請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78234
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 趙治宇(Chih-Yu Chao) | |
dc.contributor.author | You-Ming Chen | en |
dc.contributor.author | 陳宥銘 | zh_TW |
dc.date.accessioned | 2021-07-11T14:47:07Z | - |
dc.date.available | 2024-08-16 | |
dc.date.copyright | 2020-08-28 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-17 | |
dc.identifier.citation | Hu CM, Tien SC, Hsieh PK, et al. High glucose triggers nucleotide imbalance through O-GlcNAcylation of key enzymes and induces KRAS mutation in pancreatic cells. Cell Metab. 2019, 29: 1334-1349. Bosetti C, Lucenteforte E, Silverman DT, et al. Cigarette smoking and pancreatic cancer: an analysis from the international pancreatic cancer case-control consortium. Ann Oncol. 2012, 23: 1880-1888. Bond-Smith G, Banga N, Hammond TM, et al. Pancreatic adenocarcinoma. Br Med J. 2012, 344: e2476. Polistina F, Natale GD, Bonciarelli G, et al. Neoadjuvant strategies for pancreatic cancer. World J Gastroenterol. 2014, 20: 9374-9383. Gillen S, Schuster T, Büschenfelde CM, et al. Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. PLos Med. 2010, 7: e1000267. Wolfgang CL, Herman JM, Laheru DA, et al. Recent progress in pancreatic cancer. CA Cancer J Clin. 2013, 63: 318-348. Subodh V, Sewkani A, Sharma S, et al. Radiofrequency ablation of unresectable pancreatic carcinoma: feasibility, efficacy and safety. JOP. 2006, 7: 74-78. Gianpaolo C, MariaIerardi A, Fontana F, et al. Microwave ablation of pancreatic head cancer : safety and efficacy. J Vasc Interv Radiol. 2013, 24: 1513-1520 Wong R, Sagar CM, Sagar SM. Integration of chinese medicine into supportive cancer care: a modern role for an ancient tradition. Cancer Treat Rev. 2001, 27: 235-246. Jennifer CF. Cancer immunotherapy. Science. 2013, 342: 1432-1433 Sandra PSA, Adam DC, Alfred LG. Chimeric antigen receptor T cell immunotherapy for multiple myeloma: A review of current data and potential clinical applications. Phytother Res. 2019, 94: 28-33. Zamble DB, Lippard SJ. Cisplatin and DNA repair in cancer chemotherapy. Trends Biochem Sci. 1995, 20: 435-439. Kleeff J, Kornmann M, Sawhney H, et al. Actinomycin D induces apoptosis and inhibits growth of pancreatic cancer cells. Int J Cancer. 2000, 86: 399-407. Neena IM, James EH, Khan WL, et al. Paclitaxel: a review of adverse toxicities and novel delivery strategies. Expert Opin Drug Saf. 2007, 6: 609-621. Satoru S, Mika H, Tomoko K, et al. Adverse effects of anti-tumor drug, cisplatin, on rat kidney mitochondria: Disturbances in glutathione peroxidase activity. Biochem Biophys Res Commun. 1989, 159: 1121-1127. Oun R, Moussa YE, Wheate NJ. The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Trans. 2018, 47: 6645-6653. Efferth T, Li PC, Konkimalla VS, et al. From traditional Chinese medicine to rational cancer therapy. Trends Mol Med. 2007, 13: 353-361. Lee YW, Chen TL, Shih YR, et al. Adjunctive traditional Chinese medicine therapy improves survival in patients with advanced breast cancer: A population-based study. Cancer. 2014, 120: 1338-1344. Yim H, Lee YH, Lee CH, et al. Emodin, an anthraquinone derivative isolated from the rhizomes of Rheum palmatum, selectively inhibits the activity of casein kinase II as a competitive inhibitor. Planta Med. 1999, 65: 9-13. Zhang L, Chang CJ, Bacus SS, et al. Suppressed transformation and induced differentiation of HER-2/neu-overexpressing breast cancer cells by emodin. Cancer Res. 1995, 55: 3890-3896. Pommier Y. Topoisomerase I inhibitors: Camptothecins and beyond. Nat Rev Cancer. 2006, 6: 789-802. Yamin J, Qiunong G, Yuhai G, et al. Reduction of Inflammatory Hyperplasia in the Intestine in Colon Cancer‐prone Mice by Water‐extract of Cistanche deserticola. Am J Hematol. 2011, 26: 812-819. Wong R, Sagar CM, Sagar SM. Integration of chinese medicine into supportive cancer care: a modern role for an ancient tradition. Cancer Treat Rev. 2001, 27: 235-246. Yue Q, Gao G, Zou G, et al. Natural products as adjunctive treatment for pancreatic cancer: recent trends and advancements. Biomed Res Int. 2017, 2017: 8412508. Wang W, Luo J, Liang Y, et al. Echinacoside suppresses pancreatic adenocarcinoma cell growth by inducing apoptosis via the mitogen-activated protein kinase pathway. Mol Med Rep. 2016, 13: 2613-2618. Li X, Yang G, Xinxue L, et al. Traditional chinese medicine in cancer care: a review of controlled clinical studies published in chinese. PLoS One. 2013. 8: e60338. Deng M, Zhao JY, Tu PF, et al. Echinacoside rescues the SHSY5Y neuronal cells from TNF-ainduced apoptosis. Eur J Pharmacol. 2004, 505: 11-18. Dong L, Yu D, Wu N, et al. Echinacoside induces apoptosis in human SW480 colorectal cancer cells by induction of oxidative DNA damages. Int J Mol Sci. 2015, 16: 14655-14668. Dong L, Wang H, Niu J, et al. Echinacoside induces apoptotic cancer cell death by inhibiting the nucleotide pool sanitizing enzyme MTH1. OncoTargets Ther. 2015, 8: 3649-3664. Govindi JS, Mai H, Priyamvada R. MTH1 as a Chemotherapeutic Target: The Elephant in the Room. Cancer. 2017, 9: 47. Redza M, Averill DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta-Mol Cell Res. 2016, 1863: 2977-2992 Park MT, Lee SJ. Cell cycle and cancer. Int J Biochem Mol Biol. 2003, 36: 60-65 Kondo Y, Kondo S. Autophagy and cancer therapy. Autophagy. 2006, 2: 85-90. Bursch W, Ellinger A, Kienzl H, et al. Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis. 1996, 17: 1595-1607. Bursch W, Hochegger K, Torok L, et al. Autophagic and apoptotic types of programmed cell death exhibit different fates of cytoskeletal filaments. J Cell Sci. 2000, 113: 1189-1198. Mackowiak PA. Fever: blessing or curse A unifying hypothesis.Ann Intern Med. 1994, 120: 1037-1040. Smith E. Egyptian surgical papyrus dated around 3000 B.C. Cited by: van der Zee J: Heating the patient: A promising approach? Ann Oncol. 2002, 13: 1173-1184. Jennifer CF. Cancer immunotherapy. Science. 2013, 342: 1432-1433 Kleef R, Jonas WB, Knogler W, et al. Fever, cancer incidence and spontaneous remissions. Neuroimmunomodulation. 2001, 9: 55-64. Christophi C, Winkworth A, Muralihdaran V, et al. The treatment of malignancy by hyperthermia. Surg Oncol. 1998, 7: 83-90. Dewey WC. Arrhenius relationships from the molecule and cell to the clinic. Int J Hyperthermia. 2009, 25: 3-20 Bahman E, Chang WS. Physiological mechanisms in hyperthermia: A review. Radiat Oncol Investig. 1984, 10: 289-295. Gerweck LE. Modification of cell lethality and evaluated temperatures: The pH effect. Radiat Res. 1977, 70: 224-235. Goldin EM, Leeper DB. The effect of reduced pH on the induction of thermotolerance. Radiology. 1981, 141: 505-508. Overgaard J, Nielsen OS. The role of tissue environmental factors on the kinetics and morphology of tumor cells exposed to hyperthermia. Ann N.Y. Acad Sci. 1980, 335: 254-280. Lu CH, Chen WT, Hsieh CH, et al. Thermal cycling-hyperthermia in combination with polyphenols, epigallocatechin gallate and chlorogenic acid, exert synergistic anticancer effect against human pancreatic cancer PANC-1 cells. PLos One. 2019, 14: e0217676. Lu CH, Lin SH, Hsieh CH, et al. Enhanced anticancer effects of low-dose curcumin with non-invasive pulsed electric field on PANC-1 cells. OncoTargets Ther. 2018, 11: 4723-4732 Raoab W, Zhang W, Izmarie PF. Thermally responsive nanoparticle-encapsulated curcumin and its combination with mild hyperthermia for enhanced cancer cell destruction. Acta Biomater. 2014, 10: 831-842. Pang CLK. Progress of research of hyperthermia integration with TCM in the treatment of cancer. Oncother J. 2013, 7: 36-42. Chen WT, Sun YK, Lu CH, et al. Thermal cycling as a novel thermal therapy to synergistically enhance the anticancer effect of propolis on PANC-1 cells. Int. J. Clin. Oncol. 2019, 55: 617-628. Simon HU , Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Ann Surg Oncol. 2000, 5: 415-418. Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998, 281: 1309–1312. Imen BS, Taha N, Abdeljelil G, et al. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Int J of Hyperthermia. 2014, 30: 513- 523. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78234 | - |
dc.description.abstract | 癌症長年以來一直是人類的死亡主因之一,其中胰臟癌更是因為其難以早期 發現的特性,導致確診時都已經是晚期。儘管能透過手術切除或是化療用藥抑制 腫瘤的發展,然而這些方法均會帶來相當嚴重的副作用。有鑒於近年來中藥在抗 癌領域受到重視,也陸續證實了各類中藥對抗癌症與腫瘤的效果,我們可以把中 藥作為一個具有相當潛力的化療藥物替代品。除了中藥之外,近年來使用物理刺 激對癌變細胞進行治療也逐漸被引入醫療領域之中,相對於藥物,物理刺激可以 更加有針對性的作用於特定身體部位,不會像化療藥物,一經使用,藥效和其副 作用就會蔓延全身。 在本研究中,我們團隊使用一特殊的循環加熱療法,在此療法中讓細胞在一 高溫階段與一低溫階段週期性的連續循環,其優點在於相比起傳統的熱療法,在 相同強度的熱刺激下,被治療區域其周圍的非癌細胞,較不易受到傷害。尤其, 目前已知有部分天然草本萃取物在熱療法作用下會產生協同效果,可進而提升藥 效的同時降低藥物濃度,讓藥物對非癌細胞的傷害降低,故透過此特殊的循環熱 療技術,我們希望能更進一步地減少治療過程中對非癌細胞造成的傷害。在我們 的研究中,我們選用生長於沙漠的特殊寄生植物,肉蓯蓉中的有效成分,松果菊 苷與循環加熱療法作用,通過 MTT 與光學顯微鏡的結果顯示,松果菊苷與循環加 熱同時作用會對胰臟癌 PANC-1 細胞產生協同作用之效果,並且使加熱後的藥效 幾近等同於未加熱的三倍藥效,效果顯著。通過流式細胞儀的檢測,在松果菊苷 與循環加熱一同作用的條件下,胰臟癌 PANC-1 細胞內氧化壓力與凋亡的訊號比 起單獨加入藥物或物理刺激時要更加明顯。此外,在西方墨點法的蛋白分析中, 藥物與物理刺激一同作用後,亦在 Bax/Bcl-2 的拮抗蛋白或是 PARP 蛋白的分析結 果中,顯示出與其他條件相比更強的凋亡訊號。由此推斷,松果菊苷與循環加熱 的條件下,胰臟癌 PANC-1 細胞內的氧化壓力增加,使得 Bax/Bcl-2 的蛋白拮抗中,Bax 蛋白表現增加,進而推動下游蛋白 PARP 被裁切,引起凋亡。此外,對於非癌 細胞 H6c7,我們發現松果菊苷或是循環加熱均不會對細胞存活率產生明顯影響, 然而傳統熱療法的作用下,卻會使 H6c7 非癌細胞也受到熱作用的大幅傷害。 本研究首度提出了松果菊苷與循環加熱療法對胰臟癌 PANC-1 細胞的協同抗 癌效果,藉由循環加熱法可以大幅降低松果菊苷所需劑量,同時也能改善非癌細 胞 H6c7 被過去傳統熱療法刺激而產生的傷害,因此本論文結果說明將草本萃取物 與循環加熱結合是很好的治療策略。未來期望能在不同的草本萃取物或癌細胞上 同樣達到顯著的抗癌效果,為癌症病患帶來更安全有效的治療方案。 | zh_TW |
dc.description.abstract | Cancer has been one of the leading causes of death for many decades. Among all, pancreatic cancer is even more difficult to detect in its early stage, resulting in a very low cure rate. Although tumors can be removed by surgery or inhibited by chemotherapy, these methods may cause serious side effects. In view of the importance regarding the application of traditional Chinese medicines (CM) against cancers in recent years, and the gradual confirmation of the effectiveness of various types of CM in fighting cancer and tumors, CM is a promising alternative to chemotherapy drugs. In addition to CM, the use of physical stimulation to treat carcinoma cells has been gradually introduced into the medical field in recent years. Physical stimulation can be targeted to specific parts of the body, unlike chemotherapy drugs, which, once used, harm both carcinoma cells and normal cells. In this study, our team used a novel cyclic hyperthermia (HT) where cells were exposed to two phase cycling system, a high temperature phase applied for killing cancer cells, and a lower temperature phase used for securing the survival of normal cells. This novel HT treatment, which we named as thermal cycling HT (TC-HT), was found to cause less damage on the normal cells compared to the conventional HT with the same thermal dosage. On the other hand, there have been some natural botanical extracts which can perform synergistic effect with thermal stimulation, not only increasing the anti-cancer efficacy of these natural compounds but also lowering the required dosage for cancer cure, and thus decreasing the damage to normal cells. In our study, echinacoside (Ech), the active ingredients of a special parasitic plant (Cistanche deserticola) grown in the desert, was selected to be used in combination with TC-HT. The results of MTT and the observations using optical microscope showed that there were strong synergistic anti-cancer effects on pancreatic PANC-1 cancer cells when using the combined TC-HT and Ech treatment. We find that such TC-HT synergistic effect makes the anti-cancer effect of Ech compound nearly equal to three times of that of unheated one. The intracellular oxidative stress and apoptotic signal using combination treatment were found to be more pronounced than single Ech or TC-HT treatment. In addition, the western blot analysis showed that Bax/Bcl-2 ratio and cleaved PARP proteins under the combination treatment were enhanced significantly compared to both single treatments, indicating a more potent apoptotic signal tendency. Thus, it can be inferred that the combination treatment increased the oxidative stress in PANC-1 cancer cells, increasing the Bax protein expression, which consequently caused the downstream protein PARP to be trimmed, eventually causing cell apoptosis. Furthermore, for normal pancreatic H6c7 cells, the study showed that neither Ech nor TC-HT had any effect on cell viability, but the conventional HT caused significant damage on H6c7 normal pancreatic cells. This study presents the synergistic anti-cancer effects of Ech in combination with TC-HT for the first time. The results showed that TC-HT notably increased the anti-cancer effect of Ech on PANC-1 cells by its unique periodic heating process. The required dosage of Ech in combination with TC-HT to achieve the same inhibition effect on PANC-1 cells was reduced to one third of the original Ech dosage. Moreover, the combined treatment also can prevent H6c7 normal cell damage caused by traditional HT thermal stimulation. Result of this thesis points out that the combination of herbal extracts and TC-HT is a great strategy on anti-cancer treatment. In the future, it is expected that employing such unique combination treatment, the significant anti-cancer effect can also be achieved on many cancers applied with different herbal extracts, which brings safer and more effective therapeutic options for cancer patients. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T14:47:07Z (GMT). No. of bitstreams: 1 U0001-1308202014213800.pdf: 2201672 bytes, checksum: 5e1fcf370b87209427ac9ac71e292f02 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 致謝 i 目錄 ii 圖目錄 v 摘要 1 第一章 緒論與文獻回顧 6 1.1 胰臟癌簡介 6 1.1.1胰臟癌的危害和風險因子 6 1.1.2 現有的胰臟癌治療方法以及困境 7 1.2 草本藥物的抗癌潛力 8 1.2.1 草本藥物:松果菊苷的簡介 9 1.3 癌細胞死亡機制 11 1.4 熱治療簡介 12 1.4.1 熱治療的原理 12 1.4.2 循環加熱療法相對於傳統熱療法的優勢 13 1.4.3 草本藥物與熱療法的結合 13 第二章 實驗材料與方法 15 2.1 細胞株的冷凍保存與細胞的培養 15 2.1.1 細胞培養液 15 2.1.2 細胞繼代 15 2.1.3 細胞株的冷凍保存 17 2.1.4 細胞株的解凍流程 18 2.2 冷熱循環與藥物施加 18 2.3 MTT assay 細胞存活率的原理與測定 20 2.4 西方墨點法(Western Blot) 21 2.4.1 細胞收集與蛋白質萃取 21 2.4.2 蛋白質濃度定量分析 21 2.4.3 製作跑膠片與跑膠 22 2.4.4 蛋白質轉置 22 2.4.5 蛋白質抗體與冷光顯影 23 2.5 流式細胞儀測定細胞狀態 24 第三章 實驗結果 26 3.1 松果菊苷與 TC-HT 對於人類胰臟癌細胞株的生長狀況影響 26 3.1.1 松果菊苷的濃度梯度對人類胰腺癌細胞 PANC-1 的存活率影響 26 3.1.2 松果菊苷濃度梯度協同循環加熱對 PANC-1 的存活率影響 28 3.1.3 濃度 25μg/ml 松果菊苷協同循環加熱對於 PANC-1 的生長影響 29 3.2 流式細胞儀(Flow Cytometry)測定 PANC-1 細胞狀態差異 30 3.2.1 流式細胞儀測量PANC-1細胞內ROS的濃度 30 3.2.2 流式細胞儀測量PANC-1細胞內的凋亡狀態 32 3.3 西方墨點法蛋白質表現測定 33 3.4 協同療法下非癌胰臟細胞H6c7的狀態 38 第四章 結果討論 40 4.1 松果菊苷對胰臟癌細胞的抑制作用 40 4.2 松果菊苷配合循環加熱誘導細胞凋亡的分子機制與訊息路徑 41 4.3 循環加熱對低濃度松果菊苷抗癌能力之放大效應 43 第五章 結論 45 參考資料 47 圖目錄 圖 1.1 松果菊苷分子結構 10 圖 2.1 細胞培養箱 16 圖 2.2 離心機 16 圖 2.3 細胞保存桶 17 圖 2.4 恆溫水浴槽 17 圖 2.5 機器設定溫度 19 圖 2.6 實際測量細胞之溫度 19 圖 2.7 PCR 溫控器 21 圖 2.8 多重掃描吸光讀孔機 21 圖 2.9 冷光攝相分析儀 23 圖 2.10 乾浴槽 23 圖 3.1 松果菊苷梯度下的 PANC-1 細胞存活率 27 圖 3.2 松果菊苷協同循環加熱下的 PANC-1 細胞存活率 28 圖 3.3 光學顯微鏡下的 PANC-1 細胞型態 29 圖 3.4 流式細胞儀測定 PANC-1 細胞內的氧化壓力 31 圖 3.5 流式細胞儀測定 PANC-1 細胞內的凋亡訊號 33 圖 3.6 西方墨點法蛋白測定 PANC-1 細胞內的 Bax/Bcl-2 表現 34 圖 3.7 西方墨點法蛋白測定 PANC-1 細胞內的 PARP 表現 36 圖 3.8 H6c7 胰管細胞在 HT 與 TC-HT 加熱下的存活率 38 圖 4.1 細胞內粒線體凋亡蛋白訊息路徑示意圖 42 | |
dc.language.iso | zh-TW | |
dc.title | 循環加熱增強松果菊苷對人類胰腺癌細胞的抗癌作用 | zh_TW |
dc.title | Thermal Cycling Hyperthermia Enhances the Anti-Cancer Effect of Echinacoside on PANC-1 Cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鄭貽生(Yi-Sheng Cheng),溫進德(Jin-Der Wen) | |
dc.subject.keyword | 松果菊苷,熱治療,胰臟癌,協同效應,細胞凋亡,草本藥物, | zh_TW |
dc.subject.keyword | Echinacoside,hyperthermia,pancreatic cancer,synergistic effect,cell apoptosis,phytochemical, | en |
dc.relation.page | 52 | |
dc.identifier.doi | 10.6342/NTU202003248 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-18 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 應用物理研究所 | zh_TW |
dc.date.embargo-lift | 2024-08-16 | - |
顯示於系所單位: | 應用物理研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1308202014213800.pdf 目前未授權公開取用 | 2.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。