請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78223
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張麗冠(Li-Kwan Chang) | |
dc.contributor.author | Hsiao-Han Tsai | en |
dc.contributor.author | 蔡曉涵 | zh_TW |
dc.date.accessioned | 2021-07-11T14:46:39Z | - |
dc.date.available | 2021-07-05 | |
dc.date.copyright | 2016-07-05 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-06-27 | |
dc.identifier.citation | Abe, Y., T. Shodai, T. Muto, K. Mihara, H. Torii, S. Nishikawa, T. Endo, and D. Kohda. 2000. Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell 100 (5):551-560.
Abrantes, J. L., C. M. Alves, J. Costa, F. C. Almeida, M. Sola-Penna, C. F. Fontes, and T. M. Souza. 2012. Herpes simplex type 1 activates glycolysis through engagement of the enzyme 6-phosphofructo-1-kinase (PFK-1). Biochim Biophys Acta 1822 (8):1198-1206. Adams, A. 1987. Replication of latent Epstein-Barr virus genomes in Raji cells. J Virol 61 (5):1743-1746. Adamson, A. L., D. Darr, E. Holley-Guthrie, R. A. Johnson, A. Mauser, J. Swenson, and S. Kenney. 2000. Epstein-Barr virus immediate-early proteins BZLF1 and BRLF1 activate the ATF2 transcription factor by increasing the levels of phosphorylated p38 and c-Jun N-terminal kinases. J Virol 74 (3):1224-1233. Akira, S., S. Uematsu, and O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell 124 (4):783-801. Allday, M. J., D. H. Crawford, and B. E. Griffin. 1989. Epstein-Barr virus latent gene expression during the initiation of B cell immortalization. J Gen Virol 70 ( Pt 7):1755-1764. Amon, W., and P. J. Farrell. 2005. Reactivation of Epstein-Barr virus from latency. Rev Med Virol 15 (3):149-156. Arnoult, D., F. Soares, I. Tattoli, and S. E. Girardin. 2011. Mitochondria in innate immunity. EMBO Rep 12 (9):901-910. Baer, R., A. T. Bankier, M. D. Biggin, P. L. Deininger, P. J. Farrell, T. J. Gibson, G. Hatfull, G. S. Hudson, S. C. Satchwell, C. Seguin, and et al. 1984. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310 (5974):207-211. Bailey, S. G., E. Verrall, C. Schelcher, A. Rhie, A. J. Doherty, and A. J. Sinclair. 2009. Functional interaction between Epstein-Barr virus replication protein Zta and host DNA damage response protein 53BP1. J Virol 83 (21):11116-11122. Bajaj, B. G., M. Murakami, and E. S. Robertson. 2007. Molecular biology of EBV in relationship to AIDS-associated oncogenesis. Cancer Treat Res 133:141-162. Bellows, D. S., M. Howell, C. Pearson, S. A. Hazlewood, and J. M. Hardwick. 2002. Epstein-Barr virus BALF1 is a BCL-2-like antagonist of the herpesvirus antiapoptotic BCL-2 proteins. J Virol 76 (5):2469-2479. Bergbauer, M., M. Kalla, A. Schmeinck, C. Gobel, U. Rothbauer, S. Eck, A. Benet-Pages, T. M. Strom, and W. Hammerschmidt. 2010. CpG-methylation regulates a class of Epstein-Barr virus promoters. PLoS Pathog 6 (9):e1001114. Bertani, G. 1951. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62 (3):293-300. Bhende, P. M., W. T. Seaman, H. J. Delecluse, and S. C. Kenney. 2004. The EBV lytic switch protein, Z, preferentially binds to and activates the methylated viral genome. Nat Genet 36 (10):1099-1104. Bhende, P. M., W. T. Seaman, H. J. Delecluse, and S. C. Kenney. 2005. BZLF1 activation of the methylated form of the BRLF1 immediate-early promoter is regulated by BZLF1 residue 186. J Virol 79 (12):7338-7348. Borutaite, V. 2010. Mitochondria as decision-makers in cell death. Environ Mol Mutagen 51 (5):406-416. Bossy-Wetzel, E., M. J. Barsoum, A. Godzik, R. Schwarzenbacher, and S. A. Lipton. 2003. Mitochondrial fission in apoptosis, neurodegeneration and aging. Curr Opin Cell Biol 15 (6):706-716. Boya, P., A. L. Pauleau, D. Poncet, R. A. Gonzalez-Polo, N. Zamzami, and G. Kroemer. 2004. Viral proteins targeting mitochondria: controlling cell death. Biochim Biophys Acta 1659 (2-3):178-189. Boya, P., B. Roques, and G. Kroemer. 2001. New EMBO members' review: viral and bacterial proteins regulating apoptosis at the mitochondrial level. EMBO J 20 (16):4325-4331. Brix, J., K. Dietmeier, and N. Pfanner. 1997. Differential recognition of preproteins by the purified cytosolic domains of the mitochondrial import receptors Tom20, Tom22, and Tom70. J Biol Chem 272 (33):20730-20735. Burger, G., M. W. Gray, and B. F. Lang. 2003. Mitochondrial genomes: anything goes. Trends Genet 19 (12):709-716. Burkitt, D. 1958. A sarcoma involving the jaws in African children. Br J Surg 46 (197):218-223. Cai, X., A. Schafer, S. Lu, J. P. Bilello, R. C. Desrosiers, R. Edwards, N. Raab-Traub, and B. R. Cullen. 2006. Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog 2 (3):e23. Calderwood, M. A., A. M. Holthaus, and E. Johannsen. 2008. The Epstein-Barr virus LF2 protein inhibits viral replication. J Virol 82 (17):8509-8519. Calderwood, M. A., K. Venkatesan, L. Xing, M. R. Chase, A. Vazquez, A. M. Holthaus, A. E. Ewence, N. Li, T. Hirozane-Kishikawa, D. E. Hill, M. Vidal, E. Kieff, and E. Johannsen. 2007. Epstein-Barr virus and virus human protein interaction maps. Proc Natl Acad Sci U S A 104 (18):7606-7611. Castanier, C., and D. Arnoult. 2010. [Mitochondrial dynamics during apoptosis]. Med Sci (Paris) 26 (10):830-835. Chambers, J. W., T. G. Maguire, and J. C. Alwine. 2010. Glutamine metabolism is essential for human cytomegalovirus infection. J Virol 84 (4):1867-1873. Chan, D. C. 2006. Mitochondria: dynamic organelles in disease, aging, and development. Cell 125 (7):1241-1252. Chan, N. C., A. M. Salazar, A. H. Pham, M. J. Sweredoski, N. J. Kolawa, R. L. Graham, S. Hess, and D. C. Chan. 2011. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet 20 (9):1726-1737. Chang, L. K., J. Y. Chuang, M. Nakao, and S. T. Liu. 2010. MCAF1 and synergistic activation of the transcription of Epstein-Barr virus lytic genes by Rta and Zta. Nucleic Acids Res 38 (14):4687-4700. Chang, L. K., J. Y. Chung, Y. R. Hong, T. Ichimura, M. Nakao, and S. T. Liu. 2005. Activation of Sp1-mediated transcription by Rta of Epstein-Barr virus via an interaction with MCAF1. Nucleic Acids Res 33 (20):6528-6539. Chang, L. K., Y. H. Lee, T. S. Cheng, Y. R. Hong, P. J. Lu, J. J. Wang, W. H. Wang, C. W. Kuo, S. S. Li, and S. T. Liu. 2004a. Post-translational modification of Rta of Epstein-Barr virus by SUMO-1. J Biol Chem 279 (37):38803-38812. Chang, L. K., and S. T. Liu. 2000. Activation of the BRLF1 promoter and lytic cycle of Epstein-Barr virus by histone acetylation. Nucleic Acids Res 28 (20):3918-3925. Chang, L. K., S. T. Liu, C. W. Kuo, W. H. Wang, J. Y. Chuang, E. Bianchi, and Y. R. Hong. 2008. Enhancement of transactivation activity of Rta of Epstein-Barr virus by RanBPM. J Mol Biol 379 (2):231-242. Chang, Y., H. H. Lee, S. S. Chang, T. Y. Hsu, P. W. Wang, Y. S. Chang, K. Takada, and C. H. Tsai. 2004b. Induction of Epstein-Barr virus latent membrane protein 1 by a lytic transactivator Rta. J Virol 78 (23):13028-13036. Chang, Y. N., D. L. Dong, G. S. Hayward, and S. D. Hayward. 1990. The Epstein-Barr virus Zta transactivator: a member of the bZIP family with unique DNA-binding specificity and a dimerization domain that lacks the characteristic heptad leucine zipper motif. J Virol 64 (7):3358-3369. Chen, C. C., Y. C. Yang, W. H. Wang, C. S. Chen, and L. K. Chang. 2011. Enhancement of Zta-activated lytic transcription of Epstein-Barr virus by Ku80. J Gen Virol 92 (Pt 3):661-668. Chen, C. J., Z. Deng, A. Y. Kim, G. A. Blobel, and P. M. Lieberman. 2001a. Stimulation of CREB binding protein nucleosomal histone acetyltransferase activity by a class of transcriptional activators. Mol Cell Biol 21 (2):476-487. Chen, L. W., P. J. Chang, H. J. Delecluse, and G. Miller. 2005. Marked variation in response of consensus binding elements for the Rta protein of Epstein-Barr virus. J Virol 79 (15):9635-9650. Chen, W., P. A. Calvo, D. Malide, J. Gibbs, U. Schubert, I. Bacik, S. Basta, R. O'Neill, J. Schickli, P. Palese, P. Henklein, J. R. Bennink, and J. W. Yewdell. 2001b. A novel influenza A virus mitochondrial protein that induces cell death. Nat Med 7 (12):1306-1312. Chevallier-Greco, A., E. Manet, P. Chavrier, C. Mosnier, J. Daillie, and A. Sergeant. 1986. Both Epstein-Barr virus (EBV)-encoded trans-acting factors, EB1 and EB2, are required to activate transcription from an EBV early promoter. EMBO J 5 (12):3243-3249. Chiu, Y. F., B. Sugden, P. J. Chang, L. W. Chen, Y. J. Lin, Y. C. Lan, C. H. Lai, J. Y. Liou, S. T. Liu, and C. H. Hung. 2012. Characterization and intracellular trafficking of Epstein-Barr virus BBLF1, a protein involved in virion maturation. J Virol 86 (18):9647-9655. Cohen, S. N., A. C. Chang, and L. Hsu. 1972. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A 69 (8):2110-2114. Corcoran, J. A., H. A. Saffran, B. A. Duguay, and J. R. Smiley. 2009. Herpes simplex virus UL12.5 targets mitochondria through a mitochondrial localization sequence proximal to the N terminus. J Virol 83 (6):2601-2610. Cox, M. A., J. Leahy, and J. M. Hardwick. 1990. An enhancer within the divergent promoter of Epstein-Barr virus responds synergistically to the R and Z transactivators. J Virol 64 (1):313-321. Crompton, M. 2000. Bax, Bid and the permeabilization of the mitochondrial outer membrane in apoptosis. Curr Opin Cell Biol 12 (4):414-419. Dambaugh, T., C. Beisel, M. Hummel, W. King, S. Fennewald, A. Cheung, M. Heller, N. Raab-Traub, and E. Kieff. 1980. Epstein-Barr virus (B95-8) DNA VII: molecular cloning and detailed mapping. Proc Natl Acad Sci U S A 77 (5):2999-3003. Danial, N. N., A. Gimenez-Cassina, and D. Tondera. 2010. Homeostatic functions of BCL-2 proteins beyond apoptosis. Adv Exp Med Biol 687:1-32. Darekar, S., K. Georgiou, M. Yurchenko, S. P. Yenamandra, G. Chachami, G. Simos, G. Klein, and E. Kashuba. 2012. Epstein-Barr virus immortalization of human B-cells leads to stabilization of hypoxia-induced factor 1 alpha, congruent with the Warburg effect. PLoS One 7 (7):e42072. Darr, C. D., A. Mauser, and S. Kenney. 2001. Epstein-Barr virus immediate-early protein BRLF1 induces the lytic form of viral replication through a mechanism involving phosphatidylinositol-3 kinase activation. J Virol 75 (13):6135-6142. Davies, A. H., R. J. Grand, F. J. Evans, and A. B. Rickinson. 1991. Induction of Epstein-Barr virus lytic cycle by tumor-promoting and non-tumor-promoting phorbol esters requires active protein kinase C. J Virol 65 (12):6838-6844. Delgado, T., P. A. Carroll, A. S. Punjabi, D. Margineantu, D. M. Hockenbery, and M. Lagunoff. 2010. Induction of the Warburg effect by Kaposi's sarcoma herpesvirus is required for the maintenance of latently infected endothelial cells. Proc Natl Acad Sci U S A 107 (23):10696-10701. Deniaud, A., C. Brenner, and G. Kroemer. 2004. Mitochondrial membrane permeabilization by HIV-1 Vpr. Mitochondrion 4 (2-3):223-233. Dolyniuk, M., R. Pritchett, and E. Kieff. 1976a. Proteins of Epstein-Barr virus. I. Analysis of the polypeptides of purified enveloped Epstein-Barr virus. J Virol 17 (3):935-949. Dolyniuk, M., E. Wolff, and E. Kieff. 1976b. Proteins of Epstein-Barr Virus. II. Electrophoretic analysis of the polypeptides of the nucleocapsid and the glucosamine- and polysaccharide-containing components of enveloped virus. J Virol 18 (1):289-297. Eckert, A., S. Hauptmann, I. Scherping, V. Rhein, F. Muller-Spahn, J. Gotz, and W. E. Muller. 2008. Soluble beta-amyloid leads to mitochondrial defects in amyloid precursor protein and tau transgenic mice. Neurodegener Dis 5 (3-4):157-159. Epstein, M. A., B. G. Achong, and Y. M. Barr. 1964. Virus Particles in Cultured Lymphoblasts from Burkitt's Lymphoma. Lancet 1 (7335):702-703. Epstein, M. A., and Y. M. Barr. 1964. Cultivation in Vitro of Human Lymphoblasts from Burkitt's Malignant Lymphoma. Lancet 1 (7327):252-253. Farrell, P. J., D. T. Rowe, C. M. Rooney, and T. Kouzarides. 1989. Epstein-Barr virus BZLF1 trans-activator specifically binds to a consensus AP-1 site and is related to c-fos. EMBO J 8 (1):127-132. Feederle, R., M. Kost, M. Baumann, A. Janz, E. Drouet, W. Hammerschmidt, and H. J. Delecluse. 2000. The Epstein-Barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J 19 (12):3080-3089. Fixman, E. D., G. S. Hayward, and S. D. Hayward. 1992. trans-acting requirements for replication of Epstein-Barr virus ori-Lyt. J Virol 66 (8):5030-5039. Flanagan, A. M., and A. Letai. 2008. BH3 domains define selective inhibitory interactions with BHRF-1 and KSHV BCL-2. Cell Death Differ 15 (3):580-588. Flemington, E., and S. H. Speck. 1990a. Autoregulation of Epstein-Barr virus putative lytic switch gene BZLF1. J Virol 64 (3):1227-1232. Flemington, E., and S. H. Speck. 1990b. Identification of phorbol ester response elements in the promoter of Epstein-Barr virus putative lytic switch gene BZLF1. J Virol 64 (3):1217-1226. Galluzzi, L., C. Brenner, E. Morselli, Z. Touat, and G. Kroemer. 2008. Viral control of mitochondrial apoptosis. PLoS Pathog 4 (5):e1000018. Geser, A., G. de The, G. Lenoir, N. E. Day, and E. H. Williams. 1982. Final case reporting from the Ugandan prospective study of the relationship between EBV and Burkitt's lymphoma. Int J Cancer 29 (4):397-400. Gibbs, J. S., D. Malide, F. Hornung, J. R. Bennink, and J. W. Yewdell. 2003. The influenza A virus PB1-F2 protein targets the inner mitochondrial membrane via a predicted basic amphipathic helix that disrupts mitochondrial function. J Virol 77 (13):7214-7224. Giot, J. F., I. Mikaelian, M. Buisson, E. Manet, I. Joab, J. C. Nicolas, and A. Sergeant. 1991. Transcriptional interference between the EBV transcription factors EB1 and R: both DNA-binding and activation domains of EB1 are required. Nucleic Acids Res 19 (6):1251-1258. Given, D., and E. Kieff. 1979. DNA of Epstein-Barr virus. VI. Mapping of the internal tandem reiteration. J Virol 31 (2):315-324. Given, D., D. Yee, K. Griem, and E. Kieff. 1979. DNA of Epstein-Barr virus. V. Direct repeats of the ends of Epstein-Barr virus DNA. J Virol 30 (3):852-862. Gonzalez, M. E., and L. Carrasco. 2003. Viroporins. FEBS Lett 552 (1):28-34. Gradzka, I. 2006. [Mechanisms and regulation of the programmed cell death]. Postepy Biochem 52 (2):157-165. Graham, F. L., J. Smiley, W. C. Russell, and R. Nairn. 1977. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36 (1):59-74. Griffin, S. D., R. Harvey, D. S. Clarke, W. S. Barclay, M. Harris, and D. J. Rowlands. 2004. A conserved basic loop in hepatitis C virus p7 protein is required for amantadine-sensitive ion channel activity in mammalian cells but is dispensable for localization to mitochondria. J Gen Virol 85 (Pt 2):451-461. Gruffat, H., N. Duran, M. Buisson, F. Wild, R. Buckland, and A. Sergeant. 1992. Characterization of an R-binding site mediating the R-induced activation of the Epstein-Barr virus BMLF1 promoter. J Virol 66 (1):46-52. Gruffat, H., E. Manet, A. Rigolet, and A. Sergeant. 1990. The enhancer factor R of Epstein-Barr virus (EBV) is a sequence-specific DNA binding protein. Nucleic Acids Res 18 (23):6835-6843. Gruffat, H., and A. Sergeant. 1994. Characterization of the DNA-binding site repertoire for the Epstein-Barr virus transcription factor R. Nucleic Acids Res 22 (7):1172-1178. Gutsch, D. E., K. B. Marcu, and S. C. Kenney. 1994. The Epstein-Barr virus BRLF1 gene product transactivates the murine and human c-myc promoters. Cell Mol Biol (Noisy-le-grand) 40 (6):747-760. Hampar, B., A. Tanaka, M. Nonoyama, and J. G. Derge. 1974. Replication of the resident repressed Epstein-Barr virus genome during the early S phase (S-1 period) of nonproducer Raji cells. Proc Natl Acad Sci U S A 71 (3):631-633. Hara, Y., I. Yanatori, M. Ikeda, E. Kiyokage, S. Nishina, Y. Tomiyama, K. Toida, F. Kishi, N. Kato, M. Imamura, K. Chayama, and K. Hino. 2014. Hepatitis C virus core protein suppresses mitophagy by interacting with parkin in the context of mitochondrial depolarization. Am J Pathol 184 (11):3026-3039. Hardwick, J. M., P. M. Lieberman, and S. D. Hayward. 1988. A new Epstein-Barr virus transactivator, R, induces expression of a cytoplasmic early antigen. J Virol 62 (7):2274-2284. Heilmann, A. M., M. A. Calderwood, and E. Johannsen. 2010. Epstein-Barr virus LF2 protein regulates viral replication by altering Rta subcellular localization. J Virol 84 (19):9920-9931. Henderson, E. E., and W. K. Long. 1981. Host cell reactivation of uv- and X-ray-damaged herpes simplex virus by Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines. Virology 115 (2):237-248. Henkel, M., D. Mitzner, P. Henklein, F. J. Meyer-Almes, A. Moroni, M. L. Difrancesco, L. M. Henkes, M. Kreim, S. M. Kast, U. Schubert, and G. Thiel. 2010. The proapoptotic influenza A virus protein PB1-F2 forms a nonselective ion channel. PLoS One 5 (6):e11112. Henle, G., and W. Henle. 1966a. Immunofluorescence in cells derived from Burkitt's lymphoma. J Bacteriol 91 (3):1248-1256. Henle, G., and W. Henle. 1966b. Studies on cell lines derived from Burkitt's lymphoma. Trans N Y Acad Sci 29 (1):71-79. Henle, W., K. Hummeler, and G. Henle. 1966. Antibody coating and agglutination of virus particles separated from the EB3 line of Burkitt lymphoma cells. J Bacteriol 92 (1):269-271. Henson, B. W., E. M. Perkins, J. E. Cothran, and P. Desai. 2009. Self-assembly of Epstein-Barr virus capsids. J Virol 83 (8):3877-3890. Henze, K., and W. Martin. 2003. Evolutionary biology: essence of mitochondria. Nature 426 (6963):127-128. Hettich, E., A. Janz, R. Zeidler, D. Pich, E. Hellebrand, B. Weissflog, A. Moosmann, and W. Hammerschmidt. 2006. Genetic design of an optimized packaging cell line for gene vectors transducing human B cells. Gene Ther 13 (10):844-856. Hinuma, Y., M. Konn, J. Yamaguchi, D. J. Wudarski, J. R. Blakeslee, Jr., and J. T. Grace, Jr. 1967. Immunofluorescence and herpes-type virus particles in the P3HR-1 Burkitt lymphoma cell line. J Virol 1 (5):1045-1051. Ho, C. H., C. L. Chen, W. Y. Li, and C. J. Chen. 2009. Decoy receptor 3, upregulated by Epstein-Barr virus latent membrane protein 1, enhances nasopharyngeal carcinoma cell migration and invasion. Carcinogenesis 30 (8):1443-1451. Ho, C. H., C. F. Hsu, P. F. Fong, S. K. Tai, S. L. Hsieh, and C. J. Chen. 2007. Epstein-Barr virus transcription activator Rta upregulates decoy receptor 3 expression by binding to its promoter. J Virol 81 (9):4837-4847. Holley-Guthrie, E. A., E. B. Quinlivan, E. C. Mar, and S. Kenney. 1990. The Epstein-Barr virus (EBV) BMRF1 promoter for early antigen (EA-D) is regulated by the EBV transactivators, BRLF1 and BZLF1, in a cell-specific manner. J Virol 64 (8):3753-3759. Hsu, T. Y., Y. Chang, P. W. Wang, M. Y. Liu, M. R. Chen, J. Y. Chen, and C. H. Tsai. 2005. Reactivation of Epstein-Barr virus can be triggered by an Rta protein mutated at the nuclear localization signal. J Gen Virol 86 (Pt 2):317-322. Hu, L., L. Chen, G. Yang, L. Li, H. Sun, Y. Chang, Q. Tu, M. Wu, and H. Wang. 2011. HBx sensitizes cells to oxidative stress-induced apoptosis by accelerating the loss of Mcl-1 protein via caspase-3 cascade. Mol Cancer 10:43. Huang, S., N. L. Taylor, J. Whelan, and A. H. Millar. 2009. Refining the definition of plant mitochondrial presequences through analysis of sorting signals, N-terminal modifications, and cleavage motifs. Plant Physiol 150 (3):1272-1285. Hung, C. C., C. W. Kuo, W. H. Wang, T. H. Chang, P. J. Chang, L. K. Chang, and S. T. Liu. 2015. Transcriptional activation of Epstein-Barr virus BRLF1 by USF1 and Rta. J Gen Virol 96 (9):2855-2866. Hung, C. H., L. W. Chen, W. H. Wang, P. J. Chang, Y. F. Chiu, C. C. Hung, Y. J. Lin, J. Y. Liou, W. J. Tsai, C. L. Hung, and S. T. Liu. 2014. Regulation of autophagic activation by Rta of Epstein-Barr virus via the extracellular signal-regulated kinase pathway. J Virol 88 (20):12133-12145. Hung, C. H., and S. T. Liu. 1999. Characterization of the Epstein-Barr virus BALF2 promoter. J Gen Virol 80 ( Pt 10):2747-2750. Jacotot, E., L. Ravagnan, M. Loeffler, K. F. Ferri, H. L. Vieira, N. Zamzami, P. Costantini, S. Druillennec, J. Hoebeke, J. P. Briand, T. Irinopoulou, E. Daugas, S. A. Susin, D. Cointe, Z. H. Xie, J. C. Reed, B. P. Roques, and G. Kroemer. 2000. The HIV-1 viral protein R induces apoptosis via a direct effect on the mitochondrial permeability transition pore. J Exp Med 191 (1):33-46. Jensen, R. A., and F. L. Haas. 1963. Electrokinetics and Cell Physiology. Ii. Relationship of Surface Charge to Onset of Bacterial Competence for Genetic Transformation. J Bacteriol 86:79-86. Johannsen, E., M. Luftig, M. R. Chase, S. Weicksel, E. Cahir-McFarland, D. Illanes, D. Sarracino, and E. Kieff. 2004. Proteins of purified Epstein-Barr virus. Proc Natl Acad Sci U S A 101 (46):16286-16291. Kaarbo, M., E. Ager-Wick, P. O. Osenbroch, A. Kilander, R. Skinnes, F. Muller, and L. Eide. 2011. Human cytomegalovirus infection increases mitochondrial biogenesis. Mitochondrion 11 (6):935-945. Kallin, B., J. Luka, and G. Klein. 1979. Immunochemical characterization of Epstein-Barr virus-associated early and late antigens in n-butyrate-treated P3HR-1 cells. J Virol 32 (3):710-716. Karlsson, Q. H., C. Schelcher, E. Verrall, C. Petosa, and A. J. Sinclair. 2008. Methylated DNA recognition during the reversal of epigenetic silencing is regulated by cysteine and serine residues in the Epstein-Barr virus lytic switch protein. PLoS Pathog 4 (3):e1000005. Kawai, T., and S. Akira. 2008. Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci 1143:1-20. Kim, S., H. Y. Kim, S. Lee, S. W. Kim, S. Sohn, K. Kim, and H. Cho. 2007. Hepatitis B virus x protein induces perinuclear mitochondrial clustering in microtubule- and Dynein-dependent manners. J Virol 81 (4):1714-1726. Kim, S. J., M. Khan, J. Quan, A. Till, S. Subramani, and A. Siddiqui. 2013. Hepatitis B virus disrupts mitochondrial dynamics: induces fission and mitophagy to attenuate apoptosis. PLoS Pathog 9 (12):e1003722. Kim, Y. J., J. K. Jung, S. Y. Lee, and K. L. Jang. 2010. Hepatitis B virus X protein overcomes stress-induced premature senescence by repressing p16(INK4a) expression via DNA methylation. Cancer Lett 288 (2):226-235. Kirchmaier, A. L., and B. Sugden. 1995. Plasmid maintenance of derivatives of oriP of Epstein-Barr virus. J Virol 69 (2):1280-1283. Klein, G., B. Giovanella, A. Westman, J. S. Stehlin, and D. Mumford. 1975. An EBV-genome-negative cell line established from an American Burkitt lymphoma; receptor characteristics. EBV infectibility and permanent conversion into EBV-positive sublines by in vitro infection. Intervirology 5 (6):319-334. LaJeunesse, D. R., K. Brooks, and A. L. Adamson. 2005. Epstein-Barr virus immediate-early proteins BZLF1 and BRLF1 alter mitochondrial morphology during lytic replication. Biochem Biophys Res Commun 333 (2):438-442. Lee, Y. H., Y. F. Chiu, W. H. Wang, L. K. Chang, and S. T. Liu. 2008. Activation of the ERK signal transduction pathway by Epstein-Barr virus immediate-early protein Rta. J Gen Virol 89 (Pt 10):2437-2446. Lesnefsky, E. J., S. Moghaddas, B. Tandler, J. Kerner, and C. L. Hoppel. 2001. Mitochondrial dysfunction in cardiac disease: ischemia--reperfusion, aging, and heart failure. J Mol Cell Cardiol 33 (6):1065-1089. Li, X. D., L. Sun, R. B. Seth, G. Pineda, and Z. J. Chen. 2005. Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc Natl Acad Sci U S A 102 (49):17717-17722. Li, Y., N. P. Mahajan, J. Webster-Cyriaque, P. Bhende, G. K. Hong, H. S. Earp, and S. Kenney. 2004a. The C-mer gene is induced by Epstein-Barr virus immediate-early protein BRLF1. J Virol 78 (21):11778-11785. Li, Y., J. Webster-Cyriaque, C. C. Tomlinson, M. Yohe, and S. Kenney. 2004b. Fatty acid synthase expression is induced by the Epstein-Barr virus immediate-early protein BRLF1 and is required for lytic viral gene expression. J Virol 78 (8):4197-4206. Lieberman, P. M., J. M. Hardwick, J. Sample, G. S. Hayward, and S. D. Hayward. 1990. The zta transactivator involved in induction of lytic cycle gene expression in Epstein-Barr virus-infected lymphocytes binds to both AP-1 and ZRE sites in target promoter and enhancer regions. J Virol 64 (3):1143-1155. Lin, T. Y., Y. Y. Chu, Y. C. Yang, S. W. Hsu, S. T. Liu, and L. K. Chang. 2014. MCAF1 and Rta-activated BZLF1 transcription in Epstein-Barr virus. PLoS One 9 (3):e90698. Liu, C., N. D. Sista, and J. S. Pagano. 1996a. Activation of the Epstein-Barr virus DNA polymerase promoter by the BRLF1 immediate-early protein is mediated through USF and E2F. J Virol 70 (4):2545-2555. Liu, P., and S. H. Speck. 2003. Synergistic autoactivation of the Epstein-Barr virus immediate-early BRLF1 promoter by Rta and Zta. Virology 310 (2):199-206. Liu, S. T., W. H. Wang, Y. R. Hong, J. Y. Chuang, P. J. Lu, and L. K. Chang. 2006. Sumoylation of Rta of Epstein-Barr virus is preferentially enhanced by PIASxbeta. Virus Res 119 (2):163-170. Liu, X., C. N. Kim, J. Yang, R. Jemmerson, and X. Wang. 1996b. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86 (1):147-157. Lu, Y. W., and W. N. Chen. 2005. Human hepatitis B virus X protein induces apoptosis in HepG2 cells: role of BH3 domain. Biochem Biophys Res Commun 338 (3):1551-1556. Luka, J., B. Kallin, and G. Klein. 1979. Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology 94 (1):228-231. Machida, K., K. T. Cheng, C. K. Lai, K. S. Jeng, V. M. Sung, and M. M. Lai. 2006. Hepatitis C virus triggers mitochondrial permeability transition with production of reactive oxygen species, leading to DNA damage and STAT3 activation. J Virol 80 (14):7199-7207. Manczak, M., T. S. Anekonda, E. Henson, B. S. Park, J. Quinn, and P. H. Reddy. 2006. Mitochondria are a direct site of A beta accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 15 (9):1437-1449. Manet, E., H. Gruffat, M. C. Trescol-Biemont, N. Moreno, P. Chambard, J. F. Giot, and A. Sergeant. 1989. Epstein-Barr virus bicistronic mRNAs generated by facultative splicing code for two transcriptional trans-activators. EMBO J 8 (6):1819-1826. Manet, E., A. Rigolet, H. Gruffat, J. F. Giot, and A. Sergeant. 1991. Domains of the Epstein-Barr virus (EBV) transcription factor R required for dimerization, DNA binding and activation. Nucleic Acids Res 19 (10):2661-2667. Marshall, W. L., C. Yim, E. Gustafson, T. Graf, D. R. Sage, K. Hanify, L. Williams, J. Fingeroth, and R. W. Finberg. 1999. Epstein-Barr virus encodes a novel homolog of the bcl-2 oncogene that inhibits apoptosis and associates with Bax and Bak. J Virol 73 (6):5181-5185. Maurer, B. A., S. M. Wilbert, and T. Imamura. 1970. Incidence of EB virus-containing cells in primary and secondary clones of several Burkitt lymphoma cell lines. Cancer Res 30 (12):2870-2875. Mayer, B., and R. Oberbauer. 2003. Mitochondrial regulation of apoptosis. News Physiol Sci 18:89-94. McBride, H. M., M. Neuspiel, and S. Wasiak. 2006. Mitochondria: more than just a powerhouse. Curr Biol 16 (14):R551-560. McFarland, R., R. W. Taylor, and D. M. Turnbull. 2007. Mitochondrial disease--its impact, etiology, and pathology. Curr Top Dev Biol 77:113-155. McGuire, K. A., A. U. Barlan, T. M. Griffin, and C. M. Wiethoff. 2011. Adenovirus type 5 rupture of lysosomes leads to cathepsin B-dependent mitochondrial stress and production of reactive oxygen species. J Virol 85 (20):10806-10813. Meylan, E., J. Curran, K. Hofmann, D. Moradpour, M. Binder, R. Bartenschlager, and J. Tschopp. 2005. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437 (7062):1167-1172. Miller, G., and M. Lipman. 1973. Release of infectious Epstein-Barr virus by transformed marmoset leukocytes. Proc Natl Acad Sci U S A 70 (1):190-194. Mitchell, P. 1967. Proton current flow in mitochondrial systems. Nature 214 (5095):1327-1328. Mitchell, P., and J. Moyle. 1967. Chemiosmotic hypothesis of oxidative phosphorylation. Nature 213 (5072):137-139. Model, K., C. Meisinger, and W. Kuhlbrandt. 2008. Cryo-electron microscopy structure of a yeast mitochondrial preprotein translocase. J Mol Biol 383 (5):1049-1057. Molesworth, S. J., C. M. Lake, C. M. Borza, S. M. Turk, and L. M. Hutt-Fletcher. 2000. Epstein-Barr virus gH is essential for penetration of B cells but also plays a role in attachment of virus to epithelial cells. J Virol 74 (14):6324-6332. Narendra, D., A. Tanaka, D. F. Suen, and R. J. Youle. 2008. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183 (5):795-803. Narendra, D. P., S. M. Jin, A. Tanaka, D. F. Suen, C. A. Gautier, J. Shen, M. R. Cookson, and R. J. Youle. 2010. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8 (1):e1000298. Nemerow, G. R., C. Mold, V. K. Schwend, V. Tollefson, and N. R. Cooper. 1987. Identification of gp350 as the viral glycoprotein mediating attachment of Epstein-Barr virus (EBV) to the EBV/C3d receptor of B cells: sequence homology of gp350 and C3 complement fragment C3d. J Virol 61 (5):1416-1420. Neupert, W., and J. M. Herrmann. 2007. Translocation of proteins into mitochondria. Annu Rev Biochem 76:723-749. Niederman, J. C., R. W. McCollum, G. Henle, and W. Henle. 1968. Infectious mononucleosis. Clinical manifestations in relation to EB virus antibodies. JAMA 203 (3):205-209. Niizuma, K., H. Endo, and P. H. Chan. 2009. Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J Neurochem 109 Suppl 1:133-138. Nilsson, K., G. Klein, W. Henle, and G. Henle. 1971. The establishment of lymphoblastoid lines from adult and fetal human lymphoid tissue and its dependence on EBV. Int J Cancer 8 (3):443-450. Nishina, S., K. Hino, M. Korenaga, C. Vecchi, A. Pietrangelo, Y. Mizukami, T. Furutani, A. Sakai, M. Okuda, I. Hidaka, K. Okita, and I. Sakaida. 2008. Hepatitis C virus-induced reactive oxygen species raise hepatic iron level in mice by reducing hepcidin transcription. Gastroenterology 134 (1):226-238. Nomura-Takigawa, Y., M. Nagano-Fujii, L. Deng, S. Kitazawa, S. Ishido, K. Sada, and H. Hotta. 2006. Non-structural protein 4A of Hepatitis C virus accumulates on mitochondria and renders the cells prone to undergoing mitochondria-mediated apoptosis. J Gen Virol 87 (Pt 7):1935-1945. Nutter, L. M., S. P. Grill, J. S. Li, R. S. Tan, and Y. C. Cheng. 1987. Induction of virus enzymes by phorbol esters and n-butyrate in Epstein-Barr virus genome-carrying Raji cells. Cancer Res 47 (16):4407-4412. Obita, T., T. Muto, T. Endo, and D. Kohda. 2003. Peptide library approach with a disulfide tether to refine the Tom20 recognition motif in mitochondrial presequences. J Mol Biol 328 (2):495-504. Ohman, T., J. Rintahaka, N. Kalkkinen, S. Matikainen, and T. A. Nyman. 2009. Actin and RIG-I/MAVS signaling components translocate to mitochondria upon influenza A virus infection of human primary macrophages. J Immunol 182 (9):5682-5692. Ordureau, A., S. A. Sarraf, D. M. Duda, J. M. Heo, M. P. Jedrychowski, V. O. Sviderskiy, J. L. Olszewski, J. T. Koerber, T. Xie, S. A. Beausoleil, J. A. Wells, S. P. Gygi, B. A. Schulman, and J. W. Harper. 2014. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol Cell 56 (3):360-375. Pal, A. D., N. P. Basak, A. S. Banerjee, and S. Banerjee. 2014. Epstein-Barr virus latent membrane protein-2A alters mitochondrial dynamics promoting cellular migration mediated by Notch signaling pathway. Carcinogenesis 35 (7):1592-1601. Parker, B. D., A. Bankier, S. Satchwell, B. Barrell, and P. J. Farrell. 1990. Sequence and transcription of Raji Epstein-Barr virus DNA spanning the B95-8 deletion r | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78223 | - |
dc.description.abstract | Epstein-Barr Virus (EB 病毒) 屬於人類疱疹病毒科,其生活史包括潛伏期 (latent life cycle) 與溶裂期 (lytic cycle),而極早期蛋白質 Rta 是促使 EB 病毒進入溶裂期的關鍵轉錄因子之一。本實驗室在先前的研究中發現 Rta 蛋白質在 EB 病毒潛伏期時會分布於粒線體。粒線體參與了許多細胞生理途徑,如能量的產生、細胞死亡、宿主免疫反應的誘導和老化等;而粒線體自噬 (mitophagy) 為維持粒線體網絡健康的重要機制。本研究欲證實 Rta 蛋白質上是否具有粒線體導向序列 (mitochondria targeting sequence,MTS),並初步探討 Rta 蛋白質位於粒線體上的意義及其扮演的角色。首先以具有病毒潛伏的 P3HR1 細胞、B95-8 細胞及 293-2089 細胞為材料,利用免疫螢光染色分析探討 Rta 於細胞中的分佈情形,結果證實 Rta 蛋白質位於粒線體;同時利用粒線體分離分析結果指出,細胞中 Rta 蛋白質在細胞質與粒線體中皆有表現。接著利用 293T 細胞為材料,轉染入不同 Rta 片段之建構質體,可藉由觀察其進粒線體與否推定出 MTS 為 Rta 蛋白質之 N 端第 68 至 90 胺基酸片段,並由生物資訊軟體預測出其具有 α 螺旋體結構。接著以共免疫沉澱分析證明了 Rta 蛋白質會與粒線體外膜蛋白導入受體 (import receptor) Tom20 結合。而後以 ATP 測定分析結果發現,在 293T 細胞表現 Rta 後會使細胞中的 ATP 產量提高。最後,以 carbonyl cyanide m-chlorophenyl hydrazine (CCCP) 處理 293T 細胞,誘導粒線體損害進而引發粒線體自噬,結果發現 Rta 蛋白質的表現可能會促進粒線體自噬。總和以上所述,本研究首度證實 Rta 含有一 α 螺旋體結構的 MTS,可位於粒線體並影響粒線體的功能。 | zh_TW |
dc.description.abstract | Epstein-Barr virus (EBV) is a human herpesvirus with two distinct life cycles, latent and lytic. Rta, an immediate-early protein, is an important transcription factor required for initiating the lytic cycle of EBV. Our preliminary study found that Rta is localized at mitochondria during EBV latency. Mitochondrium is a multifunctional organelle with diverse roles including energy production, apoptosis, elicitation of host immune response, and aging. Moreover, mitochondria autophagy (mitophagy) is a critical mechanism to maintain mitochondrial health and homeostasis. This study aims to investigate whether Rta contains mitochondria targeting sequence (MTS), and examine roles of Rta in mitochondria. First, immunofluorescence analysis indicated that Rta colocalizes with mitochondria in P3HR1 cells, B95-8 cells and 293-2089 cells during both EBV latency and lytic cycle. Mitochondria isolation assay was performed and indicated that Rta expresses both in cytosolic and mitochondrial fraction. Mutagenesis and bioinformatic analyses demonstrated that an MTS is localized between amino acid residues 68 to 90 in Rta, which forms an amphipathic α-helix structure. Co-immunoprecipitation assay further indicated that Rta binds to Tom20, an import receptor on mitochondrial outer membrane. ATP determination assay also revealed that overexpressing Rta increases ATP levels in 293T cells. Finally, treatment of carbonyl cyanide m-chlorophenyl hydrazine (CCCP) to 293T cells with expression of Rta affects mitophagy. Taken together, this study demonstrates that Rta is a mitochondrion-targeted protein that contains an amphipathic α-helical MTS, which may affect the functions of mitochondria. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T14:46:39Z (GMT). No. of bitstreams: 1 ntu-105-R00b22020-1.pdf: 4263063 bytes, checksum: bcfa36c8c1dc3cdb568f7c483528b430 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 謝辭 i
摘要 ii Abstract iii 第一章、 前言 1 一、 Epstein-Barr virus (EB 病毒) 的發現及其致病性 1 二、 EB 病毒的遺傳物質及結構 2 三、 EB 病毒的生活史 2 潛伏期 (Latency)…………………………………………………………3 溶裂期 (Lytic cycle)………………………………………………………3 四、 EB 病毒的極早期蛋白質 5 Zta 蛋白質…………………………………………………………………5 Rta 蛋白質…………………………………………………………………7 Rta 轉錄活性的調控………………………………………………………7 Rta 參與細胞生理途徑…………………………………………………10 五、 粒線體 (mitochondria) 的生理重要性 11 粒線體藉氧化磷酸化合成 ATP…………………………………………12 粒線體參與細胞凋亡 (apoptosis)………………………………………12 粒線體與免疫系統的關聯………………………………………………14 粒線體自噬 (mitophagy)…………………………………………………14 六、 粒線體導向序列 (mitochondrial targeting signal, MTS) 15 七、 病毒對粒線體功能的調節 16 1. 病毒在宿主細胞中引發氧化壓力 (oxidative stress)………………16 2. 病毒調節宿主的粒線體膜電位 (mitochondrial membrane potential, MMP)……………………………………………………………………17 3. 病毒可調控細胞凋亡 (apoptosis)…………………………………18 4. 病毒影響粒線體相關的抗病毒免疫機制…………………………19 5. 病毒改變粒線體在細胞內的分布…………………………………19 6. 病毒造成宿主粒線體 DNA 耗竭 (mitochondrial DNA depletion).19 八、 EB 病毒與粒線體間的關係 20 九、 研究目的 21 第二章、 材料與方法 22 一、 細胞株 22 二、 EB 病毒的溶裂期誘導 22 三、 質體與抗體 23 四、 質體 DNA 的萃取 23 五、 細菌 23 六、 細菌轉型作用 (transformation) 23 七、 細胞轉染 (Transfection) 23 八、 免疫螢光染色分析 (Immunofluorescence analysis) 24 九、 粒線體的分離分析 25 十、 西方點墨法分析 (Western blot analysis) 25 十一、 免疫沈澱法 (Immunoprecipitation, IP) 26 十二、 加藥處理 26 十三、 ATP 測定分析 (ATP Determination assay) 26 第三章、 結果 28 一、 Rta 蛋白質存在於粒線體 28 二、 Rta 蛋白質會與 Tom20 結合 29 三、 Rta 的粒線體導向序列 (MTS) 分析 30 四、 Rta 的 N 端第 68 至 90 胺基酸之二級、三級結構預測 31 五、 MTS 上四個疏水性胺基酸突變使 Rta 無法進入粒線體 32 六、 Rta 蛋白質影響細胞內 ATP 的產量 32 七、 Rta 蛋白質影響粒線體自噬 (mitophagy) 33 第四章、 討論 34 圖表 41 表1、 本研究所使用之質體 41 表2、 本研究所使用之抗體 45 圖 1-1、EB 病毒的結構示意圖 46 圖 1-2、EB 病毒的生活史 47 圖 1-3、EB 病毒的溶裂期生活史 48 圖 1-4、EB 病毒極早期蛋白質 Rta 與 Zta 的表現 49 圖 1-5、Rta 蛋白質的功能區及入核訊號示意圖 50 圖 1-6、粒線體參與的生理途徑 51 圖 1-7、病毒可調節粒線體功能 52 圖 3-1、Rta 蛋白質與粒線體在 EB 病毒潛伏期的免疫螢光染色分析 53 圖 3-2、Rta 蛋白質與粒線體在 EB 病毒溶裂期的免疫螢光染色分析 54 圖 3-3、以粒線體分離分析 Rta 蛋白質的分布 56 圖 3-4、Rta 與 Tom20 在細胞內結合 57 圖 3-5、Rta 的刪除突變株在細胞中的分布 58 圖 3-6、Rta 及其刪除突變株的粒線體導向序列分析 60 圖 3-7、Rta 的突變株和粒線體在293T 細胞中的免疫螢光染色分析 62 圖 3-8、Rta 的 N 端片段之二級、三級結構預測 63 圖 3-9、Rta 及 Rta 的 MTS 突變株在細胞中的分布位置 64 圖 3-10、Rta 的 MTS 突變株和粒線體在293T 細胞中的免疫螢光染色分析 ………………………………………………………………………..65 圖 3-11、Rta 對細胞產生能量的影響 67 圖 3-12、Rta 對粒線體自噬的影響 68 圖 4-1、Rta 蛋白質與粒線體的關係 69 參考文獻……………………………………………………………………………..70 附錄 98 附錄 1、Rta 蛋白質在電子顯微鏡觀察下於 P3HR1 細胞內的分佈情形 (王文宏, 未發表) 98 附錄 2、粒線體內膜上的電子傳遞鍊與 ATP 合成酶 99 附錄 3、細胞凋亡的外在與內在途徑 101 附錄 4、粒線體參與的抗病毒免疫機制 103 附錄 5、粒線體的動態恆定以及質量管制 104 附錄 6、粒線體蛋白質的運輸機制 105 附錄 7、MTS 的結構特性及其與 Tom20 受體蛋白的相互作用 106 | |
dc.language.iso | zh-TW | |
dc.title | EB 病毒蛋白質 Rta 對粒線體的影響 | zh_TW |
dc.title | Role of Rta of Epstein-Barr virus in mitochondria | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉世東(Shih-Tung Liu),莊健盈,張世宗,陳慧文 | |
dc.subject.keyword | EB 病毒,Rta,粒線體,粒線體導向序列,粒線體自噬, | zh_TW |
dc.subject.keyword | Epstein-Barr virus,Rta,mitochondria,mitochondria targeting sequence,mitophagy, | en |
dc.relation.page | 106 | |
dc.identifier.doi | 10.6342/NTU201600518 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-06-28 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科技學系 | zh_TW |
顯示於系所單位: | 生化科技學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-R00b22020-1.pdf 目前未授權公開取用 | 4.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。