Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78184
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳達仁
dc.contributor.authorChih-Han Yangen
dc.contributor.author楊智涵zh_TW
dc.date.accessioned2021-07-11T14:45:06Z-
dc.date.available2021-10-14
dc.date.copyright2016-10-14
dc.date.issued2016
dc.date.submitted2016-08-01
dc.identifier.citation1. Lu, Q., Ortega, C., & Ma, O. (2011). Passive gravity compensation mechanisms: technologies and applications. Recent Patents on Engineering, 5(1), 32-44.
2. French, M., & Widden, M. (2000). The spring-and-lever balancing mechanism, George Carwardine and the Anglepoise lamp. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214(3), 501-508.
3. Brown, G., & DiGuilio, A. O. (1980). Support apparatus. Google Patents.
4. Saluja, R., & Nagare, A. T. (1991). Counterbalanced arm for a lighthead. Google Patents.
5. Bell, W. R., Coon, D. C., & Peterson, T. M. (2001). Support arm for surgical light apparatus. Google Patents.
6. Banala, S. K., Agrawal, S. K., Fattah, A., Krishnamoorthy, V., Hsu, W.-L., Scholz, J., et al. (2006). Gravity-balancing leg orthosis and its performance evaluation. IEEE transactions on robotics, 22(6), 1228-1239.
7. Lin, P.-Y., Shieh, W.-B., & Chen, D.-Z. (2013). A theoretical study of weight-balanced mechanisms for design of spring assistive mobile arm support (MAS). Mechanism and Machine Theory, 61, 156-167.
8. Dunning, A., & Herder, J. A close-to-body 3-spring configuration for gravity balancing of the arm. In 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), 2015 (pp. 464-469): IEEE
9. Tseng, T.-Y., Hsu, W.-C., Lin, L.-F., & Kuo, C.-H. Design and Experimental Evaluation of a Reconfigurable Gravity-Free Muscle Training Assistive Device for Lower-Limb Paralysis Patients. In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2015 (pp. V05AT08A037-V005AT008A037): American Society of Mechanical Engineers
10. Simionescu, I., & Ciupitu, L. (2000). The static balancing of the industrial robot arms: part i: discrete balancing. Mechanism and Machine Theory, 35(9), 1287-1298.
11. Simionescu, I., & Ciupitu, L. (2000). The static balancing of the industrial robot arms: part II: continuous balancing. Mechanism and Machine Theory, 35(9), 1299-1311.
12. Liu, L., Huang, B., Zhu, Y. H., & Zhao, J. Optimization Design of Gravity Compensation System for a 5-DOF Articulated Heavy-Duty Robot. In Applied Mechanics and Materials, 2014 (Vol. 556, pp. 2359-2364): Trans Tech Publ
13. Arakelian, V. (2016). Gravity compensation in robotics. Advanced Robotics, 30(2), 79-96.
14. Wang, J., & Gosselin, C. M. (1999). Static balancing of spatial three-degree-of-freedom parallel mechanisms. Mechanism and Machine Theory, 34(3), 437-452.
15. Lessard, S., Bonev, I., Bigras, P., Briot, S., & Arakelyan, V. Optimum static balancing of the parallel robot for medical 3D-ultrasound imaging. In IFTOMM 2007: 12th World Congress in Mechanism and Machine Science, 2007
16. Nathan, R. (1985). A constant force generation mechanism. Journal of mechanisms, transmissions, and automation in design, 107(4), 508-512.
17. Rahman, T., Ramanathan, R., Seliktar, R., & Harwin, W. (1995). A simple technique to passively gravity-balance articulated mechanisms. Journal of Mechanical Design, 117(4), 655-658.
18. Agrawal, S. K., & Fattah, A. (2004). Gravity-balancing of spatial robotic manipulators. Mechanism and Machine Theory, 39(12), 1331-1344.
19. Agrawal, S. K., & Fattah, A. (2004). Theory and design of an orthotic device for full or partial gravity-balancing of a human leg during motion. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 12(2), 157-165.
20. Fattah, A., & Agrawal, S. K. Gravity-balancing of classes of industrial robots. In Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., 2006 (pp. 2872-2877): IEEE
21. Deepak, S. R., & Ananthasuresh, G. Static balancing of spring-loaded planar revolute-joint linkages without auxiliary links. In 14th National Conference on Machines and Mechanisms, 2009 (pp. 17-18)
22. Deepak, S. R., & Ananthasuresh, G. (2012). Perfect static balance of linkages by addition of springs but not auxiliary bodies. Journal of mechanisms and robotics, 4(2), 021014.
23. Lin, P.-Y., Shieh, W.-B., & Chen, D.-Z. (2010). A stiffness matrix approach for the design of statically balanced planar articulated manipulators. Mechanism and Machine Theory, 45(12), 1877-1891.
24. Lin, P.-Y., Shieh, W.-B., & Chen, D.-Z. (2012). Design of statically balanced planar articulated manipulators with spring suspension. IEEE transactions on robotics, 28(1), 12-21.
25. Lee, Y.-Y., & Chen, D.-Z. (2014). Determination of spring installation configuration on statically balanced planar articulated manipulators. Mechanism and Machine Theory, 74, 319-336.
26. Sciavicco, L., & Siciliano, B. (2012). Modelling and control of robot manipulators: Springer Science & Business Media.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78184-
dc.description.abstractStatically balanced articulated manipulators are mechanisms which are able to self-balance effects of gravitational force caused by weight of the system itself within the workspace. Only relatively less actuating force is required to activate statically balanced mechanisms compared with general mechanisms. Hence, statically balanced mechanisms have advantages such as energy efficient and easily controlled for applications.
This paper presents a method to assess energy efficiency of statically balanced articulated manipulators. The gravitational and elastic potential energy is presented in quadratic form and arranged into the same representation of stiffness block matrices respectively. The spring configuration matrix specifies the attached links of installed springs and distribution of elastic potential energy in stiffness block matrix. Based on the concept of energy conservation and the stiffness block matrix, spring installation configurations are determined. The direction properties of elastic potential energy are aligned with or against the gravity can be further obtained. Elastic energy contributions providing effects aligned with gravity are redundant for static balance and regarded as negative contributions. Elastic energy contributions counteracting against gravity and redundant elastic effects are regarded as positive contributions. A qualitative efficiency index is proposed as the number ratio of positive elastic energy contributions to total elastic energy contributions. Furthermore, in the case that the magnitudes of gravitational energy contributions are taken into consideration, a quantitative efficiency index can be defined and proposed as the magnitude ratio of positive elastic energy contributions to total elastic energy contributions. The quantitative efficiency index indicates the proportion of elastic energy contributions assisting in static balance. Thus, the higher the quantitative efficiency index is, the better the energy efficiency the mechanism is. Energy efficiency of statically balanced articulated manipulators can be assessed according to the efficiency indexes. A design example is demonstrated to illustrate the practical uses of the efficiency indexes. The proposed methodology can be adopted to help designers to compare the energy efficiency among different statically spring-balanced mechanisms and obtain the most efficient one from energy perspective.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:45:06Z (GMT). No. of bitstreams: 1
ntu-105-R03522606-1.pdf: 1507000 bytes, checksum: d5ae278c37c2bcc9adaea1507b791db3 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsChapter 1 Introduction 1
1.1 Background 1
1.2 Overview of related works 3
1.3 Motivation and preview 6
Chapter 2 Stiffness block matrix representation 9
2.1 Gravitational stiffness block matrix 9
2.2 Property of gravitational stiffness block matrix 12
2.3 Elastic stiffness block matrix 15
2.4 Property of elastic stiffness block matrix 18
Chapter 3 Spring installation configurations 22
3.1 Examination of energy counteraction from vector perspective 22
3.2 Characteristics for determination of spring installation configurations 24
3.3 Determination of spring attachment angles 29
Chapter 4 Qualitative efficiency index 34
4.1 Identification of energy contributions by spring installation configurations 34
4.2 Derivation of qualitative efficiency index 36
4.3 Comparison of energy efficiency of each spring 39
4.4 Comparison of energy efficiency by qualitative efficiency index 40
Chapter 5 Quantitative efficiency index 42
5.1 Derivation of quantitative efficiency index 42
5.2 Comparison of energy efficiency by quantitative efficiency index 48
Chapter 6 Design example 52
6.1 Articulated manipulator with equal link mass 52
6.2 Articulated manipulator with descending link mass 53
Chapter 7 Conclusions 58
Reference 60
dc.language.isoen
dc.subject彈簧zh_TW
dc.subject靜平衡zh_TW
dc.subject彈簧配置zh_TW
dc.subject能量效率zh_TW
dc.subjectSpring configurationen
dc.subjectSpringen
dc.subjectStatic balanceen
dc.subjectEnergy efficiencyen
dc.title彈簧靜平衡機構之能量效率分析zh_TW
dc.titleEnergy Efficiency Assessment of Statically Spring-Balanced Articulated Manipulatorsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳宗明,黃中明
dc.subject.keyword彈簧,彈簧配置,靜平衡,能量效率,zh_TW
dc.subject.keywordSpring,Spring configuration,Static balance,Energy efficiency,en
dc.relation.page61
dc.identifier.doi10.6342/NTU201601638
dc.rights.note有償授權
dc.date.accepted2016-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-R03522606-1.pdf
  未授權公開取用
1.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved