Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境與職業健康科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78219
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃盛修(Sheng-Hsiu Huang)
dc.contributor.authorTing-Yu Linen
dc.contributor.author林亭宇zh_TW
dc.date.accessioned2021-07-11T14:46:30Z-
dc.date.available2022-12-31
dc.date.copyright2020-09-10
dc.date.issued2020
dc.date.submitted2020-08-14
dc.identifier.citationCalvo, B. and Cepeda, E. A. (2008). Solubilities of stearic acid in organic solvents and in azeotropic solvent mixtures. J Chem Eng Data 53:628-633.
Cano, M., Vega, F., Navarrete, B., Plumed, A., Camino, J. A. (2017). Characterization of Emissions of Condensable Particulate Matter in Clinker Kilns Using a Dilution Sampling System. Energ Fuel 31:7831-7838.
Cifuentes, L. A., Vega, J., Köpfer, K., Lave, L. B. (2000). Effect of the Fine Fraction of Particulate Matter versus the Coarse Mass and Other Pollutants on Daily Mortality in Santiago, Chile. Journal of the Air Waste Management Association 50:1287-1298.
Corio, L. A. and Sherwell, J. (2000). In-stack condensible particulate matter measurements and issues. J Air Waste Manage 50:207-218.
Damle, A., Ensor, D., Ranade, M. (1981). Coal combustion aerosol formation mechanisms: a review. Aerosol Science and Technology 1:119-133.
Daubert, T. E., R.P. Danner (1989). Physical and Thermodynamic Properties of Pure Chemicals Data Compilation. Taylor and Francis, Washington.
England, G. C., Zielinska, B., Loos, K., Crane, I., Ritter, K. (2000). Characterizing PM2. 5 emission profiles for stationary sources: comparison of traditional and dilution sampling techniques. Fuel Processing Technology 65:177-188.
Ghazi, R., Tjong, H., Soewono, A., Rogak, S. N., Olfert, J. S. (2013). Mass, Mobility, Volatility, and Morphology of Soot Particles Generated by a McKenna and Inverted Burner. Aerosol Science and Technology 47:395-405.
Goodarzi, F. (2006). The rates of emissions of fine particles from some Canadian coal-fired power plants. Fuel 85:425-433.
Japuntich, D. A., Stenhouse, J. I. T., Liu, B. Y. H. (1992). An Aerosol Generator for High-Concentrations of 0.5-5-Mu-M Solid Particles of Practical Monodispersity. Aerosol Science and Technology 16:246-254.
Kim, J., Kim, J., Ha, K., Kim, M. (2016). Numerical analysis for the optimum condition of ultrasonic nebulizing. Jpn J Appl Phys 55.
Klemm, R. J., Mason, R. M., Heilig, C. M., Neas, L. M., Dockery, D. W. (2000). Is Daily Mortality Associated Specifically with Fine Particles? Data Reconstruction and Replication of Analyses. Journal of the Air Waste Management Association 50:1215-1222.
Li, J., Li, X., Zhou, C., Li, M., Lu, S., Yan, J., Qi, Z. (2017). Study on the Influencing Factors of the Distribution Characteristics of Polycyclic Aromatic Hydrocarbons in Condensable Particulate Matter. Energy Fuels 31:13233-13238.
Maricq, M. M., Harris, S. J., Szente, J. J. (2003). Soot size distributions in rich premixed ethylene flames. Combustion and Flame 132:328-342.
Mercer, T. T. (1973). Aerosol technology in hazard evaluation. Academic Press, Inc, United States.
Migliorini, F., De Iuliis, S., Cignoli, F., Zizak, G. (2008). How “flat” is the rich premixed flame produced by your McKenna burner?
Presnell, V., Logan, T. J., Satola, J. R., Kelly, T. J. (2005). Laboratory Evaluation Of Method 202 To Determine Fate of SO2 In Impinger Water.
Rajan, R. and Pandit, A. B. (2001). Correlations to predict droplet size in ultrasonic atomisation. Ultrasonics 39:235-255.
Richards, J., Holder, T., Goshaw, D. (2005). Optimized Method 202 Sampling Train to Minimize the Biases Associated with Method 202 Measurement of Condensable Particulate Matter Emissions.
Ristovski, Z. D., Morawska, L., Bofinger, N. D. (1998). Investigation of a modified Sinclair-La Mer aerosol generator in the submicrometer range. Journal of Aerosol Science 29:799-809.
Santoro, R., Semerjian, H. G., Dobbins, R. A. (1983). Soot particle measurements in diffusion flames.
SAROFIM, A. F., HOWARD, J. B., PADIA, A. S. (1977). The physical transformation of the mineral matter in pulverized coal under simulated combustion conditions. Combustion science and technology 16:187-204.
Schwartz, J., Dockery, D. W., Neas, L. M. (1996). Is Daily Mortality Associated Specifically with Fine Particles? Journal of the Air Waste Management Association 46:927-939.
Slegers, S., Linzas, M., Drijkoningen, J., D'Haen, J., Reddy, N. K., Deferme, W. (2017). Surface Roughness Reduction of Additive Manufactured Products by Applying a Functional Coating Using Ultrasonic Spray Coating. Coatings 7.
Stipe, C. B., Higgins, B. S., Lucas, D., Koshland, C. P., Sawyer, R. F. (2005). Inverted co-flow diffusion flame for producing soot. Rev Sci Instrum 76.
Tsukada, M., Nishikawa, N., Horikawa, A., Wada, M., Liu, Y., Kamiya, H. (2008). Emission potential of condensable suspended particulate matter from flue gas of solid waste combustion. Powder Technology 180:140-144.
Wang, G., Deng, J. G., Zhang, Y., Li, Y. J., Ma, Z. Z., Hao, J. M., Jiang, J. K. (2020). Evaluating Airborne Condensable Particulate Matter Measurement Methods in Typical Stationary Sources in China. Environmental Science Technology 54:1363-1371.
Weber, P. and Dunlap, H. L. (1928). Solubility of paraffin wax in pure hydrocarbons. Ind Eng Chem 20:383-384.
Wen, C., Gao, X. P., Yu, Y., Wu, J. Q., Xu, M. H., Wu, H. W. (2015). Emission of inorganic PM10 from included mineral matter during the combustion of pulverized coals of various ranks. Fuel 140:526-530.
Xing, Z. (2016). Emission standards and control of PM2.5 from coal-fired power plant, IEA clean coal centre.
Yang, H. H., Lee, K. T., Hsieh, Y. S., Luo, S. W., Huang, R. J. (2015). Emission Characteristics and Chemical Compositions of both Filterable and Condensable Fine Particulate from Steel Plants. Aerosol Air Qual Res 15:1672-1680.
Yang, H. H., Lee, K. T., Hsieh, Y. S., Luo, S. W., Li, M. S. (2014). Filterable and Condensable Fine Particulate Emissions from Stationary Sources. Aerosol Air Qual Res 14:2010-2016.
Yao, Q., Li, S.-Q., Xu, H.-W., Zhuo, J.-K., Song, Q. (2009). Studies on formation and control of combustion particulate matter in China: A review. Energy 34:1296-1309.
Yasuda, K., Bando, Y., Yamaguchi, S., Nakamura, M., Oda, A., Kawase, Y. (2005). Analysis of concentration characteristics in ultrasonic atomization by droplet diameter distribution. Ultrason Sonochem 12:37-41.
張光男 (2004). 可控制粒徑分佈之氣懸微粒產生器與粒徑分佈對微粒負載特性的影響, 國立臺灣大學職業醫學與工業衛生研究所碩士論文, 台北市.
黎偉欽 (1996). 可控制粒徑分布微米氣懸微粒的產生, 國立台灣大學環境工程學研究所碩士論文, 台北市.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78219-
dc.description.abstract美國環保署公告的可凝結性微粒(Condensable particulate matter, CPM)採樣方法有兩種,分別為乾式衝擊瓶法(Method202)及稀釋法(EPA CTM-039),許多研究發現乾式衝擊瓶法易與煙氣內可溶性氣體(例如SO2)反應,導致採樣結果高估;稀釋法被認為能更準確地量測CPM排放量,因為它們較能模擬大氣中顆粒形成的過程。然而,CPM量測方法可能受到煙氣特性、採樣程序和樣品回收效率的影響。為了比較兩種方法,需一可控且穩定的CPM產生源。然而,一般煙囪中CPM不僅不穩定且無法預測,煙道內CPM的含量可能會受到煙道溫度、濕度或燃料物質的影響。因此,本研究的目的是設計一CPM產生器,可以穩定的產生已知成分、濃度的CPM。透過此CPM產生器比較乾式衝擊瓶法和稀釋法,評估影響CPM測量的因素,以提高CPM量測方法的準確性。
本研究分別使用兩種方式產生CPM:蒸發型、氣化型。蒸發型為透過載流氣體吹拂過加熱液體之表面,攜出蒸氣之方式產生CPM,其缺點為無法準確預估所產生之CPM蒸汽,且長期使用產生器尚有物質氧化之問題。氣化型則透過將液體注入稀釋氣體中並加熱至沸點之方式產生CPM,產生系統使用一段時間後,加熱棒表面有物質加熱氣化成蒸氣殘留之不純物、氧化物導致加熱棒表面特性改變,進而使產生系統不穩定。綜合上述優缺點設計一改良式蒸發型CPM產生器,透過注射泵將溶液注入超音波霧化器將液體霧化成更小的液滴,透過這個方式來增加加熱蒸發之速率。此外,硬脂酸微粒相較於石蠟更能提供穩定的微粒產生。整個產生及採樣系統在未加熱之狀態下,載流氣體為10 L/min、溶液推進速度為0.1 ml/min時,微粒損失低於1%。此實驗系統可透過調整加熱溫度控制FPM及CPM之產生比率,而此系統在溶液濃度為1.5 mg/ml、推進速度為0.1 ml/min,載流氣體為10 L/min、加熱溫度為255oC下,最高可產生97%的CPM。CPM採樣部分,第二段屏蔽流為5 L/min下有最低之損失量(20%),未來研究可透過管道淋洗的方式,增加CPM的回收率。
zh_TW
dc.description.abstractThere are two condensable particulate matter sampling methods announced by the US Environmental Protection Agency, which are the dry impinger method (Method202) and the dilution method (EPA CTM-039). Many studies have found that the dry impinger method would over estimate CPM concentration because of the soluble gas (SO2) in stack. Dilution method was thought have more accurately represent CPM emissions because they are more simulate the natural physicochemical processes of particulate formation in the atmosphere. However, CPM measurement methods may be affected by flue gas characteristics, sampling procedures and sample recovery efficiency. In order to compared two methods, we should have a controllable, stable CPM generating source. But general CPM amount in stack is unpredictable and unstable and its sampling amount may affect by flue gas temperature, humidity or material of the fuel in stack. Therefore, the aim of this study is design a CPM generator which can produce known composition, concentration and long-term stability CPM. Through this CPM generator to compare condensation and dilution CPM methods measurement amount and evaluate the factors affecting CPM measurements to improve the accuracy of the CPM methods.
This study uses two methods to generate CPM such as evaporation and vaporization. The evaporative type generates CPM by blowing the carrier gas over the surface of the heated liquid and carrying out steam. However, it is impossible to accurately estimate the CPM steam, and there is still a problem of material oxidation if using the generator for a long time. The vaporization type generates CPM by injecting liquid on heating rod which reached the boiling point and use carrier gas to carry out steam. After the generation system is used for a period of time, the surface of the heating rod is heated and vaporized into impurities and oxides remaining in the vapor, which causes the surface characteristics of the heating rod to change. Make the production system unstable. Based on the above advantages and disadvantages, an improved evaporative CPM generator is designed. The solution is injected into the ultrasonic atomizer through a syringe pump to atomize the liquid into smaller droplets. This method increases the rate of evaporation. In addition, stearic acid particles provide more stable particle production than paraffin wax. When the entire generation and sampling system is unheated, the carrier gas is 10 L/min and the feeding rate is 0.1 ml/min, the particle loss is less than 1%. This experimental system can control the generation ratio of FPM and CPM by adjusting the heating temperature. As solution concentration is 1.5 mg/ml, feeding rate is 0.1 ml/min, carrier gas is 10 L/min, and heating temperature is 255oC , can produce up to 97% CPM. As the CPM sampling methods, the second shields flow has the lowest loss (20%) at 5 L/min. In the future, people can increase the recovery ratio of CPM by rinsing the whole sampling train.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:46:30Z (GMT). No. of bitstreams: 1
U0001-1308202017165000.pdf: 2385293 bytes, checksum: 04ae65502b0ee277c4179e4b78246f24 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 4
表目錄 5
圖目錄 6
中文摘要 7
Abstract 8
一、 研究背景與目的 11
1.1研究背景 11
1.2研究目的 12
二、 文獻探討 12
2.1可凝結性微粒形成及成分 12
2.2可凝結性微粒採樣方法 13
2.3 CPM產生模擬器 15
2.3.1 CMAG (Condensation Monodisperse Aerosol Generator) 15
2.3.2燃燒器 17
2.3.3超音波霧化器 18
三、 研究方法 19
3.1 蒸發型(Evaporation)產生器 19
3.2 氣化型(Vaporization) CPM產生器 20
3.3改良式蒸發型產生器-超音波霧化之CPM產生器 20
四、 結果與討論 21
4.1 蒸發型(Evaporate) CPM產生器 21
4.1.1 CMAG CPM產生器 21
4.1.2 加熱錫爐CPM產生器 22
4.2氣化型(Vaporization) CPM產生器 22
4.2.1推進速度對加熱棒CPM產生濃度之影響 22
4.3 改良式蒸發型產生器-超音波霧化之CPM產生器 23
4.3.1 超音波霧化器產生之微粒粒徑分布、濃度及穩定性 23
4.3.2 未加熱前系統微粒損失測試 25
4.3.3 CPM產生器穩定性 26
4.3.4 加熱溫度對產生FPM、CPM之比率 26
4.3.5 CPM採樣系統損失 26
五、 結論與建議 27
六、 參考文獻 28
dc.language.isozh-TW
dc.title可凝結性微粒產生器之研發zh_TW
dc.titleDevelopment of a Condensable Particulate Matter Generatoren
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳志傑(Chih-Chieh Chen),林志威(Chih-Wei Lin),林文印(Wen-Yinn Lin),蕭大智(Ta-Chih Hsiao)
dc.subject.keyword可凝結性微粒,蒸發型,氣化型,產生器,微粒損失,zh_TW
dc.subject.keywordcondensable particulate matter,,evaporation type,vaporization type,generator,particle loss,en
dc.relation.page50
dc.identifier.doi10.6342/NTU202003298
dc.rights.note有償授權
dc.date.accepted2020-08-14
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境與職業健康科學研究所zh_TW
顯示於系所單位:環境與職業健康科學研究所

文件中的檔案:
檔案 大小格式 
U0001-1308202017165000.pdf
  目前未授權公開取用
2.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved