Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78241
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor席行正(Hsing-Cheng Hsi)
dc.contributor.authorShu-Wen Youen
dc.contributor.author游書聞zh_TW
dc.date.accessioned2021-07-11T14:47:25Z-
dc.date.available2025-01-01
dc.date.copyright2020-08-28
dc.date.issued2020
dc.date.submitted2020-08-18
dc.identifier.citationAhmadpour, A.; Do, D. D., The Preparation of Activated Carbon from Macadamia Nutshell by Chemical Activation. Carbon 1997, 35 (12), 1723-1732.
Antuna-Nieto, C.; Rodriguez, E.; Lopez-Anton, M. A.; Garcia, R.; Martinez-Tarazona, M. R., A Candidate Material for Mercury Control in Energy Production Processes: Carbon Foams Loaded with Gold. Energy 2018, 159, 630-637.
Asari, M.; Fukui, K.; Sakai, S. I., Life-cycle Flow of Mercury and Recycling Scenario of Fluorescent Lamps in Japan. Sci. Total Environ. 2008, 393 (1), 1-10.
Assari, M. j.; Rezaee, A.; Rangkooy, H., Bone Char Surface Modification by Nano-gold Coating for Elemental Mercury Vapor Removal. Appl. Surf. Sci. 2015, 342, 106-111.
Bachman, B. J.; Vasile, M. J., Ion Bombardment of Polyimide Films. Journal of Vacuum Science Technology A: Vacuum, Surfaces, and Films 1989, 7 (4), 2709-2716.
Ballestero, D.; Gomez-Gimenez, C.; Garcia-Diez, E.; Juan, R.; Rubio, B.; Izquierdo, M. T., Influence of Temperature and Regeneration Cycles on Hg Capture and Efficiency by Structured Au/C Regenerable Sorbents. J. Hazard. Mater. 2013, 260, 247-254.
Bryan, W. W.; Jamison, A. C.; Chinwangso, P.; Rittikulsittichai, S.; Lee, T. C.; Lee, T. R., Preparation of THPC-generated Silver, Platinum, and Palladium Nanoparticles and their Use in the Synthesis of Ag, Pt, Pd, and Pt/Ag Nanoshells. Rsc Advances 2016, 6 (72), 68150-68159.
Carocci, A.; Rovito, N.; Sinicropi, M. S.; Genchi, G., Mercury Toxicity and Neurodegenerative Effects. Reviews of Environmental Contamination and Toxicology, Vol 229, ed.; D. M. Whitacre, Ed.^Eds. 2014; Vol. 229, p^pp 1-18.
Carrott, P. J. M.; Nabais, J. M. V.; Carrott, M.; Pajares, J. A., Preparation of Activated Carbon Fibres from Acrylic Textile Fibres. Carbon 2001, 39 (10), 1543-1555.
Chen, B. C.; Tsai, C. Y.; Pan, S. Y.; Chen, Y. T.; Hsi, H. C., Sustainable Recovery of Gaseous Mercury by Adsorption and Electrothermal Desorption Using Activated Carbon Fiber Cloth. Environ. Sci. Technol. 2020, 54 (3), 1857-1866.
Clifton, J. C., Mercury Exposure and Public Health. Pediatr. Clin. North Am. 2007, 54 (2), 237-+.
Driscoll, C. T.; Mason, R. P.; Chan, H. M.; Jacob, D. J.; Pirrone, N., Mercury as a Global Pollutant: Sources, Pathways, and Effects. Environ. Sci. Technol. 2013, 47 (10), 4967-4983.
Duan, X.; Srinivasakannan, C.; Wang, X.; Wang, F.; Liu, X., Synthesis of Activated Carbon Fibers from Cotton by Microwave Induced H3PO4 Activation. Journal of the Taiwan Institute of Chemical Engineers 2017, 70, 374-381.
Duff, D. G.; Baiker, A.; Edwards, P. P., A New Hydrosol of Gold Clusters: Formation and Particle-size Variation. Langmuir 1993, 9 (9), 2301-2309.
Fabuss, B. M.; Du Bois, W. C., Apparatus and Process for Desorption of Filter Beds by Electric Current. Google Patents: 1971.
Fan, X. P.; Li, C. T.; Zeng, G. M.; Gao, Z.; Chen, L.; Zhang, W.; Gao, H. L., Removal of Gas-Phase Element Mercury by Activated Carbon Fiber Impregnated with CeO2. Energy Fuels 2010, 24 (8), 4250-4254.
Feng, W. G.; Borguet, E.; Vidic, R. D., Sulfurization of a Carbon Surface for Vapor Phase Mercury Removal - II: Sulfur Forms and Mercury Uptake. Carbon 2006, 44 (14), 2998-3004.
Fernandez-Miranda, N.; Rodriguez, E.; Lopez-Anton, M. A.; Garcia, R.; Martinez-Tarazona, M. R., A New Approach for Retaining Mercury in Energy Generation Processes: Regenerable Carbonaceous Sorbents. Energies 2017, 10 (9).
Foo, K. Y.; Hameed, B. H., Microwave-assisted Preparation of Oil Palm Fiber Activated Carbon for Methylene Blue Adsorption. Chem. Eng. J. 2011, 166 (2), 792-795.
Foster, K.; Fuerman, R.; Economy, J.; Larson, S.; Rood, M. J. C. o. M., Adsorption Characteristics of Trace Volatile Organic Compounds in Gas Streams onto Activated Carbon Fibers. 1992, 4 (5), 1068-1073.
Gallup, D. L.; Yean, S.; Mogaddedi, H., Reaction Investigation of Metal Salts with Tetrakis(hydroxymethyl)phosphonium Sulfate and Chloride. Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry 2013, 43 (9), 1274-1278.
Gonzalez-Raymat, H.; Liu, G.; Liriano, C.; Li, Y.; Yin, Y.; Shi, J.; Jiang, G.; Cai, Y., Elemental Mercury: Its Unique Properties Affect its Behavior and Fate in the Environment. Environ. Pollut. 2017, 229, 69-86.
González, J. F.; Román, S.; González-García, C. M.; Nabais, J. M. V.; Ortiz, A. L., Porosity Development in Activated Carbons Prepared from Walnut Shells by Carbon Dioxide or Steam Activation. Ind. Eng. Chem. Res. 2009, 48 (16), 7474-7481.
Grande, C. A.; Ribeiro, R. P. L.; Oliveira, E. L. G.; Rodrigues, A. E., Electric Swing Adsorption as Emerging CO2 Capture Technique. Energy Procedia 2009, 1 (1), 1219-1225.
Hsi, H. C.; Rood, M. J.; Rostam-Abadi, M.; Chang, Y. M., Effects of Sulfur, Nitric Acid, and Thermal Treatments on the Properties and Mercury Adsorption of Activated Carbons from Bituminous Coals. Aerosol and Air Quality Research 2013, 13 (2), 730-738.
Hsi, H. C.; Rood, M. J.; Rostam-Abadi, M.; Chen, S. G.; Chang, R., Effects of Sulfur Impregnation Temperature on the Properties and Mercury Adsorption Capacities of Activated Carbon Fibers (ACFs). Environ. Sci. Technol. 2001, 35 (13), 2785-2791.
Hu, M. M.; Emamipour, H.; Johnsen, D. L.; Rood, M. J.; Song, L. H.; Zhang, Z. L., Monitoring and Control of an Adsorption System Using Electrical Properties of the Adsorbent for, Organic Compound Abatement. Environ. Sci. Technol. 2017, 51 (13), 7581-7589.
Hu, Q. L.; Xie, Y. H.; Zhang, Z. Y., Modification of Breakthrough Models in a Continuous-flow Fixed-bed Column: Mathematical Characteristics of Breakthrough Curves and Rate Profiles. Sep. Purif. Technol. 2020, 238.
Huang, K.-W.; Arizono, K.; Yakushiji, Y.; Kobayashi, J.; Ishibashi, Y., Fluorescent Lamp and Dry Battery Recycling Technology and the Current Recycling Situation in Taiwan and Japan. Journal of Environment and Safety 2019, 10 (2), 153-164.
Hueso, J. L.; Sebastian, V.; Mayoral, A.; Uson, L.; Arruebo, M.; Santamaria, J., Beyond Gold: Rediscovering Tetrakis-(hydroxymethyl)-phosphonium Chloride (THPC) as an Effective Agent for the Synthesis of Ultra-small Noble Metal Nanoparticles and Pt-containing Nanoalloys. Rsc Advances 2013, 3 (26), 10427-10433.
Izquierdo, M. T.; Ballestero, D.; Juan, R.; García-Díez, E.; Rubio, B.; Ruiz, C.; Pino, M. R., Tail-end Hg Capture on Au/carbon-monolith Regenerable sorbents. J. Hazard. Mater. 2011, 193, 304-310.
Johnsen, D. L.; Mallouk, K. E.; Rood, M. J., Control of Electrothermal Heating During Regeneration of Activated Carbon Fiber Cloth. Environ. Sci. Technol. 2011, 45 (2), 738-743.
Kim, K. H.; Kabir, E.; Jahan, S. A., A Review on the Distribution of Hg in the Environment and its Human Health Impacts. J. Hazard. Mater. 2016, 306, 376-385.
Korpiel, J. A.; Vidic, R. D., Effect of Sulfur Impregnation Method on Activated Carbon Uptake of Gas-phase Mercury. Environ. Sci. Technol. 1997, 31 (8), 2319-2325.
Kuptajit, P.; Sano, N., Application of Microwave-induced Plasma for Extremely Fast Synthesis of Large Surface Area Activated Carbon. Applied Physics Express 2019, 12 (8).
Le Cloirec, P., Adsorption onto Activated Carbon Fiber Cloth and Electrothermal Desorption of Volatile Organic Compound (VOCs): A Specific Review. Chin. J. Chem. Eng. 2012, 20 (3), 461-468.
Lee;Ooi, C.; Othman, R.; Yeoh, F.-Y., Activated Carbon Fiber - The Hybrid of Carbon Fiber and Activated Carbon. ed.; 2014; Vol. 36, p 118-136.
Lee; Popuri, S. R.; Peng, Y. H.; Fang, S. S.; Lin, K. L.; Fan, K. S.; Chang, T. C., Overview on Industrial Recycling Technologies and Management Strategies of End-of-life Fluorescent Lamps in Taiwan and Other Developed Countries. J. Mater. Cycles Waste Manage. 2015, 17 (2), 312-323.
Li; Jia, P. Q.; Zhao, F.; Kang, Y. K., Mercury Pollution, Treatment and Solutions in Spent Fluorescent Lamps in Mainland China. Int. J. Env. Res. Public Health 2018, 15 (12).
Li, D.; Han, J.; Han, L.; Wang, J.; Chang, L., Pd/activated Carbon Sorbents for Mid-temperature Capture of Mercury from Coal-derived Fuel Gas. Journal of Environmental Sciences 2014, 26 (7), 1497-1504.
Li, Y. H.; Lee, C. W.; Gullett, B. K., Importance of Activated Carbon's Oxygen Surface Functional Groups on Elemental Mercury Adsorption. Fuel 2003, 82 (4), 451-457.
Liu, W.; Vidic, R. D.; Brown, T. D., Optimization of Sulfur Impregnation Protocol for Fixed Bed Application of Activated Carbon-based Sorbents for Gas-phase Mercury Removal. Environ. Sci. Technol. 1998, 32 (4), 531-538.
Liu, Y.; Kelly, D. J. A.; Yang, H.; Lin, C. C. H.; Kuznicki, S. M.; Xu, Z., Novel Regenerable Sorbent for Mercury Capture from Flue Gases of Coal-Fired Power Plant. Environ. Sci. Technol. 2008, 42 (16), 6205-6210.
Lopez-Anton, M. A.; Fernandez-Miranda, N.; Martinez-Tarazona, M. R., The Application of Regenerable Sorbents for Mercury Capture in Gas Phase. Environmental Science and Pollution Research 2016, 23 (24), 24495-24503.
Lopez-Anton, M. A.; Perry, R.; Abad-Valle, P.; Díaz-Somoano, M.; Martínez-Tarazona, M. R.; Maroto-Valer, M. M., Speciation of Mercury in Fly Ashes by Temperature Programmed Decomposition. Fuel Process. Technol. 2011, 92 (3), 707-711.
Luo, J.; Crittenden, J. C., Nanomaterial Adsorbent Design: From Bench Scale Tests to Engineering Design. Environ. Sci. Technol. 2019, 53 (18), 10537-10538.
Luo, L.; Ramirez, D.; Rood, M. J.; Grevillot, G.; Hay, K. J.; Thurston, D. L., Adsorption and Electrothermal Desorption of Organic Vapors Using Activated Carbon Adsorbents with Novel Morphologies. Carbon 2006, 44 (13), 2715-2723.
Mallouk, K. E.; Rood, M. J., Performance of an Electrothermal Swing Adsorption System with Postdesorption Liquefaction for Organic Gas Capture and Recovery. Environ. Sci. Technol. 2013, 47 (13), 7373-7379.
Mallouk, K. E.; Johnsen, D. L.; Rood, M. J., Capture and Recovery of Isobutane by Electrothermal Swing Adsorption with Post-Desorption Liquefaction. Environ. Sci. Technol. 2010, 44 (18), 7070-7075.
Mergler, D.; Anderson, H. A.; Chan, L. H. M.; Mahaffey, K. R.; Murray, M.; Sakamoto, M.; Stern, A. H., Methylmercury Exposure and Health Effects in Humans: A Worldwide Concern. Ambio 2007, 36 (1), 3-11.
Moiseev, D. V.; James, B. R., Tetrakis(hydroxymethyl)phosphonium salts: Their Properties, Hazards and Toxicities. Phosphorus, Sulfur, and Silicon and the Related Elements 2020, 195 (4), 263-279.
Molina-Sabio, M.; Gonzalez, M. T.; Rodriguez-Reinoso, F.; Sepúlveda-Escribano, A., Effect of Steam and Carbon Dioxide Activation in the Micropore Size Distribution of Activated Carbon. Carbon 1996, 34 (4), 505-509.
Nataraj, S. K.; Yang, K. S.; Aminabhavi, T. M., Polyacrylonitrile-based Nanofibers A State-of-the-art Review. Prog. Polym. Sci. 2012, 37 (3), 487-513.
Niknaddaf, S.; Atkinson, J. D.; Shariaty, P.; Jahandar Lashaki, M.; Hashisho, Z.; Phillips, J. H.; Anderson, J. E.; Nichols, M., Heel Formation During Volatile Organic Compound Desorption from Activated Carbon Fiber Cloth. Carbon 2016, 96, 131-138.
Niknaddaf, S.;Atkinson, J. D.;Gholidoust, A.;Fayaz, M.;Awad, R.;Hashisho, Z.; Phillips, J. H.; Anderson, J. E; Nichols, M., Influence of Purge Gas Flow and Heating Rates on Volatile Organic Compound Decomposition during Regeneration of an Activated Carbon Fiber Cloth. Ind. Eng. Chem. Res. 2020, 59 (8), 3521-3530.
Osmond, N. M., Activated Carbon Fibre Adsorbent Materials. Adsorption Science Technology 2000, 18 (6), 529-539.
Rangel-Mendez, J. R.;Streat, M., Adsorption of Cadmium by Activated Carbon Cloth: Influence of Surface Oxidation and Solution pH. Water Res. 2002, 36 (5), 1244-1252.
Rodriguez-Perez, J.; Lopez-Anton, M. A.; Diaz-Somoano, M.; Garcia, R.; Martinez-Tarazona, M. R., Development of Gold Nanoparticle-Doped Activated Carbon Sorbent for Elemental Mercury. Energy Fuels 2011, 25 (5), 2022-2027.
Rodriguez-Perez, J.; Lopez-Anton, M. A.; Diaz-Somoano, M.; Garcia, R.; Martinez-Tarazona, M. R., Regenerable Sorbents for Mercury Capture in Simulated Coal Combustion Flue Gas. J. Hazard. Mater. 2013, 260, 869-877.
Rumayor, M.; Fernandez-Miranda, N.; Lopez-Anton, M. A.; Diaz-Somoano, M.; Martinez-Tarazona, M. R., Application of Mercury Temperature Programmed Desorption (HgTPD) to Ascertain Mercury/char Interactions. Fuel Process. Technol. 2015, 132, 9-14.
Rungnim, C.; Promarak, V.; Hannongbua, S.; Kungwan, N.; Namuangruk, S., Complete Reaction Mechanisms of Mercury Oxidation on Halogenated Activated Carbon. J. Hazard. Mater. 2016, 310, 253-260.
Sabri, Y. M.; Ippolito, S. J.; Tardio, J.; Bhargava, S. K., Study of Surface Morphology Effects on Hg Sorption–Desorption Kinetics on Gold Thin-Films. The Journal of Physical Chemistry C 2012, 116 (3), 2483-2492.
Shiue, A.; Den, W.; Kang, Y. H.; Hu, S. C.; Jou, G. T.; Lin, C. H.; Hu, V.; Lin, S. I., Validation and Application of Adsorption Breakthrough Models for the Chemical Filters Used in the Make-up Air Unit (MAU) of a Cleanroom. Build. Environ. 2011, 46 (2), 468-477.
Sullivan, P. D.; Rood, M. J.; Grevillot, G.; Wander, J. D.; Hay, K. J., Activated Carbon Fiber Cloth Electrothermal Swing Adsorption System. Environ. Sci. Technol. 2004, 38 (18), 4865-4877.
Sun, P.; Zhang, B.; Zeng, X. B.; Luo, G. Q.; Li, X.; Yao, H.; Zheng, C. G., Deep Study on Effects of Activated Carbon's Oxygen Functional Groups for Elemental Mercury Adsorption Using Temperature Programmed Desorption Method. Fuel 2017, 200, 100-106.
Tabatabaei, S.; Sadrnezhaad, S. K., Facile Synthesis of Monodisperse Thermally Immiscible Ag-Ni Alloy Nanoparticles at Room Temperature. Bull. Mater. Sci. 2014, 37 (6), 1447-1452.
Thorell, A.; Wadsö, L., Determination of External Mass Transfer Coefficients in Dynamic Sorption (DVS) Measurements. Drying Technol. 2018, 36 (3), 332-340.
Tong, L.; Yue, T.; Zuo, P.; Zhang, X.; Wang, C.; Gao, J.; Wang, K., Effect of Characteristics of KI-impregnated Activated Carbon and Flue Gas Components on Hg0 Removal. Fuel 2017, 197, 1-7.
Tsai, C. Y.; Chiu, C. H.; Chuang, M. W.; Hsi, H. C., Influences of Copper(II) Chloride Impregnation on Activated Carbon for Low-Concentration Elemental Mercury Adsorption from Simulated Coal Combustion Flue Gas. Aerosol and Air Quality Research 2017, 17 (6), 1637-1648.
UNEP, Global Mercury Supply, trade and demand. 2017. Retrieved from https://www.unenvironment.org/resources/report/ global-mercury-supply-trade-and-demand (assessed Oct 2019)
UNEP, Global Mercury Assesment. 2018. Rectrieved from https://www.unenvironment.org/resources/publication/global-mercury assessment-2018 (assesssed Oct 2019)
Wang, H.; Duan, Y.; Ying, Z.; Xue, Y., Studies on Mercury Adsorption Species and Desorption Activation Energy on Activated Carbon under Oxy Combustion. Energy Fuels 2018, 32 (10), 10754-10759.
Wang, J. C.; Kaskel, S., KOH Activation of Carbon-based Materials for Energy Storage. J. Mater. Chem. 2012, 22 (45), 23710-23725.
Wang, X.; Liu, Y. C.; Chen, M. Z.; Luo, M.; Yang, P.; Chen, W. M.; Zhou, X. Y., Direct Microwave Conversion from Lignin to Micro/Meso/Macroporous Carbon for High-Performance Symmetric Supercapacitors. Chemelectrochem 2019, 6 (18), 4789-4800.
Worch, E., Fixed-bed Adsorption in Drinking Water Treatment: A Critical Review on Models and Parameter Estimation. Journal of Water Supply Research and Technology-Aqua 2008, 57 (3), 171-183.
Xu, H.; Shen, B. X.; Yuan, P.; Lu, F. J.; Tian, L. H.; Zhang, X., The Adsorption Mechanism of Elemental Mercury by HNO3-modified Bamboo Char. Fuel Process. Technol. 2016, 154, 139-146.
Yao, Y.; Velpari, V.; Economy, J., In Search of Brominated Activated Carbon Fibers for Elemental Mercury Removal from Power Plant Effluents. Journal of Materials Chemistry A 2013, 1 (39), 12103-12108.
Yao, Y. X.; Velpari, V.; Economy, J., Design of Sulfur Treated Activated Carbon Fibers for Gas Phase Elemental Mercury Removal. Fuel 2014, 116, 560-565.
Yoon, Y. H.; Nelson, J. H., Application of Gas Adsorption Kinetics I. A Theoretical Model for Respirator Cartridge Service Life. Am. Ind. Hyg. Assoc. J. 1984, 45 (8), 509-516.
Yue, Z.; Economy, J., Carbonization and Activation for Production of Activated Carbon Fibers. In Activated Carbon Fiber and Textiles, ed.; J. Y. Chen, Ed.^Eds. Woodhead Publishing: Oxford, 2017; Vol. p^pp 61-139.
Zhang, B.; Xu, P.; Qiu, Y.; Yu, Q.; Ma, J.; Wu, H.; Luo, G.; Xu, M.; Yao, H., Increasing Oxygen Functional Groups of Activated Carbon with Non-thermal Plasma to Enhance Mercury Rmoval Efficiency for Flue Gases. Chem. Eng. J. 2015, 263, 1-8.
Zhang, J.; Duan, Y.; Zhou, Q.; Zhu, C.; She, M.; Ding, W., Adsorptive Removal of gas-Phase Mercury by Oxygen Non-thermal Plasma Modified Activated Carbon. Chem. Eng. J. 2016, 294, 281-289.
Zhao, B.; Yi, H.; Tang, X.; Li, Q.; Liu, D.; Gao, F., Copper Modified Activated Coke for Mercury Removal from Coal-fired Flue gas. Chem. Eng. J. 2016, 286, 585-593.
Zhao, Q. H.; Wu, F.; He, Y. D. A.; Xiao, P.; Webley, P. A., Impact of Operating Parameters on CO2 Capture Using Carbon Monolith by Electrical Swing Adsorption technology (ESA). Chem. Eng. J. 2017, 327, 441-453.
張添晉與王愫懃(2009) 。廢玻璃與廢燈管資源回收循環,財團法人中技社環境與能源研討會,2010年。取自https://www.ctci.org.tw/media/2214/12-21%E5%BB%A2%E7%8E%BB%E7%92%83%E8%88%87%E5%BB%A2%E7%87%88%E7%AE%A1%E8%B3%87%E6%BA%90%E5%9B%9E%E6%94%B6%E5%BE%AA%E7%92%B0-%E7%B0%A1%E5%A0%B1-%E5%BC%B5%E6%B7%BB%E6%99%89.pdf
行政院環境保護署(2019)。108年公告應回收廢物品及容器回收量統計。取自https://recycle.epa.gov.tw/result/%E5%9B%9E%E6%94%B6%E9%87%8F86%E5%B9%B4-108%E5%B9%B4.pdf
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78241-
dc.description.abstract由於汞的高危害性,近年來,各國逐漸對含汞產品實行了更嚴格的限制。同時由於技術的日新月異,大量的液晶顯示器(LCD)和螢光燈管等含汞產品被汰換及回收。根據台灣環保署資料,在 2019年約有5,000噸廢棄螢光燈管需要被破碎及回收 (Taiwan EPA, 2019),顯示未來在回收廠內去除及回收低濃度的汞蒸氣有其重要與必要性。目前在螢光燈拆卸過程中用於除汞的吸附劑主要是含硫(SAC)或鹵素官能基的活性碳;儘管SAC對汞蒸氣的去除效果很高,但是由於硫或鹵素官能基與汞形成的鍵結能極強,使得飽和的吸附劑難以再生,因此這些飽和吸附劑被歸類為有害事業廢棄物,須進行固化及最終掩埋。本研究旨在製備一種有效且可再生的汞吸附劑;透過採用同時具有分散劑與還原劑功能之氯化四羥甲基磷(tetrakis(hydroxymethyl)phosphonium chloride, THPC) 使氯金酸 (chloroauric acid)在高度分散的情況下還原成金奈米顆粒,附載在活性碳纖維布上 (Au-ACFC-THPC),SEM的結果顯示其平均顆粒大小為1-100 nm。汞吸附實驗結果顯示經金改質後Hg0吸附容量有明顯的提升,負載不同重量百分濃度金 (0.1, 0.2, 0.5及0.7 wt.%) 的Au-ACFC-THPC 對於Hg0之90% 飽和吸附容量分別為: 559±41, 1032±249, 1706±153及 1338±329 μg/g。同時為瞭解本材料對水的抗性,於相同吸附條件下添加3% (v/v)的水氣進行競爭吸附,並與先前本實驗室以電沉積合成的含金碳纖維布 (GE-1200s) 進行比較,結果顯示0.5 wt.%-ACFC-THPC及GE-1200s的吸附容量均有下降的趨勢,分別由1706±153 下降至 824 ±279 µg/g 及408±5 下降至 269±74 µg/g,但0.5 wt.%-ACFC-THPC 之吸附容量仍為GE-1200s的3倍左右。為瞭解汞吸附之型態,將吸附汞的活性碳纖維布進行程序升溫脫附(Hg-TPD),由未處理前材料Raw-ACFC在72.9℃及142.9℃ 出現之特徵峰判斷汞應是以吸附材孔洞物理性吸附與C=O官能基化學吸附為主。由Au-ACFC-THPC於129.7至185.6℃出現的單一且對稱的特徵峰,顯示汞主要以金汞齊的物理性吸附在材料上。通過電熱吸附與再生系統(Electrothermal Swing System, ETS)進行三循環汞吸附和再生實驗,Au-ACFC-THPC在不同Hg0進流濃度下(30, 75, 100±5 μg/m3),對Hg0的吸附和再生效率皆能穩定保持在95%左右,然而Raw-ACFC的吸附效率則為66.1到94.7%不等,較低的吸附效率可能源自於再生過程中孔洞結構的塌陷降低表面積,或是其較小的吸附容量所導致;此外,TEM結果顯示經12個循環的ETS電熱升溫及降溫後未觀察到金奈米顆粒大小因熱效應產生顯著變化。本研究提出了汞的吸脫附機制,並進一步應用擴散控制的質傳模式模擬Hg0脫附的過程,最後對外部質傳係數(kf)及孔隙間擴散係數(kp)進行探討以利未來工程規模的電熱系統設計。zh_TW
dc.description.abstractOwing to the high toxicity of mercury (Hg), tighter limitations on using Hg-containing products in various countries have been gradually executed in recent years. In the meantime, a considerable amount of Hg-containing products such as liquid-crystal displays (LCD) and fluorescent lamps are replaced and recycled due to rapid technological developments. Approximately 5,000 tons of wasted fluorescent lamps need to be crushed and recycled in 2019 (Taiwan EPA, 2019). Consequently, it is necessary to remove and recover the low concentration of Hg in the recycling plants. Currently, activated carbon impregnated with sulfur functional groups (SAC) or halogen groups are frequently used for Hg removal in fluorescent lamps disassembling processes. Although a high removal efficiency can be achieved, it is difficult to regenerate the exhausted adsorbents due to the high bonding energy of Hg and S or halogen groups, thus these adsorbents are classified as hazardous waste and need to be solidified and end up in the landfill.
In this study, we aim at developing an effective and renewable adsorbent by adopting the tetrakis(hydroxymethyl)phosphonium chloride (THPC) method to prepare activated carbon fiber cloth (ACFC) loaded with gold (Au) nanoparticles with size ranging from 1 to 100 nm. The synthesized Au-ACFC-THPC with gold loading ratios of 0.1, 0.2, 0.5, and 0.7 wt.% were prepared, and the elemental Hg (Hg0) saturated adsorption capacities obtained at 90% breakthrough were 559±41, 1032±249, 1706±153, and 1338±329 μg/g, respectively. Competitive adsorption experiments with H2O (3% (v/v)) were also carried out to examine the water resistance of 0.5 wt.%-ACFC-THPC and GE-1200s (Au-electrodeposited ACFC with electrodeposition period of 1200s, which was also developed in our laboratory). The Hg0 adsorption capacities of 0.5 wt.%-ACFC-THPC and GE-1200s decreased from 1706±153 to 824 ±279 µg/g and from 408±5 to 269±74 µg/g, respectively, indicating that the Hg0 saturated adsorption capacity of 0.5 wt.%-ACFC-THPC was still appreciated even with the presence of water vapor in the gas stream. To gain a more comprehensive understanding of Hg0 adsorption and desorption pattern on ACFCs, temperature-programmed desorption (Hg-TPD) experiments were carried out. Results of Hg-TPD showed that Hg0 was both physically and chemically adsorbed on Raw-ACFC by its well-developed pore structures and C=O functional groups, with the corresponding desorption temperatures at 72.9℃ and 142.9℃, respectively. In contrast, the corresponding desorption temperatures of Au-ACFC-THPC were all shown with a single, symmetric peak ranging from 129.7 to 185.6℃, indicating that Hg was physically adsorbed on Au-ACFC-THPC in the form of Au-Hg amalgam. Furthermore, the desorption activation energy (Ed) of Raw-ACFC and Au-ACFC-THPC were estimated, with a value in the range from 20.4 to 83.8 kJ/mole, suggesting that physical adsorption dominates the adsorption processes. The results of the 3-cycle electrothermal swing system (ETS) experiments showed that the adsorption efficiency of Au-ACFC-THPC remained at approximately 95% and demonstrated great stability under various inlet Hg0 concentrations (30, 75, and 100±5 μg/m3), while the efficiency of Raw-ACFC varied in the range of 66.1% to 94.7%. The decrease in the adsorption efficiency of Raw-ACFC might be caused by the collapse of pore structure after the electrothermal regeneration procedure or by the extremely low Hg0 adsorption capacity compared with Au-ACFC-THPC. Notably, significant changes in the size and morphology of Au nanoparticles were not observed after 12-cycle of ETS operation. The diffusion-controlled mass transfer models were also applied to explain the Hg0 desorption kinetics. External mass transfer coefficient (kf) and intraparticle diffusivity (kp) were further obtained for the future practical engineering design of ETS for Hg0 adsorption and recovery.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:47:25Z (GMT). No. of bitstreams: 1
U0001-1308202012115100.pdf: 8263802 bytes, checksum: a90b1a8845d500573b9013951881100c (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsContent
誌謝 I
中文摘要 II
Abstract IV
List of figures X
List of tables XII
Chapter1. Introduction 1
1.1. Motivation 1
1.2. Research objectives 2
Chapter 2. Literature Review 4
2.1. Mercury 4
2.1.1. Mercury emission and mercury cycle in the environment 4
2.1.2. Elemental mercury 6
2.1.3. Mercury toxicology 7
2.2. Fluorescent lamps and fluorescent lamps recycling 9
2.2.1. Introduction 9
2.2.2. Fluorescent lamps component 9
2.2.3. Fluorescent lamps demand 10
2.2.4. Present recycling situation and processes for used-up fluorescent lamps in Taiwan 11
2.3. Activated carbon fiber cloth (ACFC) 13
2.3.1. Introduction 13
2.3.2. PAN-based carbon fiber 14
2.3.3. Activation 17
2.4. Mercury capture by ACFC 18
2.4.1. Introduction 18
2.4.2. Sorbents loaded with noble metal 20
2.4.3. Temperature-programmed desorption (TPD) 21
2.5. Tetrakis(hydroxymethyl)phosphonium chloride (THPC) method 27
2.5.1. Introduction 27
2.5.2. Gold nanoparticle synthesis via the THPC method 29
2.6. Electrothermal swing system (ETS) 30
2.6.1. Introduction 30
2.6.2. ACFC combined with ETS 31
2.6.3. Advantages of using ETS 32
2.7. Mass transfer model (kinetic analysis) 33
2.7.1. Introduction 33
2.7.2. External diffusion and intraparticle diffusion 34
Chapter 3. Materials and Methods 37
3.1. Research framework 37
3.2. Preparation of activated carbon fiber cloth (ACFC) loaded with Au nanoparticles 39
3.3. Hg0 adsorption and electrothermal swing system experiments 41
3.3.1. Hg0 adsorption capacity experiments 41
3.3.2. Hg temperature-programmed desorption (Hg-TPD) and the desorption activation energy (Ed) 42
3.3.3. Electrothermal swing system experiments (ETS) 44
3.4. Kinetic analysis for Hg0 desorption 48
3.5. Physical and chemical characterization 49
3.5.1. Elemental analysis (EA) 50
3.5.2. Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) 50
3.5.3. Transmission electron microscope (TEM) 50
3.5.4. Surface area and pore volume 51
3.5.5. X-ray photoelectron spectroscopy (XPS) 51
3.5.6. Inductively coupled plasma atomic emission spectroscopy (ICP-OES) 53
Chapter 4. Results and Discussion 54
4.1. Physical and chemical characterization 54
4.1.1. Au content and elemental analysis (EA) 54
4.1.2. Scanning electron microscope with energy dispersive X-ray spectroscopy (SEM-EDS) and transmission electron microscope (TEM) 56
4.1.3. Surface area and pore volume 60
4.1.4. X-ray photoelectron spectroscopy (XPS) 61
4.2. Hg0 adsorption experiment 63
4.3. Temperature-programmed desorption (Hg-TPD) and desorption activation energy (Ed) 65
4.4. Hg0 electrothermal swing system experiments 69
4.4.1. Hg0 adsorption efficiency under various inlet concentrations 69
4.4.2. Hg0 regeneration efficiency of Raw-ACFC and 0.5 wt.%-ACFC-THPC 73
4.4.3. Hg0 outlet concentration during the ETS regeneration operation 76
4.4.4. Kinetic analysis for Hg0 desorption of Raw-ACFC and 0.5 wt.%-ACFC-THPC 78
4.4.5. Hg0 adsorption and desorption mechanism by Au-ACFC-THPC 83
Chapter 5. Conclusions and Suggestions 86
5.1. Conclusions 86
5.2. Suggestions 88
References 89
dc.language.isoen
dc.title使用金奈米顆粒沉積活性碳纖維布結合電熱再生系統吸附與回收汞蒸氣zh_TW
dc.titleElemental Mercury Adsorption and Recovery by Electrothermal Swing System Using Gold Nanoparticles Deposited Activated Carbon Fiber Clothen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張木彬(Moo-Been Chang),林坤儀(Kun-Yi Lin),林亮毅(Liang-Yi Lin)
dc.subject.keyword螢光燈管,汞蒸氣吸附與回收,活性碳纖維布,氯化四羥甲基磷,電熱吸附與再生系統,zh_TW
dc.subject.keywordmercury,activated carbon fiber cloth,recycling,Au nanoparticles,tetrakis(hydroxymethyl)phosphonium chloride,electrothermal swing,en
dc.relation.page94
dc.identifier.doi10.6342/NTU202003216
dc.rights.note有償授權
dc.date.accepted2020-08-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
dc.date.embargo-lift2025-01-01-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1308202012115100.pdf
  目前未授權公開取用
8.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved