請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78196完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂仁(Jean Lu) | |
| dc.contributor.author | Wei-Ju Chen | en |
| dc.contributor.author | 陳薇如 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:45:32Z | - |
| dc.date.available | 2025-08-17 | |
| dc.date.copyright | 2020-09-16 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-17 | |
| dc.identifier.citation | 1 Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-1147, doi:10.1126/science.282.5391.1145 (1998). 2 Kumari, D. States of Pluripotency: Naïve and Primed Pluripotent Stem Cells. doi:10.5772/63202 (2016). 3 Nichols, J. Smith, A. Naive and primed pluripotent states. Cell Stem Cell 4, 487-492, doi:10.1016/j.stem.2009.05.015 (2009). 4 Brons, I. G. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191-195, doi:10.1038/nature05950 (2007). 5 Tesar, P. J. et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196-199, doi:10.1038/nature05972 (2007). 6 Guo, G. et al. Naive Pluripotent Stem Cells Derived Directly from Isolated Cells of the Human Inner Cell Mass. Stem Cell Reports 6, 437-446, doi:10.1016/j.stemcr.2016.02.005 (2016). 7 Ware, C. B. et al. Derivation of naive human embryonic stem cells. Proc Natl Acad Sci U S A 111, 4484-4489, doi:10.1073/pnas.1319738111 (2014). 8 Takeda, T., Go, W. Y., Orlando, R. A. Farquhar, M. G. Expression of podocalyxin inhibits cell-cell adhesion and modifies junctional properties in Madin-Darby canine kidney cells. Mol Biol Cell 11, 3219-3232 (2000). 9 Theunissen, T. W. et al. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15, 471-487, doi:10.1016/j.stem.2014.07.002 (2014). 10 Takashima, Y. et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158, 1254-1269, doi:10.1016/j.cell.2014.08.029 (2014). 11 Gafni, O. et al. Derivation of novel human ground state naive pluripotent stem cells. Nature 504, 282-286, doi:10.1038/nature12745 (2013). 12 Wang, J. et al. Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells. Nature 516, 405-409, doi:10.1038/nature13804 (2014). 13 Chan, Y. S. et al. Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast. Cell Stem Cell 13, 663-675, doi:10.1016/j.stem.2013.11.015 (2013). 14 Yang, Y. et al. Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency. Cell 169, 243-257 e225, doi:10.1016/j.cell.2017.02.005 (2017). 15 Yang, J. et al. Establishment of mouse expanded potential stem cells. Nature 550, 393-397, doi:10.1038/nature24052 (2017). 16 Wu, J. et al. Interspecies Chimerism with Mammalian Pluripotent Stem Cells. Cell 168, 473-486 e415, doi:10.1016/j.cell.2016.12.036 (2017). 17 De Los Angeles, A., Pho, N. Redmond, D. E., Jr. Generating Human Organs via Interspecies Chimera Formation: Advances and Barriers. Yale J Biol Med 91, 333-342 (2018). 18 De Los Angeles, A., Sakurai, M. Wu, J. Embryonic Chimeras with Human Pluripotent Stem Cells. Methods Mol Biol 2005, 125-151, doi:10.1007/978-1-4939-9524-0_9 (2019). 19 De Los Angeles, A., Hyun, I., Latham, S. R., Elsworth, J. D. Redmond, D. E. Human-Monkey Chimeras for Modeling Human Disease: Opportunities and Challenges. Stem Cells Dev 27, 1599-1604, doi:10.1089/scd.2018.0162 (2018). 20 Young, R. A. Control of the embryonic stem cell state. Cell 144, 940-954, doi:10.1016/j.cell.2011.01.032 (2011). 21 van den Berg, D. L. et al. An Oct4-centered protein interaction network in embryonic stem cells. Cell Stem Cell 6, 369-381, doi:10.1016/j.stem.2010.02.014 (2010). 22 Silva, J. et al. Nanog is the gateway to the pluripotent ground state. Cell 138, 722-737, doi:10.1016/j.cell.2009.07.039 (2009). 23 Jiang, J. et al. A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol 10, 353-360, doi:10.1038/ncb1698 (2008). 24 Dunn, S. J., Martello, G., Yordanov, B., Emmott, S. Smith, A. G. Defining an essential transcription factor program for naive pluripotency. Science 344, 1156-1160, doi:10.1126/science.1248882 (2014). 25 Jaenisch, R. Young, R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132, 567-582, doi:10.1016/j.cell.2008.01.015 (2008). 26 Kagey, M. H. et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430-435, doi:10.1038/nature09380 (2010). 27 Hu, G. et al. A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal. Genes Dev 23, 837-848, doi:10.1101/gad.1769609 (2009). 28 Leeb, M. et al. Polycomb complexes act redundantly to repress genomic repeats and genes. Genes Dev 24, 265-276, doi:10.1101/gad.544410 (2010). 29 Kuan, II et al. EpEX/EpCAM and Oct4 or Klf4 alone are sufficient to generate induced pluripotent stem cells through STAT3 and HIF2alpha. Sci Rep 7, 41852, doi:10.1038/srep41852 (2017). 30 Chen, H. F. et al. Surface marker epithelial cell adhesion molecule and E-cadherin facilitate the identification and selection of induced pluripotent stem cells. Stem Cell Rev 7, 722-735, doi:10.1007/s12015-011-9233-y (2011). 31 Zhou, S. et al. C9ORF135 encodes a membrane protein whose expression is related to pluripotency in human embryonic stem cells. Sci Rep 7, 45311, doi:10.1038/srep45311 (2017). 32 Muramatsu, T. Muramatsu, H. Carbohydrate antigens expressed on stem cells and early embryonic cells. Glycoconj J 21, 41-45, doi:10.1023/B:GLYC.0000043746.77504.28 (2004). 33 Andrews, P. W. Toward safer regenerative medicine. Nat Biotechnol 29, 803-805, doi:10.1038/nbt.1974 (2011). 34 Chan, E. M. et al. Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nat Biotechnol 27, 1033-1037, doi:10.1038/nbt.1580 (2009). 35 Brandenberger, R. et al. Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. Nat Biotechnol 22, 707-716, doi:10.1038/nbt971 (2004). 36 Cai, J. et al. Assessing self-renewal and differentiation in human embryonic stem cell lines. Stem Cells 24, 516-530, doi:10.1634/stemcells.2005-0143 (2006). 37 Kang, L. et al. The Universal 3D3 Antibody of Human PODXL Is Pluripotent Cytotoxic, and Identifies a Residual Population After Extended Differentiation of Pluripotent Stem Cells. Stem Cells Dev 25, 556-568, doi:10.1089/scd.2015.0321 (2016). 38 Tan, H. L., Fong, W. J., Lee, E. H., Yap, M. Choo, A. mAb 84, a cytotoxic antibody that kills undifferentiated human embryonic stem cells via oncosis. Stem Cells 27, 1792-1801, doi:10.1002/stem.109 (2009). 39 Choo, A. B. et al. Selection against undifferentiated human embryonic stem cells by a cytotoxic antibody recognizing podocalyxin-like protein-1. Stem Cells 26, 1454-1463, doi:10.1634/stemcells.2007-0576 (2008). 40 Lee, R. H. et al. The CD34-like protein PODXL and alpha6-integrin (CD49f) identify early progenitor MSCs with increased clonogenicity and migration to infarcted heart in mice. Blood 113, 816-826, doi:10.1182/blood-2007-12-128702 (2009). 41 Nielsen, J. S. McNagny, K. M. Novel functions of the CD34 family. J Cell Sci 121, 3683-3692, doi:10.1242/jcs.037507 (2008). 42 Moussaieff, A. et al. Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab 21, 392-402, doi:10.1016/j.cmet.2015.02.002 (2015). 43 Ryall, J. G., Cliff, T., Dalton, S. Sartorelli, V. Metabolic Reprogramming of Stem Cell Epigenetics. Cell Stem Cell 17, 651-662, doi:10.1016/j.stem.2015.11.012 (2015). 44 Cowan, C. A. et al. Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 350, 1353-1356, doi:10.1056/NEJMsr040330 (2004). 45 Mandegar, M. A. et al. CRISPR Interference Efficiently Induces Specific and Reversible Gene Silencing in Human iPSCs. Cell Stem Cell 18, 541-553, doi:10.1016/j.stem.2016.01.022 (2016). 46 Huang, H. N. et al. miR-200c and GATA binding protein 4 regulate human embryonic stem cell renewal and differentiation. Stem Cell Res 12, 338-353, doi:10.1016/j.scr.2013.11.009 (2014). 47 Warlich, E. et al. Lentiviral vector design and imaging approaches to visualize the early stages of cellular reprogramming. Mol Ther 19, 782-789, doi:10.1038/mt.2010.314 (2011). 48 Lin, T. et al. Rho-ROCK-LIMK-cofilin pathway regulates shear stress activation of sterol regulatory element binding proteins. Circ Res 92, 1296-1304, doi:10.1161/01.RES.0000078780.65824.8B (2003). 49 Friesland, A. et al. Small molecule targeting Cdc42-intersectin interaction disrupts Golgi organization and suppresses cell motility. Proc Natl Acad Sci U S A 110, 1261-1266, doi:10.1073/pnas.1116051110 (2013). 50 Schmieder, S., Nagai, M., Orlando, R. A., Takeda, T. Farquhar, M. G. Podocalyxin activates RhoA and induces actin reorganization through NHERF1 and Ezrin in MDCK cells. J Am Soc Nephrol 15, 2289-2298, doi:10.1097/01.ASN.0000135968.49899.E8 (2004). 51 Li, P. et al. Novel roles for podocalyxin in regulating stress myelopoiesis, Rap1a, and neutrophil migration. Exp Hematol 50, 77-83 e76, doi:10.1016/j.exphem.2017.04.001 (2017). 52 Fernandez, D. et al. Control of cell adhesion and migration by podocalyxin. Implication of Rac1 and Cdc42. Biochem Biophys Res Commun 432, 302-307, doi:10.1016/j.bbrc.2013.01.112 (2013). 53 Lin, C. W. et al. Podocalyxin-like 1 promotes invadopodia formation and metastasis through activation of Rac1/Cdc42/cortactin signaling in breast cancer cells. Carcinogenesis 35, 2425-2435, doi:10.1093/carcin/bgu139 (2014). 54 Pankow, S., Bamberger, C., Calzolari, D., Bamberger, A. Yates, J. R., 3rd. Deep interactome profiling of membrane proteins by co-interacting protein identification technology. Nat Protoc 11, 2515-2528, doi:10.1038/nprot.2016.140 (2016). 55 Coman, C. et al. Simultaneous Metabolite, Protein, Lipid Extraction (SIMPLEX): A Combinatorial Multimolecular Omics Approach for Systems Biology. Mol Cell Proteomics 15, 1453-1466, doi:10.1074/mcp.M115.053702 (2016). 56 Zhuang, L., Lin, J., Lu, M. L., Solomon, K. R. Freeman, M. R. Cholesterol-rich lipid rafts mediate akt-regulated survival in prostate cancer cells. Cancer Res 62, 2227-2231 (2002). 57 Rossant, J. Stem cells and early lineage development. Cell 132, 527-531, doi:10.1016/j.cell.2008.01.039 (2008). 58 Marlow., F. L. Marlow FL. Maternal Control of Development in Vertebrates: My Mother Made Me Do It!. doi:10.4199/C00023ED1V01Y201012DEB005. 59 Wilson, A. et al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Development 18, 2747-2763, doi:Doi 10.1101/Gad.313104 (2004). 60 Varlakhanova, N., Cotterman, R., Bradnam, K., Korf, I. Knoepfler, P. S. Myc and Miz-1 have coordinate genomic functions including targeting Hox genes in human embryonic stem cells. Epigenetics Chromatin 4, doi:Artn 20 Doi 10.1186/1756-8935-4-20 (2011). 61 Varlakhanova, N. V. et al. myc maintains embryonic stem cell pluripotency and self-renewal. Differentiation 80, 9-19, doi:10.1016/j.diff.2010.05.001 (2010). 62 Scognamiglio, R. et al. Myc Depletion Induces a Pluripotent Dormant State Mimicking Diapause. Cell 164, 668-680, doi:10.1016/j.cell.2015.12.033 (2016). 63 Chappell, J. Dalton, S. Roles for MYC in the establishment and maintenance of pluripotency. Cold Spring Harb Perspect Med 3, a014381, doi:10.1101/cshperspect.a014381 (2013). 64 Teichroeb, J. H., Kim, J. Betts, D. H. The role of telomeres and telomerase reverse transcriptase isoforms in pluripotency induction and maintenance. RNA Biol 13, 707-719, doi:10.1080/15476286.2015.1134413 (2016). 65 Smith, K. N., Singh, A. M. Dalton, S. Myc represses primitive endoderm differentiation in pluripotent stem cells. Cell Stem Cell 7, 343-354, doi:10.1016/j.stem.2010.06.023 (2010). 66 Zviran, A. et al. Deterministic Somatic Cell Reprogramming Involves Continuous Transcriptional Changes Governed by Myc and Epigenetic-Driven Modules. Cell Stem Cell 24, 328-341 e329, doi:10.1016/j.stem.2018.11.014 (2019). 67 Wu, K. J. et al. Direct activation of TERT transcription by c-MYC. Nat Genet 21, 220-224, doi:10.1038/6010 (1999). 68 Wang, J., Xie, L. Y., Allan, S., Beach, D. Hannon, G. J. Myc activates telomerase. Genes Dev 12, 1769-1774, doi:10.1101/gad.12.12.1769 (1998). 69 Cheng et al. Regulation of human and mouse telomerase genes by genomic contexts and transcription factors during embryonic stem cell differentiation. Sci Rep 7, 16444, doi:10.1038/s41598-017-16764-w (2017). 70 Hidema, S. et al. Transgenic expression of Telomerase reverse transcriptase (Tert) improves cell proliferation of primary cells and enhances reprogramming efficiency into the induced pluripotent stem cell. Biosci Biotechnol Biochem 80, 1925-1933, doi:10.1080/09168451.2016.1191330 (2016). 71 Fu, H. et al. Dynamics of Telomere Rejuvenation during Chemical Induction to Pluripotent Stem Cells. Stem Cell Reports 11, 70-87, doi:10.1016/j.stemcr.2018.05.003 (2018). 72 Lee, M. K., Hande, M. P. Sabapathy, K. Ectopic mTERT expression in mouse embryonic stem cells does not affect differentiation but confers resistance to differentiation- and stress-induced p53-dependent apoptosis. J Cell Sci 118, 819-829, doi:10.1242/jcs.01673 (2005). 73 Hou, P. et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341, 651-654, doi:10.1126/science.1239278 (2013). 74 Carey, B. W. et al. Reprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cells. Cell Stem Cell 9, 588-598, doi:10.1016/j.stem.2011.11.003 (2011). 75 Freedman, B. S. et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun 6, 8715, doi:10.1038/ncomms9715 (2015). 76 Rossi, A. et al. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524, 230-233, doi:10.1038/nature14580 (2015). 77 Sztal, T. E., McKaige, E. A., Williams, C., Ruparelia, A. A. Bryson-Richardson, R. J. Genetic compensation triggered by actin mutation prevents the muscle damage caused by loss of actin protein. PLoS Genet 14, e1007212, doi:10.1371/journal.pgen.1007212 (2018). 78 Huang da, W., Sherman, B. T. Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4, 44-57, doi:10.1038/nprot.2008.211 (2009). 79 Huang da, W., Sherman, B. T. Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37, 1-13, doi:10.1093/nar/gkn923 (2009). 80 Horton, J. D., Goldstein, J. L. Brown, M. S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109, 1125-1131, doi:10.1172/JCI15593 (2002). 81 Madison, B. B. Srebp2: A master regulator of sterol and fatty acid synthesis. J Lipid Res 57, 333-335, doi:10.1194/jlr.C066712 (2016). 82 Li, X. et al. SREBP-2 promotes stem cell-like properties and metastasis by transcriptional activation of c-Myc in prostate cancer. Oncotarget 7, 12869-12884, doi:10.18632/oncotarget.7331 (2016). 83 Ohgushi, M. et al. Molecular pathway and cell state responsible for dissociation-induced apoptosis in human pluripotent stem cells. Cell Stem Cell 7, 225-239, doi:10.1016/j.stem.2010.06.018 (2010). 84 Egea, G., Lazaro-Dieguez, F. Vilella, M. Actin dynamics at the Golgi complex in mammalian cells. Curr Opin Cell Biol 18, 168-178, doi:10.1016/j.ceb.2006.02.007 (2006). 85 Gurel, P. S., Hatch, A. L. Higgs, H. N. Connecting the cytoskeleton to the endoplasmic reticulum and Golgi. Curr Biol 24, R660-R672, doi:10.1016/j.cub.2014.05.033 (2014). 86 Wong, B. S. et al. A Direct Podocalyxin-Dynamin-2 Interaction Regulates Cytoskeletal Dynamics to Promote Migration and Metastasis in Pancreatic Cancer Cells. Cancer Res 79, 2878-2891, doi:10.1158/0008-5472.CAN-18-3369 (2019). 87 Frose, J. et al. Epithelial-Mesenchymal Transition Induces Podocalyxin to Promote Extravasation via Ezrin Signaling. Cell Rep 24, 962-972, doi:10.1016/j.celrep.2018.06.092 (2018). 88 Zhou, Q. Liao, J. K. Statins and cardiovascular diseases: from cholesterol lowering to pleiotropy. Curr Pharm Des 15, 467-478 (2009). 89 Wassila Gaoua, C. W., , Françoise Chevy, Françoise Ilien* and Charles Roux. Cholesterol deficit but not accumulation of aberrant sterols is the major cause of the teratogenic activity in the Smith-Lemli-Opitz syndrome animal model. The Journal of Lipid Research 637-646., 637-646. (2000). 90 Mahammad, S. Parmryd, I. Cholesterol depletion using methyl-beta-cyclodextrin. Methods Mol Biol 1232, 91-102, doi:10.1007/978-1-4939-1752-5_8 (2015). 91 Li, Y., Xian, M., Yang, B., Ying, M. He, Q. Inhibition of KLF4 by Statins Reverses Adriamycin-Induced Metastasis and Cancer Stemness in Osteosarcoma Cells. Stem Cell Reports 8, 1617-1629, doi:10.1016/j.stemcr.2017.04.025 (2017). 92 Bjorkhem-Bergman, L., Lindh, J. D. Bergman, P. What is a relevant statin concentration in cell experiments claiming pleiotropic effects? Br J Clin Pharmacol 72, 164-165, doi:10.1111/j.1365-2125.2011.03907.x (2011). 93 Lee, M. H., Cho, Y. S. Han, Y. M. Simvastatin suppresses self-renewal of mouse embryonic stem cells by inhibiting RhoA geranylgeranylation. Stem Cells 25, 1654-1663, doi:10.1634/stemcells.2006-0753 (2007). 94 Gauthaman, K., Manasi, N. Bongso, A. Statins inhibit the growth of variant human embryonic stem cells and cancer cells in vitro but not normal human embryonic stem cells. Br J Pharmacol 157, 962-973, doi:10.1111/j.1476-5381.2009.00241.x (2009). 95 Zhang, H. et al. Distinct Metabolic States Can Support Self-Renewal and Lipogenesis in Human Pluripotent Stem Cells under Different Culture Conditions. Cell Rep 16, 1536-1547, doi:10.1016/j.celrep.2016.06.102 (2016). 96 Garcia-Gonzalo, F. R. Izpisua Belmonte, J. C. Albumin-associated lipids regulate human embryonic stem cell self-renewal. PLoS One 3, e1384, doi:10.1371/journal.pone.0001384 (2008). 97 Chen, G. et al. Chemically defined conditions for human iPSC derivation and culture. Nat Methods 8, 424-429, doi:10.1038/nmeth.1593 (2011). 98 Zidovetzki R, L. Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophys Acta. 1768, 1311-1324, doi:Epub 2007 Apr 6. (2007). 99 Crane, J. M. Tamm, L. K. Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes. Biophys J 86, 2965-2979, doi:10.1016/S0006-3495(04)74347-7 (2004). 100 Almeida, P. F., Pokorny, A. Hinderliter, A. Thermodynamics of membrane domains. Biochim Biophys Acta 1720, 1-13, doi:10.1016/j.bbamem.2005.12.004 (2005). 101 Simons, K. Gerl, M. J. Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11, 688-699, doi:10.1038/nrm2977 (2010). 102 Otahal, P. et al. A new type of membrane raft-like microdomains and their possible involvement in TCR signaling. Journal of immunology 184, 3689-3696, doi:10.4049/jimmunol.0902075 (2010). 103 Wang, Z. Schey, K. L. Proteomic Analysis of Lipid Raft-Like Detergent-Resistant Membranes of Lens Fiber Cells. Invest Ophthalmol Vis Sci 56, 8349-8360, doi:10.1167/iovs.15-18273 (2015). 104 Lin, S. L. et al. Temporal proteomics profiling of lipid rafts in CCR6-activated T cells reveals the integration of actin cytoskeleton dynamics. J Proteome Res 9, 283-297, doi:10.1021/pr9006156 (2010). 105 Mi, H. et al. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res 45, D183-D189, doi:10.1093/nar/gkw1138 (2017). 106 Davidson, K. C. et al. Wnt/beta-catenin signaling promotes differentiation, not self-renewal, of human embryonic stem cells and is repressed by Oct4. Proc Natl Acad Sci U S A 109, 4485-4490, doi:10.1073/pnas.1118777109 (2012). 107 Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. Brivanlou, A. H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nature Medicine 10, 55-63, doi:10.1038/nm979 (2004). 108 Villa-Diaz, L. G., Kim, J. K., Laperle, A., Palecek, S. P. Krebsbach, P. H. Inhibition of Focal Adhesion Kinase Signaling by Integrin alpha6beta1 Supports Human Pluripotent Stem Cell Self-Renewal. Stem Cells 34, 1753-1764, doi:10.1002/stem.2349 (2016). 109 Vitillo, L., Baxter, M., Iskender, B., Whiting, P. Kimber, S. J. Integrin-Associated Focal Adhesion Kinase Protects Human Embryonic Stem Cells from Apoptosis, Detachment, and Differentiation. Stem Cell Reports 7, 167-176, doi:10.1016/j.stemcr.2016.07.006 (2016). 110 Srichai, M. B. Zent, R. Integrin Structure and Function. 19-41, doi:10.1007/978-1-4419-0814-8_2 (2010). 111 Narva, E. et al. A Strong Contractile Actin Fence and Large Adhesions Direct Human Pluripotent Colony Morphology and Adhesion. Stem Cell Reports 9, 67-76, doi:10.1016/j.stemcr.2017.05.021 (2017). 112 Gomez-Llobregat, J., Buceta, J. Reigada, R. Interplay of cytoskeletal activity and lipid phase stability in dynamic protein recruitment and clustering. Sci Rep 3, 2608, doi:10.1038/srep02608 (2013). 113 Miyabayashi T, T. J., Yamamoto M, McMillan M, Nguyen C, Kahn M. Wnt/b-catenin/CBP signaling maintains long-term murine embryonic stem cell pluripotency. Proc Natl Acad Sci U S A 104, 5668-5673 (2007). 114 ten Berge, D. et al. Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells. Nat Cell Biol 13, 1070-1075, doi:10.1038/ncb2314 (2011). 115 Blauwkamp, T. A., Nigam, S., Ardehali, R., Weissman, I. L. Nusse, R. Endogenous Wnt signalling in human embryonic stem cells generates an equilibrium of distinct lineage-specified progenitors. Nat Commun 3, 1070, doi:10.1038/ncomms2064 (2012). 116 Krivega, M., Essahib, W. Van de Velde, H. WNT3 and membrane-associated beta-catenin regulate trophectoderm lineage differentiation in human blastocysts. Mol Hum Reprod 21, 711-722, doi:10.1093/molehr/gav036 (2015). 117 Meng, Y. et al. Characterization of integrin engagement during defined human embryonic stem cell culture. Faseb Journal 24, 1056-1065, doi:10.1096/fj.08-126821 (2010). 118 Meng, Y. et al. Characterization of integrin engagement during defined human embryonic stem cell culture. FASEB J 24, 1056-1065, doi:10.1096/fj.08-126821 (2010). 119 Theunissen, T. W. et al. Molecular Criteria for Defining the Naive Human Pluripotent State. Cell Stem Cell 19, 502-515, doi:10.1016/j.stem.2016.06.011 (2016). 120 Mascetti, V. L. Pedersen, R. A. Contributions of Mammalian Chimeras to Pluripotent Stem Cell Research. Cell Stem Cell 19, 163-175, doi:10.1016/j.stem.2016.07.018 (2016). 121 Tachibana, M. et al. Generation of chimeric rhesus monkeys. Cell 148, 285-295, doi:10.1016/j.cell.2011.12.007 (2012). 122 Huang, K. et al. BMI1 enables interspecies chimerism with human pluripotent stem cells. Nat Commun 9, 4649, doi:10.1038/s41467-018-07098-w (2018). 123 Wang, W. Q. et al. Suppressing P16(Ink4a) and P14(ARF) pathways overcomes apoptosis in individualized human embryonic stem cells. Faseb Journal 31, 1130-1140, doi:10.1096/fj.201600782R (2017). 124 Zhang, H. et al. MLL1 Inhibition and Vitamin D Signaling Cooperate to Facilitate the Expanded Pluripotency State. Cell Rep 29, 2659-2671 e2656, doi:10.1016/j.celrep.2019.10.074 (2019). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78196 | - |
| dc.description.abstract | 維持延展性富潛能幹細胞潛能的訊息傳遞機制與膽固醇在潛能幹細胞中的功能還不是被研究得很清楚。本次研究報導了抑制Podocalyxin-like protein 1 (PODXL) 表現會抑制富潛能幹細胞與延展性富潛能幹細胞自我更新的能力,進而造成c-MYC 與端粒酶的蛋白表現量下降,並且抑制逆編程誘導性富潛能幹細胞與逆編程延展性富潛能幹細胞的細胞聚落產生的數量。反之,若增強Podocalyxin-like protein 1 (PODXL) 表現,則會促進富潛能幹細胞與延展性富潛能幹細胞自我更新的能力,進而造成c-MYC 與端粒酶的蛋白表現量上升,並且增加逆編程誘導性富潛能幹細胞與逆編程延展性富潛能幹細胞的細胞聚落產生的數量。我們也發現PODXL 可以調控hydroxymethylglutaryl-CoA reductase (HMGCR) 與sterol regulatory element-binding proteins 1/2 (SREBP1/2) 的表現量去調控細胞內膽固醇的生合成。更重要地,富潛能幹細胞相對於成體幹細胞 (例如: 神經性成體幹細胞,骨間質幹細胞) 與已經分化的體細胞 (例如: 纖維母細胞),對於膽固醇抑制劑處理後的反應更為敏感,結果造成自我更新能力下降。 然而,補充膽固醇可以彌補因為抑制PODXL表現,所造成的富潛能幹細胞自我更新能力的下降。我們更進一步地發現PODXL 可以透過調控脂筏(lipid rafts)的形成,並且透過控制F-actin骨架蛋白纖維形成與膽固醇合成,進而促進新生脂筏形成; 並調節脂筏性蛋白分子integrin α2 (ITGA2) 表現。抑制ITGA2 後的確也會抑制富潛能幹細胞自我更新能力的下降。總結,本研究揭露PODXL在富潛能幹細胞與延展性富潛能幹細胞中扮演了透過調控膽固醇細胞代謝維持自我更新能力的重要地位。 | zh_TW |
| dc.description.abstract | The signaling mechanisms of extended pluripotency and cholesterol in human pluripotent stem cells (hPSCs) have rarely been investigated. Here, we report that downregulation of Podocalyxin-like protein 1 (PODXL) in undifferentiated hPSCs significantly blocks self-renewal, leads to decreased protein expression of c-MYC and telomerase, and inhibits the formation of induced pluripotent stem cell (iPSC) and extended pluripotent stem cell (EPSC) colonies. Accordingly, overexpression of PODXL promotes hPSC self-renewal, c-MYC and telomerase expression, and iPSC/EPSC formation. PODXL also regulates hydroxymethylglutaryl-CoA reductase (HMGCR) and sterol regulatory element-binding proteins 1/2 (SREBP1/2) expression. Importantly, hPSCs are more sensitive to cholesterol depletion than neural stem cells, bone marrow stem cells and fibroblasts, resulting in pluripotency loss, whereas cholesterol can fully restore PODXL knockdown-mediated pluripotency loss. Moreover, PODXL regulates lipid raft formation possibly by serving as a nucleating factor to activate actin polymerization and coupled with cholesterol biosynthesis and transmits signals by controlling integrin α2 (ITGA2) in lipid rafts. Finally, loss of ITGA2 blocks hPSC renewal. Our data highlight the important roles of PODXL in controlling cholesterol metabolism to achieve hPSC self-renewal. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:45:32Z (GMT). No. of bitstreams: 1 U0001-1308202021513700.pdf: 6875258 bytes, checksum: 0e9f43e1f1fc35d2c8b1477bb90bb56a (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員審定書 ii 誌謝 iii 中文摘要 iv Abstract v List of Figures vi List of Tables vii Chapter 1. Introduction 1 1.1 Pluripotent stem cells (PSCs) and extended pluripotent stem cells (EPSCs) 1 1.2 Podocalyxin-like protein 1 (PODXL) 1 1.3 Metabolism in stem cell pluripotency 2 1.4 Interspecies chimera formation 3 Chapter 2. Materials and methods 3 Chapter 3. PODXL’s expression profile in human early embryos and pluripotent stem cells and non-pluripotent stem cells 24 Chapter 4. Manipulations of PODXL level to investigate the effects on self-renewal of human primed state PSCs and extended PSCs 28 Chapter 5. PODXL is important for induced pluripotent stem cell (iPSC) reprogramming 39 Chapter 6. Examination of off-target effects in loss of function experiments in hPSCs 42 Chapter 7. PODXL regulates de novo cholesterol biosynthesis pathway through SREBP1, SREBP2 and HMGCR 47 Chapter 8. PODXL activates SREBPs via RAC1/CDC42/actin network 54 Chapter 9. Cholesterol is pivotal for hPSC pluripotency and survival 58 9.1 hPSCs are hypersensitive to cholesterol inhibition than hNSC, hBMSCs and finroblasts 59 9.2 Cholesterol rescues the shPODXL phenotype 63 Chapter 10. PODXL can regulate lipid raft dynamics and activate integrin pathway. 66 Chapter 11. PODXL regulates lipid raft associated protein, ITGA2. 70 Chapter 12. PODXL may promotes extended potency of hEPSCs in a human/mouse interspecies chimeric embryo model 76 Conclusion and future perspectives 80 Reference 84 Appendix 91 | |
| dc.language.iso | en | |
| dc.subject | PODXL | zh_TW |
| dc.subject | 胚胎幹細胞 | zh_TW |
| dc.subject | 誘導性富潛能幹細胞 | zh_TW |
| dc.subject | 延展性富潛能幹細胞 | zh_TW |
| dc.subject | 膽固醇生合成 | zh_TW |
| dc.subject | 細胞逆編程序 | zh_TW |
| dc.subject | 脂筏 | zh_TW |
| dc.subject | integrin 訊息路徑 | zh_TW |
| dc.subject | induced pluripotent stem cells | en |
| dc.subject | PODXL | en |
| dc.subject | integrin signaling | en |
| dc.subject | lipid rafts | en |
| dc.subject | reprogramming | en |
| dc.subject | cholesterol biosynthesis | en |
| dc.subject | embryonic stem cells | en |
| dc.subject | extended pluripotent stem cells | en |
| dc.title | Podocalyxin-like Protein 1透過膽固醇生合成路徑促進人類富潛能幹細胞的自我更新能力 | zh_TW |
| dc.title | Podocalyxin-like Protein 1 Regulates Human Pluripotent Stem Cell Self-Renewal through the Cholesterol Biosynthesis Pathway | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 吳漢忠(Han-Chung Wu),宋麗英(Li-Ying Sung),林劭品(Shau-Ping Lin),陳佑宗 (You-Tzung Che),蔡素宜(Su-Yi Tsai) | |
| dc.subject.keyword | PODXL,胚胎幹細胞,誘導性富潛能幹細胞,延展性富潛能幹細胞,膽固醇生合成,細胞逆編程序,脂筏,integrin 訊息路徑, | zh_TW |
| dc.subject.keyword | PODXL,embryonic stem cells,induced pluripotent stem cells,extended pluripotent stem cells,cholesterol biosynthesis,reprogramming,lipid rafts,integrin signaling, | en |
| dc.relation.page | 92 | |
| dc.identifier.doi | 10.6342/NTU202003331 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-18 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 基因體與系統生物學學位學程 | zh_TW |
| dc.date.embargo-lift | 2025-08-17 | - |
| 顯示於系所單位: | 基因體與系統生物學學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1308202021513700.pdf 未授權公開取用 | 6.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
