstract | Hepatitis B virus (HBV) is an enveloped, partially double-strand DNA virus that belongs to the Hepadnaviridae family and is a major cause of human liver diseases. Human hepatic Na+-dependent taurocholate co transporting polypeptide (hNTCP) functions as a receptor for HBV infection. Recently, the large form HBsAg (LHBsAg) was proposed to be involved in the infection of HepG2 cells that lack hNTCP, but the exact mechanism of HBV infection needs to be further studied. Our laboratory has previously demonstrated that LMBD1, encoded by the limb region 1 (LMBR1) domain containing 1 gene (LMBRD1), interacted with hNTCP. In addition, the HBV replication was decreased when LMBRD1 gene was knocked down, and this phenotype could be rescued by overexpression of LMBD1. These data suggest a role of LMBD1 in regulating HBV infection. In this study, the functions of hNTCP and LMBD1 proteins in HBV infection were further investigated. qPCR analysis following HBV infection demonstrated that, without hNTCP expression, HBV genomic DNA could be detected in HepG2 cells at 20-hour postinfection. The result of confocal microscopy further showed that HBV colocalized with LAMP1 in HepG2 cells at 20-hour postinfection. These data indicate that HBV could be internalized into host cells through hNTCP-independent endocytosis. However, there was no HBV genomic DNA was detected in HepG2 cells without hNTCP expression at 72-hour postinfection unless the HepG2 cells were treated with lysosomal enzyme inhibitor chloroquine. In addition, ectopic overexpression of hNTCP increased the attachment of HBV to HepG2 cells by 3-fold and HBV replication was detected at 72-hour postinfection. These data suggest that hNTCP not only facilitates HBV attachment but might also participates in HBV uncoating from the late endosome or lysosome after internalization. Recently, EGFR was demonstrated to be an entry cofactor that mediates HBV-hNTCP internalization into susceptible cells. In this study, HBV internalization into hNTCP-negative HepG2 cells cultured in serum-free medium was detected upon EGF induction. In addition, the result of confocal microscopy further showed that HBV colocalized with EGFR upon EGF induction. GST pulldown and immunoprecipitation assay further showed the interactions of EGFR with LMBD1 and with the pre-S1 domain of LHBsAg. The results indicate that EGFR may involve in hNTCP-independent HBV internalization. To investigate whether LMBD1 participates in HBV infection at early phase, studies were further performed in LMBRD1-knockdown HepG2 cells and the immortalized primary human hepatocytes, Hus-E/2 cells that express hNTCP. The results showed that both the levels of hNTCP expression and HBV attached to the cell surface were decreased in LMBRD1-knockdown Hus-E/2 cells. However, no effect on the attachment of HBV was observed in LMBRD1-knockdown HepG2 cells. Nevertheless, LMBRD1-knockdown reduced the level of EGF-induced HBV internalization into HepG2 cells. These data suggest that LMBD1 participates in the regulation of EGFR-mediated endocytosis and hNTCP expression. In conclusion, HBV could be internalized into host cells through hNTCP-independent EGFR-mediated endocytosis. hNTCP can help HBV to attach on host cell surface and may facilitate HBV uncoating from the lysosome. In addition, LMBD1 might participate in EGFR-mediated endocytosis and thus promotes HBV infection. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:47:33Z (GMT). No. of bitstreams: 1 U0001-1308202000085000.pdf: 6116223 bytes, checksum: 9792199c1865d7d29013d387805fc14e (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 中文摘要 I Abstract III 第一章、 緒論 1 1. B型肝炎病毒 1 1.1. B型肝炎病毒之發現史 1 1.2. B型肝炎病毒之感染方式與流行病學 1 1.3. B型肝炎病毒顆粒組成 2 1.4. B型肝炎病毒基因體組成 2 1.5. B型肝炎病毒表面抗原 3 1.6. B型肝炎病毒核心抗原 (Hepatitis core antigen, HBcAg)與e抗原 (HBeAg) 3 1.7. B型肝炎病毒DNA聚合酶 (DNA polymerase)及X蛋白 (HBx) 4 1.8. B型肝炎病毒生活史 4 1.9. B型肝炎病毒功能性受體 (Functional receptor) 5 1.10. B型肝炎病毒的動物培養模式 6 2. LMBRD1基因與LMBD1蛋白質 7 2.1. LMBRD1的基因特性 7 2.1. LMBD1蛋白質 7 第二章、 研究主題 9 第三章、 材料來源 10 1.藥品 10 2.套組試劑 (Kits) 12 3.細胞培養液及試劑 12 4.抗體 13 4.1初級抗體 (Primary antibodies) 13 4.2次級抗體 (Secondary antibodies) 13 5.實驗室提供之質體 14 6.實驗所使用之引子 15 第四章、 實驗方法 16 4.1. 本研究所構築之質體 16 4.2. 勝任細胞 (Competent cells)的製備 16 4.3. 聚合連鎖反應 (Polymerase chain reaction;PCR) 17 4.4. 接合反應 (Ligation) 18 4.5. 細菌轉型 (Transformation) 18 4.6. 質體之小量製備 (Mini-preparation of plasmid DNA) 18 4.7. 質體之中量製備 (Midi-preparation of plasmid DNA) 19 4.8. DNA 瓊脂膠電泳 (DNA agarose gel electrophoresis) 20 4.9. GST融合蛋白之表現與純化 20 4.9.1. 小量誘導檢測融合蛋白質表現 20 4.9.2. 大量誘導檢測融合蛋白質表現 21 4.10. GST-pull down assay 22 4.11. 細胞株繼代培養 (Subculture) 22 4.12. DNA轉染 (Transfection) 23 4.13. 細胞基因體DNA之收取 23 4.14. 細胞基因體RNA之收取 24 4.15. 反轉錄反應 (Reverse transcription) 24 4.16. 即時聚合酶連鎖反應 (Real-time polymerase chain reaction; Real-time PCR) 25 4.17. 細胞內蛋白質之收取 25 4.18. 蛋白質定量 25 4.19.免疫共沉澱 (Co-immunoprecipitation) 26 4.20. 正十二烷基硫酸鈉-聚丙烯醯胺凝膠電泳 26 (Sodium dodecyl sulfate polyacrylamide gel electrophoresis;SDS-PAGE) 26 4.21. 西方墨點法分析 (Westernn blot analysis ) 27 4.21.1 蛋白質轉漬 (Protein trnasfer) 27 4.21.2 免疫墨點分析 (Immunoblot analysis) 27 4.22. Coomassie brilliant blue (CBR)染色法 28 4.23. 帶有shRNA之vesicular stomatitis virus glycoprotein (VSV-G) pseudotyped lentivirus之製備與感染 28 4.24. 免疫螢光染色 (Immunofluorescence staining assay) 29 4.25. B型肝炎病毒顆粒之收集 30 4.25. B型肝炎病毒之感染 30 4.26. B型肝炎病毒之細胞貼附 (Attachment)實驗 31 4.27. B型肝炎病毒之內吞 (Endocytosis)實驗 31 第五章、 實驗結果 32 1. HBV可利用不依賴hNTCP的內吞作用進入肝臟細胞中 32 1.1製備及純化HBV病毒顆粒 32 1.2 HBV在沒有hNTCP的情況下也可以進入HepG2細胞株中 33 2. hNTCP於HBV感染過程中所扮演之角色 34 2.1 hNTCP可幫助HBV附著於HepG2細胞表面 34 2.2 hNTCP 能降低HBV送到溶酶體中被分解,同時使HBV能感染HepG2細胞株34 34 3. HBV利用EGFR之內吞作用進入肝臟細胞中 35 4. 探討LMBD1參與在HBV感染過程中的機制 36 4.1 LMBD1透過降低hNTCP表現來影響HBV結合於Hus-E/2細胞株 36 4.2 LMBD1會影響HBV藉由EGF所誘導之內吞作用 37 第六章、 討論 39 1. HBV早期感染肝臟細胞之過程 39 2. hNTCP在HBV感染過程中扮演的角色 40 3. LMBD1在HBV感染過程中扮演的角色 42 第七章、 圖表 44 第八章、 附圖 56 第九章、 參考文獻 60 | |
| dc.language.iso | zh-TW | |
| dc.subject | 病毒早期感染過程 | zh_TW |
| dc.subject | B型肝炎病毒 | zh_TW |
| dc.subject | EGF受體 | zh_TW |
| dc.subject | hNTCP | zh_TW |
| dc.subject | LMBD1 | zh_TW |
| dc.subject | EGFR | en |
| dc.subject | HBV | en |
| dc.subject | LMBD1 | en |
| dc.subject | virus early phase infection | en |
| dc.subject | hNTCP | en |
| dc.title | LMBD1蛋白質參與非hNTCP依賴性之B型肝炎病毒感染路徑 | zh_TW |
| dc.title | LMBD1 protein involves in HBV infection through a hNTCP-independent pathway | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊宏志(Hung-Chih Yang),董馨蓮(Xing-Lian Dong),陳炳宏(Ping-Hung Chen) | |
| dc.subject.keyword | B型肝炎病毒,EGF受體,hNTCP,病毒早期感染過程,LMBD1, | zh_TW |
| dc.subject.keyword | HBV,EGFR,hNTCP,virus early phase infection,LMBD1, | en |
| dc.relation.page | 65 | |
| dc.identifier.doi | 10.6342/NTU202003175 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-17 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-17 | - |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1308202000085000.pdf 未授權公開取用 | 5.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
