Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78185Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 林亮音(Liang-In Lin) | |
| dc.contributor.author | Kao-Yu Chang | en |
| dc.contributor.author | 張高煜 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:45:08Z | - |
| dc.date.available | 2025-08-17 | |
| dc.date.copyright | 2020-09-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-14 | |
| dc.identifier.citation | Thein, M.S., et al., Outcome of older patients with acute myeloid leukemia: an analysis of SEER data over 3 decades. Cancer, 2013. 119(15): p. 2720-7. Papaemmanuil, E., et al., Genomic Classification and Prognosis in Acute Myeloid Leukemia. N Engl J Med, 2016. 374(23): p. 2209-2221. Tenen, D.G., Disruption of differentiation in human cancer: AML shows the way. Nat Rev Cancer, 2003. 3(2): p. 89-101. Arber, D.A., et al., The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood, 2016. 127(20): p. 2391-2405. Saultz, J. and R. Garzon, Acute Myeloid Leukemia: A Concise Review. Journal of Clinical Medicine, 2016. 5(3): p. 33. Dombret, H. and C. Gardin, An update of current treatments for adult acute myeloid leukemia. Blood, 2016. 127(1): p. 53-61. Lai, C., K. Doucette, and K. Norsworthy, Recent drug approvals for acute myeloid leukemia. J Hematol Oncol, 2019. 12(1): p. 100. Talati, C. and J.E. Lancet, CPX-351: changing the landscape of treatment for patients with secondary acute myeloid leukemia. Future Oncol, 2018. 14(12): p. 1147-1154. Levis, M., Midostaurin approved for FLT3-mutated AML. Blood, 2017. 129(26): p. 3403-3406. Dhillon, S., Gilteritinib: First Global Approval. Drugs, 2019. 79(3): p. 331-339. Ok, C.Y., et al., Persistent IDH1/2 mutations in remission can predict relapse in patients with acute myeloid leukemia. Haematologica, 2019. 104(2): p. 305-311. Dhillon, S., Ivosidenib: First Global Approval. Drugs, 2018. 78(14): p. 1509-1516. Kim, E.S., Enasidenib: First Global Approval. Drugs, 2017. 77(15): p. 1705-1711. Norsworthy, K.J., et al., FDA Approval Summary: Glasdegib for newly-diagnosed acute myeloid leukemia. Clinical Cancer Research, 2019: p. clincanres.0365.2019. DiNardo, C.D., et al., Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood, 2019. 133(1): p. 7-17. Wei, A.H., et al., Venetoclax Combined With Low-Dose Cytarabine for Previously Untreated Patients With Acute Myeloid Leukemia: Results From a Phase Ib/II Study. J Clin Oncol, 2019. 37(15): p. 1277-1284. Estey, E., et al., Recent drug approvals for newly diagnosed acute myeloid leukemia: gifts or a Trojan horse? Leukemia, 2020. 34(3): p. 671-681. Baron, J. and E.S. Wang, Gemtuzumab ozogamicin for the treatment of acute myeloid leukemia. Expert Rev Clin Pharmacol, 2018. 11(6): p. 549-559. Hofmann, S., et al., Chimeric Antigen Receptor (CAR) T Cell Therapy in Acute Myeloid Leukemia (AML). J Clin Med, 2019. 8(2). Mayer, R.J., et al., Intensive Postremission Chemotherapy in Adults with Acute Myeloid Leukemia. New England Journal of Medicine, 1994. 331(14): p. 896-903. Seto, E. and M. Yoshida, Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol, 2014. 6(4): p. a018713. Suraweera, A., K.J. O'Byrne, and D.J. Richard, Combination Therapy With Histone Deacetylase Inhibitors (HDACi) for the Treatment of Cancer: Achieving the Full Therapeutic Potential of HDACi. Front Oncol, 2018. 8: p. 92. Lawlor, L. and X.B. Yang, Harnessing the HDAC-histone deacetylase enzymes, inhibitors and how these can be utilised in tissue engineering. Int J Oral Sci, 2019. 11(2): p. 20. Sanaei, M. and F. Kavoosi, Histone Deacetylases and Histone Deacetylase Inhibitors: Molecular Mechanisms of Action in Various Cancers. Adv Biomed Res, 2019. 8: p. 63. Ahmad Ahmadzadeh1, E.K., Mohammad Shahjahani1, Jessika Bertacchini2, Tina Vosoughi1, Najmaldin Saki1 The Role of HDACs as Leukemia Therapy Targets using HDI International Journal of Hematology- Oncology and Stem Cell Research 2015. 9(4)(1): p. 203-14. Chen, H.P., Y.T. Zhao, and T.C. Zhao, Histone deacetylases and mechanisms of regulation of gene expression. Crit Rev Oncog, 2015. 20(1-2): p. 35-47. Ptasinska, A., et al., Identification of a dynamic core transcriptional network in t(8;21) AML that regulates differentiation block and self-renewal. Cell Rep, 2014. 8(6): p. 1974-1988. Maiques-Diaz, A., et al., Chromatin modifications induced by the AML1-ETO fusion protein reversibly silence its genomic targets through AML1 and Sp1 binding motifs. Leukemia, 2012. 26(6): p. 1329-1337. Xu, W.S., R.B. Parmigiani, and P.A. Marks, Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene, 2007. 26(37): p. 5541-52. Kim, H.J. and S.C. Bae, Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am J Transl Res, 2011. 3(2): p. 166-79. Kuendgen, A., et al., The histone deacetylase (HDAC) inhibitor valproic acid as monotherapy or in combination with all-trans retinoic acid in patients with acute myeloid leukemia. Cancer, 2006. 106(1): p. 112-9. Fredly, H., B.T. Gjertsen, and O. Bruserud, Histone deacetylase inhibition in the treatment of acute myeloid leukemia: the effects of valproic acid on leukemic cells, and the clinical and experimental evidence for combining valproic acid with other antileukemic agents. Clin Epigenetics, 2013. 5(1): p. 12. Torgersen, M.L., et al., Targeting autophagy potentiates the apoptotic effect of histone deacetylase inhibitors in t(8;21) AML cells. Blood, 2013. 122(14): p. 2467-76. Bewersdorf, J.P., et al., Epigenetic therapy combinations in acute myeloid leukemia: what are the options? Ther Adv Hematol, 2019. 10: p. 2040620718816698. Ocio, E.M., et al., Panobinostat as part of induction and maintenance for elderly patients with newly diagnosed acute myeloid leukemia: phase Ib/II panobidara study. Haematologica, 2015. 100(10): p. 1294-300. Corrales-Medina, F.F., et al., Efficacy of panobinostat and marizomib in acute myeloid leukemia and bortezomib-resistant models. Leuk Res, 2015. 39(3): p. 371-9. Sayar, H., et al., Combination of sorafenib, vorinostat and bortezomib for the treatment of poor-risk AML: report of two consecutive clinical trials. Leuk Res, 2019. 77: p. 30-33. Rasmussen, R.D., et al., Enhanced efficacy of combined HDAC and PARP targeting in glioblastoma. Mol Oncol, 2016. 10(5): p. 751-63. Budman, D.R., et al., The histone deacetylase inhibitor panobinostat demonstrates marked synergy with conventional chemotherapeutic agents in human ovarian cancer cell lines. Invest New Drugs, 2011. 29(6): p. 1224-9. Kramer, O.H., et al., Histone deacetylase inhibitors and hydroxyurea modulate the cell cycle and cooperatively induce apoptosis. Oncogene, 2008. 27(6): p. 732-40. Schlenk, R.F., et al., Panobinostat monotherapy and combination therapy in patients with acute myeloid leukemia: results from two clinical trials. Haematologica, 2018. 103(1): p. e25-e28. Szymanski, W., et al., Light-Controlled Histone Deacetylase (HDAC) Inhibitors: Towards Photopharmacological Chemotherapy. Chemistry, 2015. 21(46): p. 16517-16524. Fredly H, G.B., Bruserud O, Histone deacetylase inhibition in the treatment ofacute myeloid leukemia: the effects of valproicacid on leukemic cells, and the clinical andexperimental evidence for combining valproicacid with other antileukemic agents. Clin Epigenetics, 2013 Jul 30;5(1):12. Hrgovic, I., et al., The histone deacetylase inhibitor trichostatin a decreases lymphangiogenesis by inducing apoptosis and cell cycle arrest via p21-dependent pathways. BMC Cancer, 2016. 16(1): p. 763. Yamashita, Y., et al., Histone deacetylase inhibitor trichostatin A induces cell-cycle arrest/apoptosis and hepatocyte differentiation in human hepatoma cells. Int J Cancer, 2003. 103(5): p. 572-6. Shen, Z., et al., Short-term stimulation with histone deacetylase inhibitor trichostatin a induces epithelial-mesenchymal transition in nasopharyngeal carcinoma cells without increasing cell invasion ability. BMC Cancer, 2019. 19(1): p. 262. Piacentini, P., et al., Trichostatin A enhances the response of chemotherapeutic agents in inhibiting pancreatic cancer cell proliferation. Virchows Arch, 2006. 448(6): p. 797-804. Zhang, H., et al., Trichostatin A inhibits proliferation of PC3 prostate cancer cells by disrupting the EGFR pathway. Oncol Lett, 2019. 18(1): p. 687-693. Vigushin, D.M., et al., Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clin Cancer Res, 2001. 7(4): p. 971-6. Ma, J., et al., Trichostatin A, a histone deacetylase inhibitor, suppresses proliferation and promotes apoptosis of esophageal squamous cell lines. Mol Med Rep, 2015. 11(6): p. 4525-31. Sanderson, L., et al., Plasma pharmacokinetics and metabolism of the histone deacetylase inhibitor trichostatin a after intraperitoneal administration to mice. Drug Metab Dispos, 2004. 32(10): p. 1132-8. Van Veggel, M., E. Westerman, and P. Hamberg, Clinical Pharmacokinetics and Pharmacodynamics of Panobinostat. Clin Pharmacokinet, 2018. 57(1): p. 21-29. Raedler, L.A., Farydak (Panobinostat): First HDAC Inhibitor Approved for Patients with Relapsed Multiple Myeloma. Am Health Drug Benefits, 2016. 9(Spec Feature): p. 84-7. Anne, M., et al., Profile of panobinostat and its potential for treatment in solid tumors: an update. Onco Targets Ther, 2013. 6: p. 1613-24. San José-Enériz, E., et al., HDAC Inhibitors in Acute Myeloid Leukemia. Cancers (Basel), 2019. 11(11). Patnaik, M.M., The importance of FLT3 mutational analysis in acute myeloid leukemia. Leuk Lymphoma, 2018. 59(10): p. 2273-2286. Stirewalt, D.L. and J.P. Radich, The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer, 2003. 3(9): p. 650-665. Wander, S.A., M.J. Levis, and A.T. Fathi, The evolving role of FLT3 inhibitors in acute myeloid leukemia: quizartinib and beyond. Therapeutic Advances in Hematology, 2014. 5(3): p. 65-77. Larrosa-Garcia, M. and M.R. Baer, FLT3 Inhibitors in Acute Myeloid Leukemia: Current Status and Future Directions. Mol Cancer Ther, 2017. 16(6): p. 991-1001. Choi, Y., et al., Novel mutations in the FLT3 gene in adult patients with refractory acute myeloid leukemia. Leukemia, 2004. 19(1): p. 141-143. Liang, D.C., et al., FLT3-TKD mutation in childhood acute myeloid leukemia. Leukemia, 2003. 17(5): p. 883-886. Bagrintseva, K., et al., Mutations in the tyrosine kinase domain of FLT3 define a new molecular mechanism of acquired drug resistance to PTK inhibitors in FLT3-ITD–transformed hematopoietic cells. Blood, 2004. 103(6): p. 2266-2275. Cioccio, J. and D. Claxton, Therapy of acute myeloid leukemia: therapeutic targeting of tyrosine kinases. Expert Opin Investig Drugs, 2019. 28(4): p. 337-349. Zhang, H., et al., Clinical resistance to crenolanib in acute myeloid leukemia due to diverse molecular mechanisms. Nat Commun, 2019. 10(1): p. 244. Daver, N., et al., Secondary mutations as mediators of resistance to targeted therapy in leukemia. Blood, 2015. 125(21): p. 3236-3245. Deeks, E.D., Cabozantinib: A Review in Advanced Hepatocellular Carcinoma. Target Oncol, 2019. 14(1): p. 107-113. Lu, J.W., et al., Cabozantinib is selectively cytotoxic in acute myeloid leukemia cells with FLT3-internal tandem duplication (FLT3-ITD). Cancer Lett, 2016. 376(2): p. 218-25. Klaeger, S., et al., The target landscape of clinical kinase drugs. Science, 2017. 358(6367): p. eaan4368. Fathi, A.T., et al., Cabozantinib is well tolerated in acute myeloid leukemia and effectively inhibits the resistance-conferring FLT3/tyrosine kinase domain/F691 mutation. Cancer, 2018. 124(2): p. 306-314. Lacy, S.A., D.R. Miles, and L.T. Nguyen, Clinical Pharmacokinetics and Pharmacodynamics of Cabozantinib. Clin Pharmacokinet, 2017. 56(5): p. 477-491. Lacy, S., et al., A population pharmacokinetic model of cabozantinib in healthy volunteers and patients with various cancer types. Cancer Chemother Pharmacol, 2018. 81(6): p. 1071-1082. Nguyen, L., et al., Pharmacokinetics of cabozantinib tablet and capsule formulations in healthy adults. Anticancer Drugs, 2016. 27(7): p. 669-78. Chen, W.-C., Establishment, characterization and treatment strategy of cabozantinib-resistant MV4-11-XR leukemic cells. Master thesis, National Taiwan University, 2016. Fu, Y.-H., Exploring cabozantinib-resistance in AML-from bioinformatics to bench. Master thesis, National Taiwan University. 2019. Lo, F.-Y., Modulation of p53 function with small molecules to overcome Cabozantinib-resistance in AML. Master thesis, National Taiwan University. 2019. Katayama, K., K. Noguchi, and Y. Sugimoto, Heat shock protein 90 inhibitors overcome the resistance to Fms-like tyrosine kinase 3 inhibitors in acute myeloid leukemia. Oncotarget, 2018. 9(76): p. 34240-34258. Pietschmann, K., et al., Breakdown of the FLT3-ITD/STAT5 axis and synergistic apoptosis induction by the histone deacetylase inhibitor panobinostat and FLT3-specific inhibitors. Mol Cancer Ther, 2012. 11(11): p. 2373-83. Bali, P., et al., Superior activity of the combination of histone deacetylase inhibitor LAQ824 and the FLT-3 kinase inhibitor PKC412 against human acute myelogenous leukemia cells with mutant FLT-3. Clinical Cancer Research, 2004. 10(15): p. 4991-4997. Chen, M.C., et al., The HDAC inhibitor, MPT0E028, enhances erlotinib-induced cell death in EGFR-TKI-resistant NSCLC cells. Cell Death Dis, 2013. 4: p. e810. Liffers, K., et al., Histone Deacetylase Inhibitors Resensitize EGFR/EGFRvIII-Overexpressing, Erlotinib-Resistant Glioblastoma Cells to Tyrosine Kinase Inhibition. Target Oncol, 2016. 11(1): p. 29-40. Witta, S.E., et al., ErbB-3 expression is associated with E-cadherin and their coexpression restores response to gefitinib in non-small-cell lung cancer (NSCLC). Ann Oncol, 2009. 20(4): p. 689-95. Wang, S., et al., CellMiner Companion: an interactive web application to explore CellMiner NCI-60 data. Bioinformatics, 2016. 32(15): p. 2399-401. Lan, P.-Q., Establishment, characterization and treatment strategy of cabozantinib-resistant Molm13-XR leukemic cells. Master thesis, National Taiwan University. 2017. Coqueret, O., New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol, 2003. 13(2): p. 65-70. Xu, Z., et al., Inhibition of HDAC3 prevents diabetic cardiomyopathy in OVE26 mice via epigenetic regulation of DUSP5-ERK1/2 pathway. Clin Sci (Lond), 2017. 131(15): p. 1841-1857. Gallagher, S.J., et al., HDAC inhibitors restore BRAF-inhibitor sensitivity by altering PI3K and survival signalling in a subset of melanoma. Int J Cancer, 2018. 142(9): p. 1926-1937. Ozaki, K., et al., Blockade of the ERK or PI3K-Akt signaling pathway enhances the cytotoxicity of histone deacetylase inhibitors in tumor cells resistant to gefitinib or imatinib. Biochem Biophys Res Commun, 2010. 391(4): p. 1610-5. Will, M., et al., Rapid induction of apoptosis by PI3K inhibitors is dependent upon their transient inhibition of RAS-ERK signaling. Cancer Discov, 2014. 4(3): p. 334-47. Groselj, B., et al., Histone deacetylase inhibitors as radiosensitisers: effects on DNA damage signalling and repair. Br J Cancer, 2013. 108(4): p. 748-54. Clark-Knowles, K.V., A.M. O'Brien, and J.I. Weberpals, BRCA1 as a Therapeutic Target in Sporadic Epithelial Ovarian Cancer. J Oncol, 2010. 2010: p. 891059. Robert, C., et al., Histone deacetylase inhibitors decrease NHEJ both by acetylation of repair factors and trapping of PARP1 at DNA double-strand breaks in chromatin. Leuk Res, 2016. 45: p. 14-23. Roos, W.P. and B. Kaina, DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett, 2013. 332(2): p. 237-48. Casao, A., et al., Cleaved PARP-1, an Apoptotic Marker, can be Detected in Ram Spermatozoa. Reprod Domest Anim, 2015. 50(4): p. 688-91. Sharma, A., K. Singh, and A. Almasan, Histone H2AX phosphorylation: a marker for DNA damage. Methods Mol Biol, 2012. 920: p. 613-26. Shlush, L.I., et al., Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature, 2017. 547(7661): p. 104-108. Ho, T.C., et al., Evolution of acute myelogenous leukemia stem cell properties after treatment and progression. Blood, 2016. 128(13): p. 1671-8. Marcato, P., et al., Aldehyde dehydrogenase: its role as a cancer stem cell marker comes down to the specific isoform. Cell Cycle, 2011. 10(9): p. 1378-84. Kim, D., et al., High NRF2 level mediates cancer stem cell-like properties of aldehyde dehydrogenase (ALDH)-high ovarian cancer cells: inhibitory role of all-trans retinoic acid in ALDH/NRF2 signaling. Cell Death Dis, 2018. 9(9): p. 896. Yang, L., et al., ALDH1A1 defines invasive cancer stem-like cells and predicts poor prognosis in patients with esophageal squamous cell carcinoma. Mod Pathol, 2014. 27(5): p. 775-83. Ginestier, C., et al., ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell, 2007. 1(5): p. 555-67. Cai, M.H., et al., Depletion of HDAC1, 7 and 8 by Histone Deacetylase Inhibition Confers Elimination of Pancreatic Cancer Stem Cells in Combination with Gemcitabine. Sci Rep, 2018. 8(1): p. 1621. Kudinov, A.E., et al., Musashi RNA-Binding Proteins as Cancer Drivers and Novel Therapeutic Targets. Clin Cancer Res, 2017. 23(9): p. 2143-2153. Han, Y., et al., Musashi-2 Silencing Exerts Potent Activity against Acute Myeloid Leukemia and Enhances Chemosensitivity to Daunorubicin. PLoS One, 2015. 10(8): p. e0136484. Park, S.M., et al., Musashi2 sustains the mixed-lineage leukemia-driven stem cell regulatory program. J Clin Invest, 2015. 125(3): p. 1286-98. Kwon, H.Y., et al., Tetraspanin 3 Is Required for the Development and Propagation of Acute Myelogenous Leukemia. Cell Stem Cell, 2015. 17(2): p. 152-164. Collins, C.T. and J.L. Hess, Role of HOXA9 in leukemia: dysregulation, cofactors and essential targets. Oncogene, 2016. 35(9): p. 1090-8. Cai, Q., et al., Helios deficiency has minimal impact on T cell development and function. J Immunol, 2009. 183(4): p. 2303-11. ANGELITA REBOLLO, C.S., Ikaros, Aiolos and Helios: Transcription regulators and lymphoid malignancies. Immunology and Cell Biology, 2003. 81 p. 171–175. Park, S.M., et al., IKZF2 Drives Leukemia Stem Cell Self-Renewal and Inhibits Myeloid Differentiation. Cell Stem Cell, 2019. 24(1): p. 153-165 e7. Chan, S.M., The Making of a Leukemic Stem Cell: A Novel Role for IKZF2 in AML Stemness and Differentiation. Cell Stem Cell, 2019. 24(1): p. 5-6. Gawlik-Rzemieniewska, N. and I. Bednarek, The role of NANOG transcriptional factor in the development of malignant phenotype of cancer cells. Cancer Biol Ther, 2016. 17(1): p. 1-10. Rasti, A., et al., Co-expression of Cancer Stem Cell Markers OCT4 and NANOG Predicts Poor Prognosis in Renal Cell Carcinomas. Sci Rep, 2018. 8(1): p. 11739. Xu, D.D., et al., The IGF2/IGF1R/Nanog Signaling Pathway Regulates the Proliferation of Acute Myeloid Leukemia Stem Cells. Front Pharmacol, 2018. 9: p. 687. Wang, X.Q., et al., Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4-AKT-ATP-binding cassette G2 pathway. Hepatology, 2010. 52(2): p. 528-39. Xiang, Y. and X. Zhou, Octamer-binding transcription factor 4 correlates with complex karyotype, FLT3-ITD mutation and poorer risk stratification, and predicts unfavourable prognosis in patients with acute myeloid leukaemia. Hematology, 2018. 23(10): p. 721-728. Yin, J.Y., et al., High expression of OCT4 is frequent and may cause undesirable treatment outcomes in patients with acute myeloid leukemia. Tumour Biol, 2015. 36(12): p. 9711-6. Zhao, W., et al., Identification of Krüppel-like factor 4 as a potential tumor suppressor gene in colorectal cancer. Oncogene, 2004. 23(2): p. 395-402. Tang, H., et al., KLF4 is a tumor suppressor in anaplastic meningioma stem-like cells and human meningiomas. J Mol Cell Biol, 2017. 9(4): p. 315-324. Ghaleb, A.M., et al., KLF4 Suppresses Tumor Formation in Genetic and Pharmacological Mouse Models of Colonic Tumorigenesis. Mol Cancer Res, 2016. 14(4): p. 385-96. Li, W., et al., Genome-wide analyses identify KLF4 as an important negative regulator in T-cell acute lymphoblastic leukemia through directly inhibiting T-cell associated genes. Mol Cancer, 2015. 14: p. 26. Morris, V.A., et al., Deregulated KLF4 Expression in Myeloid Leukemias Alters Cell Proliferation and Differentiation through MicroRNA and Gene Targets. Mol Cell Biol, 2016. 36(4): p. 559-73. Liu, S., et al., RUNX1 inhibits proliferation and induces apoptosis of t(8;21) leukemia cells via KLF4-mediated transactivation of P57. Haematologica, 2019. 104(8): p. 1597-1607. Ververis, K., et al., Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents. Biologics, 2013. 7: p. 47-60. Maréchal, A. and L. Zou, DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol, 2013. 5(9). Singh, A., et al., Panobinostat as Pan-deacetylase Inhibitor for the Treatment of Pancreatic Cancer: Recent Progress and Future Prospects. Oncol Ther, 2016. 4(1): p. 73-89. Prange, K.H.M., et al., MLL-AF9 and MLL-AF4 oncofusion proteins bind a distinct enhancer repertoire and target the RUNX1 program in 11q23 acute myeloid leukemia. Oncogene, 2017. 36(23): p. 3346-3356. Zhang, G., et al., Vorinostat and sorafenib synergistically kill tumor cells via FLIP suppression and CD95 activation. Clin Cancer Res, 2008. 14(17): p. 5385-99. Xie, C., et al., Panobinostat enhances cytarabine and daunorubicin sensitivities in AML cells through suppressing the expression of BRCA1, CHK1, and Rad51. PLoS One, 2013. 8(11): p. e79106. Long, J., et al., FLT3 inhibition upregulates HDAC8 via FOXO to inactivate p53 and promote maintenance of FLT3-ITD+ acute myeloid leukemia. Blood, 2020. 135(17): p. 1472-1483. Rabe, M., et al., Identification of a transient state during the acquisition of temozolomide resistance in glioblastoma. Cell Death Dis, 2020. 11(1): p. 19. Wieduwilt, M.J., et al., Histone Deacetylase Inhibition with Panobinostat Combined with Intensive Induction Chemotherapy in Older Patients with Acute Myeloid Leukemia: Phase I Study Results. Clin Cancer Res, 2019. 25(16): p. 4917-4923. DeAngelo, D.J., et al., Safety and efficacy of oral panobinostat plus chemotherapy in patients aged 65 years or younger with high-risk acute myeloid leukemia. Leuk Res, 2019. 85: p. 106197. Ng, C.-H., et al., Single Institution Phase 1 Study on Combination Therapy of Midostaurin and Panobinostat in Acute Myeloid Leukemia - the Interim Report. Blood, 2018. 132(Supplement 1): p. 5237-5237. De Kouchkovsky, I. and M. Abdul-Hay, 'Acute myeloid leukemia: a comprehensive review and 2016 update'. Blood Cancer J, 2016. 6(7): p. e441. Talati, C. and K. Sweet, Recently approved therapies in acute myeloid leukemia: A complex treatment landscape. Leuk Res, 2018. 73: p. 58-66. Kiyoi, H., FLT3 INHIBITORS: RECENT ADVANCES AND PROBLEMS FOR CLINICAL APPLICATION. Nagoya J Med Sci, 2015. 77(1-2): p. 7-17. Glozak, M.A. and E. Seto, Histone deacetylases and cancer. Oncogene, 2007. 26(37): p. 5420-5432. Ropero, S. and M. Esteller, The role of histone deacetylases (HDACs) in human cancer. Mol Oncol, 2007. 1(1): p. 19-25. Haberland, M., R.L. Montgomery, and E.N. Olson, The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet, 2009. 10(1): p. 32-42. Ma, Y., et al., Effects of Histone Deacetylase Inhibitor Panobinostat (LBH589) on Bone Marrow Mononuclear Cells of Relapsed or Refractory Multiple Myeloma Patients and Its Mechanisms. Med Sci Monit, 2017. 23: p. 5150-5157. Shieh, J.M., et al., A histone deacetylase inhibitor enhances expression of genes inhibiting Wnt pathway and augments activity of DNA demethylation reagent against nonsmall-cell lung cancer. Int J Cancer, 2017. 140(10): p. 2375-2386. Kachhap, S.K., et al., Downregulation of homologous recombination DNA repair genes by HDAC inhibition in prostate cancer is mediated through the E2F1 transcription factor. PLoS One, 2010. 5(6): p. e11208. Nabinger, S.C., et al., Mutant p53 enhances leukemia-initiating cell self-renewal to promote leukemia development. Leukemia, 2019. 33(6): p. 1535-1539. Kim, H.-B., et al., Sensitization of Chemo-Resistant Human Chronic Myeloid Leukemia Stem-Like Cells to Hsp90 Inhibitor by SIRT1 Inhibition. International Journal of Biological Sciences, 2015. 11(8): p. 923-934. Wen, K., et al., Oct-4 is required for an antiapoptotic behavior of chemoresistant colorectal cancer cells enriched for cancer stem cells: effects associated with STAT3/Survivin. Cancer Lett, 2013. 333(1): p. 56-65. Rowland, B.D., R. Bernards, and D.S. Peeper, The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol, 2005. 7(11): p. 1074-82. Xiong, X., et al., KLF4, A Gene Regulating Prostate Stem Cell Homeostasis, Is a Barrier to Malignant Progression and Predictor of Good Prognosis in Prostate Cancer. Cell Rep, 2018. 25(11): p. 3006-3020.e7. Gryder, B.E., Q.H. Sodji, and A.K. Oyelere, Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed. Future Med Chem, 2012. 4(4): p. 505-24. Ocio, E.M., et al., Panobinostat as part of induction and maintenance for elderly patients with newly diagnosed acute myeloid leukemia: phase Ib/II panobidara study. Haematologica, 2015. 100(10): p. 1294-300. Yan, B., et al., Low-frequency TP53 hotspot mutation contributes to chemoresistance through clonal expansion in acute myeloid leukemia. Leukemia, 2020. 34(7): p. 1816-1827. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78185 | - |
| dc.description.abstract | 在急性骨髓性白血病(Acute myeloid leukemia, AML)患者中,約有20~30%帶有FLT3基因突變,其中以FLT3之內部串聯重複(FLT3-ITD)最為常見,通常會使用酪胺酸激酶抑制劑治療,但最終因產生抗藥性而導致治療失敗;實驗室先前發現一個FDA核准用於固態腫瘤的酪胺酸激酶抑制劑cabozantinib,可選擇性抑制具有FLT3-ITD白血病細胞株。為了預防未來用於臨床白血病治療產生抗藥性的問題,實驗室建立具有cabozantinib抗性之MV4-11與Molm-13細胞,並研究產生抗藥性的機制。近年來文獻指出表觀遺傳的異常也是造成AML的原因,所以未來針對表觀遺傳的藥物可能是AML的替代用藥。因此,我們利用表觀遺傳調控物質的藥庫(SCREEN-WELL® Epigenetics library : BML-2836)篩選具發展潛力的藥物。 經藥庫篩選後,我們選擇出Trischosatin A (TSA, 廣泛型組蛋白去乙醯酶抑制劑),及與TSA同為廣泛型組蛋白去乙醯酶抑制劑LBH589 (Panobinostat, FDA核准藥物)。TSA與LBH589對白血病細胞(MV4-11)及具有cabozantinib抗性之白血病細胞(MV4-11-XR)有良好的抑制效果,TSA之IC50在MV4-11與 MV4-11-XR細胞分別為59.93±15.9 nM、108.9±40.4 nM;而LBH589之IC50在MV4-11與MV4-11-XR細胞分別為1.80±0.24 nM、5.03±1.50 nM。我們發現TSA與LBH589可以停滯白血病細胞的細胞週期於G0/G1期,並抑制PI3K及MAPK訊息傳遞路徑且引發細胞凋亡以及造成DNA損傷。另外,TSA與LBH589可以抑制白血病細胞形成細胞群落的能力,並抑制自我更新相關基因及促進腫瘤抑制基因表現。最後評估TSA與LBH589合併使用cabozantinib的效果,發現TSA合併使用cabozantinib於MV4-11及MV4-11-XR細胞效果為加成、協同效果;LBH589合併使用cabozantinib於MV4-11及MV4-11-XR細胞效果均為協同效果。 總體而言,廣泛型組蛋白去乙醯酶抑制劑對MV4-11與MV4-11-XR細胞有良好的毒殺效果,因此未來可以評估使用組蛋白去乙醯酶抑制劑治療對具對TKI有抗藥性的AML,以期提高AML病人的生存率。 | zh_TW |
| dc.description.abstract | A total of 20-30% acute myeloid leukemia (AML) patients have mutations in the FLT3 (Fms-like tyrosine kinase 3) gene; among those, FLT3-internal tandem repeats (FLT3-ITD) were the most common. Patients with FLT3-ITD usually treated with tyrosine kinase inhibitors, but eventually the treatment fails due to drug resistance. In our laboratory previous studies, we found that the tyrosine kinase inhibitor cabozantinib approved by FDA for solid tumor treatment could selectively inhibit the proliferation of FLT3-ITD mutant AML cell lines. To evaluate the possibility of drug resistance in clinical leukemia treatment by using cabozantinib, we established cabozantinib-resistant cell lines MV4-11-XR and Molm13-XR from MV4-11 cells and Molm13 cells, respectively, to figure out the drug resistance mechanism. Many studies demonstrate that epigenetic changes participate in the pathogenesis of AML. As a consequence, epigenetically targeted therapies may be an ideal alternative strategy for AML treatment. In this study, we used a drug library (BML-2836) to select potential drugs for AML treatment. Following drug screening, two pan-HDAC inhibitors, trichostain A(TSA) and LBH589 were selected for further investigation. We found that TSA and LBH589 had good antileukemic effects on cabozantinib-sensitive leukemia cell MV4-11 cells and cabozantinib-resistant leukemia cell MV4-11-XR cells. IC50 for TSA against MV4-11 cells and MV4-11-XR cells were 59.93±15.9 nM and 108.9±40.4 nM, respectively; and IC50 for LBH589 against MV4-11 cells and MV4-11-XR cells were 1.80±0.24 nM and 5.03±1.50 nM, respectively. We also found that either TSA or LBH589 treatment could trigger G0/G1 cell cycle arrest and inhibit the PI3K and MAPK signaling pathways, subsequently accompanied by cell apoptosis and DNA damage. Moreover, both TSA and LBH589 inhibited colony forming ability and reduced the expression of self-renewal related genes and promoted the expression of tumor suppressor gene in both MV4-11 cells and MV4-11-XR cells. Finally, we evaluated the pan-HDAC inhibitor in combination with cabozantinib in MV4-11 cells and MV4-11-XR cells. Combination treatment of TSA and cabozantinib showed synergistic effect on MV4-11-XR cells and additive effect on MV4-11 cells. LBH589 plus cabozantinib showed synergistic effect on MV4-11 cells and MV4-11-XR cells. In this study, we demonstrated that pan-HDAC inhibitor exhibited promising antileukemic activity againt both MV4-11 cells and MV4-11-XR cells. Therefore, pan-HDAC inhibitor may be a clinically poteinal therapeutic agent in treating drug-resistance AML, improving the survival rates of patients. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:45:08Z (GMT). No. of bitstreams: 1 U0001-1308202022281100.pdf: 8008592 bytes, checksum: 7a143dc3139c1c56c4cddbb68c322040 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 致謝 ii 摘要 iii Abstract v 目錄 vii 圖目錄 xi 補充資料目錄 xiii 表目錄 xiv 縮寫表 xv 第一章 前言 1 1.1. 急性骨髓性白血病簡介 1 1.1.1. 急性骨髓性白血病(Acute Myeloid Leukemia, AML) 1 1.1.2. AML之分類 1 1.1.3. 急性骨髓性白血病之治療 1 1.2. Histone deacetylase (HDAC)組蛋白去乙醯酶 4 1.2.1. 組蛋白(去)乙醯化 4 1.2.2. 非組蛋白類的蛋白(去)乙醯化 5 1.3. Histone deacetylase inhibitor (HDACi) 組蛋白去乙醯酶抑制劑 6 1.3.1. HDACi 治療AML的現況 6 1.3.2. Trichostatin A (TSA) 簡介 6 1.3.3. LBH589 (Panobinostat) 簡介 7 1.4. Fms-like tyrosine kinase 3 (FLT3) 7 1.4.1. FLT3簡介 7 1.4.2. FLT3突變 8 1.4.3. FLT3標靶藥物簡介 8 1.4.4. HDACi 治療FLT3基因突變的現況 10 第二章 研究目的 12 第三章 材料與方法 13 3.1. 材料 13 3.1.1. 細胞株 13 3.1.2. 儀器設備 13 3.1.3. 藥品 14 3.1.4. 使用的小分子藥物 16 3.1.5. 抗體 16 3.1.6. 試劑組 17 3.1.7. 藥品與試劑配製 17 3.2. 方法 19 3.2.1. 細胞培養 19 3.2.2. 細胞生長曲線(Cell proliferation curce) 19 3.2.3. 細胞抑殺試驗(MTS assay) 19 3.2.4. 流式細胞儀(Flow cytometry)分析 20 3.2.5. 細胞群落分析(Colony formation assay) 21 3.2.6. 細胞內蛋白質萃取 21 3.2.7. 蛋白質濃度定量 22 3.2.8. 西方墨點法 22 3.2.9. RNA萃取 23 3.2.10. 反轉錄聚合酶反應(reverse transcription) 23 3.2.11. 即時監控聚合酶連鎖反應(q-PCR) 24 3.2.12. 統計方法 24 3.2.13. 所使用到的軟體及網站 24 第四章 實驗結果 26 4.1. 從表觀遺傳物質藥庫(BML-2836)中篩選具發展潛力的藥物-Trichostatin A 26 4.2. TSA與LBH589對MV4-11及MV4-11-XR細胞的抑制效果 26 4.3. TSA與LBH589延遲MV4-11及MV4-11-XR細胞生長的速度 26 4.4. TSA與LBH589停滯MV4-11及MV4-11-XR細胞的細胞週期於G0/G1期 27 4.5. TSA與LBH589抑制MV4-11及MV4-11-XR細胞的PI3K/AKT及ERK1/2訊息傳遞路徑 27 4.6. TSA與LBH589引發MV4-11及MV4-11-XR細胞進行細胞凋亡 28 4.7. TSA與LBH589造成MV4-11及MV4-11-XR細胞的PARP切割及DNA損傷 28 4.8. TSA與LBH589抑制MV4-11及MV4-11-XR細胞群落形成的能力 29 4.9. TSA與LBH589抑制MV4-11及MV4-11-XR細胞自我更新相關基因的表現量,並促進腫瘤抑制基因KLF4表現 30 4.10. LBH589抑制MV4-11及MV4-11-XR細胞的DNA修復系統 32 4.11. 分析MLL-AF9細胞經藥物LBH589處理24小時後之基因表達差異性 33 4.12. TSA合併cabozantinib處理MV4-11細胞沒有協同作用 33 4.13. TSA合併cabozantinib處理MV4-11-XR細胞有協同作用 34 4.14. LBH589合併cabozantinib處理MV4-11細胞有協同作用 35 4.15. LBH589合併cabozantinib處理MV4-11-XR細胞有協同效果 35 第五章 討論 36 第六章 參考文獻 41 圖 52 補充資料 75 表 77 附圖 79 附表 87 | |
| dc.language.iso | zh-TW | |
| dc.subject | LBH589 | zh_TW |
| dc.subject | 急性骨髓性白血病 | zh_TW |
| dc.subject | FLT3-ITD | zh_TW |
| dc.subject | cabozantinib抗藥性 | zh_TW |
| dc.subject | 組蛋白去乙醯酶抑制劑 | zh_TW |
| dc.subject | Trichostatin A | zh_TW |
| dc.subject | Trichostatin A | en |
| dc.subject | LBH589 | en |
| dc.subject | AML | en |
| dc.subject | FLT3-ITD | en |
| dc.subject | Cabozantinib resistance | en |
| dc.subject | HDAC inhibitor | en |
| dc.title | 探討去乙醯基酶抑制劑Trichostatin A及LBH589對於白血病細胞之分子機制:著重在對cabozantinib具感受性及抗藥性之MV4-11細胞株 | zh_TW |
| dc.title | Study on the molecular mechanism of HDAC inhibitors -Trichostatin A and LBH589 in leukemia cells: focus on both cabozantinib-sensitive and -resistant MV4-11 cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭靜穎(Ching-Ying Kuo),顧雅真(Ya-Chen Ko),歐大諒(Da-Liang Ou),侯信安(Hsin-An Hou) | |
| dc.subject.keyword | 急性骨髓性白血病,FLT3-ITD,cabozantinib抗藥性,組蛋白去乙醯酶抑制劑,Trichostatin A,LBH589, | zh_TW |
| dc.subject.keyword | AML,FLT3-ITD,Cabozantinib resistance,HDAC inhibitor,Trichostatin A,LBH589, | en |
| dc.relation.page | 94 | |
| dc.identifier.doi | 10.6342/NTU202003337 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-15 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-17 | - |
| Appears in Collections: | 醫學檢驗暨生物技術學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-1308202022281100.pdf Restricted Access | 7.82 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
