Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78177
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor金洛仁(Laurent Zimmerli)
dc.contributor.authorBeier Jiangen
dc.contributor.author蔣貝爾zh_TW
dc.date.accessioned2021-07-11T14:44:50Z-
dc.date.available2021-08-24
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-08-01
dc.identifier.citationAcosta, I.F., Gasperini, D., Chetelat, A., Stolz, S., Santuari, L., and Farmer, E.E. (2013). Role of NINJA in root jasmonate signaling. Proceedings of the National Academy of Sciences of the United States of America 110, 15473-15478.
Bari, R., and Jones, J.D. (2009). Role of plant hormones in plant defence responses. Plant Mol Biol 69, 473-488.
Berrocal‐Lobo, M., Molina, A., and Solano, R. (2002). Constitutive expression of ETHYLENE‐RESPONSE‐FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. The Plant Journal 29, 23-32.
Brown, R.L., Kazan, K., McGrath, K.C., Maclean, D.J., and Manners, J.M. (2003). A role for the GCC-box in jasmonate-mediated activation of the PDF1. 2 gene of Arabidopsis. Plant physiology 132, 1020-1032.
Cao, Y., Liang, Y., Tanaka, K., Nguyen, C.T., Jedrzejczak, R.P., Joachimiak, A., and Stacey, G. (2014). The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. eLife 3.
Catinot, J., Huang, J.B., Huang, P.Y., Tseng, M.Y., Chen, Y.L., Gu, S.Y., Lo, W.S., Wang, L.C., Chen, Y.R., and Zimmerli, L. (2015). ETHYLENE RESPONSE FACTOR 96 positively regulates Arabidopsis resistance to necrotrophic pathogens by direct binding to GCC elements of jasmonate - and ethylene-responsive defence genes. Plant Cell Environ 38, 2721-2734.
Causier, B., Lloyd, J., Stevens, L., and Davies, B. (2012a). TOPLESS co-repressor interactions and their evolutionary conservation in plants. Plant signaling & behavior 7, 325-328.
Causier, B., Ashworth, M., Guo, W., and Davies, B. (2012b). The TOPLESS interactome: a framework for gene repression in Arabidopsis. Plant physiology 158, 423-438.
Chini, A., Boter, M., and Solano, R. (2009). Plant oxylipins: COI1/JAZs/MYC2 as the core jasmonic acid‐signalling module. Febs Journal 276, 4682-4692.
Chini, A., Fonseca, S., Fernandez, G., Adie, B., Chico, J., Lorenzo, O., Garcia-Casado, G., Lopez-Vidriero, I., Lozano, F., and Ponce, M. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448, 666-671.
Dean, R., Van Kan, J.A., Pretorius, Z.A., Hammond-Kosack, K.E., Di Pietro, A., Spanu, P.D., Rudd, J.J., Dickman, M., Kahmann, R., Ellis, J., and Foster, G.D. (2012). The Top 10 fungal pathogens in molecular plant pathology. Molecular plant pathology 13, 414-430.
Ding, B., and Wang, G.-L. (2015). Chromatin versus pathogens: the function of epigenetics in plant immunity. Frontiers in plant science 6.
Eulgem, T., and Somssich, I.E. (2007). Networks of WRKY transcription factors in defense signaling. Current opinion in plant biology 10, 366-371.
Felix, G., Regenass, M., and Boller, T. (1993). Specific perception of subnanomolar concentrations of chitin fragments by tomato cells: induction of extracellular alkalinization, changes in protein phosphorylation, and establishment of a refractory state. The Plant Journal 4, 307-316.
Huang, P.Y., Catinot, J., and Zimmerli, L. (2016). Ethylene response factors in Arabidopsis immunity. J Exp Bot 67, 1231-1241.
Ikeda, M., and Ohme-Takagi, M. (2009). A novel group of transcriptional repressors in Arabidopsis. Plant Cell Physiol 50, 970-975.
Kagale, S., and Rozwadowski, K. (2010). Small yet effective: the ethylene responsive element binding factor-associated amphiphilic repression (EAR) motif. Plant signaling & behavior 5, 691-694.
Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., Minami, E., and Shibuya, N. (2006). Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proceedings of the National Academy of Sciences 103, 11086-11091.
Kao, H.-Y., Ordentlich, P., Koyano-Nakagawa, N., Tang, Z., Downes, M., Kintner, C.R., Evans, R.M., and Kadesch, T. (1998). A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes & development 12, 2269-2277.
Licausi, F., Ohme-Takagi, M., and Perata, P. (2013). APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199, 639-649.
Liu, Z., and Karmarkar, V. (2008). Groucho/Tup1 family co-repressors in plant development. Trends in plant science 13, 137-144.
Long, J.A., Ohno, C., Smith, Z.R., and Meyerowitz, E.M. (2006). TOPLESS regulates apical embryonic fate in Arabidopsis. Science 312, 1520-1523.
Macho, A.P., and Zipfel, C. (2014). Plant PRRs and the activation of innate immune signaling. Mol Cell 54, 263-272.
Matsui, K., Umemura, Y., and Ohme-Takagi, M. (2008). AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. The Plant journal : for cell and molecular biology 55, 954-967.
McGrath, K.C., Dombrecht, B., Manners, J.M., Schenk, P.M., Edgar, C.I., Maclean, D.J., Scheible, W.-R., Udvardi, M.K., and Kazan, K. (2005). Repressor-and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant physiology 139, 949-959.
Moffat, C.S., Ingle, R.A., Wathugala, D.L., Saunders, N.J., Knight, H., and Knight, M.R. (2012). ERF5 and ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against Botrytis cinerea in Arabidopsis. Plos One 7, e35995.
Nakano, T., Suzuki, K., Fujimura, T., and Shinshi, H. (2006). Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant physiology 140, 411-432.
Oñate-Sánchez, L., Anderson, J.P., Young, J., and Singh, K.B. (2007). AtERF14, a member of the ERF family of transcription factors, plays a nonredundant role in plant defense. Plant physiology 143, 400-409.
Ohme-Takagi, M., and Shinshi, H. (1995). Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. The Plant cell 7, 173-182.
Ohta, M., Matsui, K., Hiratsu, K., Shinshi, H., and Ohme-Takagi, M. (2001a). Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. The Plant cell 13, 1959-1968.
Ohta, M., Matsui, K., Hiratsu, K., Shinshi, H., and Ohme-Takagi, M. (2001b). Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. The Plant cell 13, 1959-1968.
Pauwels, L., Barbero, G.F., Geerinck, J., Tilleman, S., Grunewald, W., Perez, A.C., Chico, J.M., Bossche, R.V., Sewell, J., Gil, E., Garcia-Casado, G., Witters, E., Inze, D., Long, J.A., De Jaeger, G., Solano, R., and Goossens, A. (2010). NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464, 788-791.
Pré, M., Atallah, M., Champion, A., De Vos, M., Pieterse, C.M., and Memelink, J. (2008). The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant physiology 147, 1347-1357.
Son, G.H., Wan, J., Kim, H.J., Nguyen, X.C., Chung, W.S., Hong, J.C., and Stacey, G. (2012). Ethylene-responsive element-binding factor 5, ERF5, is involved in chitin-induced innate immunity response. Mol Plant Microbe In 25, 48-60.
Song, C.-P., and Galbraith, D.W. (2006a). AtSAP18, an orthologue of human SAP18, is involved in the regulation of salt stress and mediates transcriptional repression in Arabidopsis. Plant Mol Biol 60, 241-257.
Song, C.P., and Galbraith, D.W. (2006b). AtSAP18, an orthologue of human SAP18, is involved in the regulation of salt stress and mediates transcriptional repression in Arabidopsis. Plant Mol Biol 60, 241-257.
Tanaka, M., Kikuchi, A., and Kamada, H. (2008). The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant physiology 146, 149-161.
Thiel, G., Lietz, M., and Hohl, M. (2004). How mammalian transcriptional repressors work. European Journal of Biochemistry 271, 2855-2862.
Thomma, B.P., Nürnberger, T., and Joosten, M.H. (2011). Of PAMPs and effectors: the blurred PTI-ETI dichotomy. The Plant cell 23, 4-15.
Tian, L., Fong, M.P., Wang, J.J., Wei, N.E., Jiang, H., Doerge, R.W., and Chen, Z.J. (2005). Reversible histone acetylation and deacetylation mediate genome-wide, promoter-dependent and locus-specific changes in gene expression during plant development. Genetics 169, 337-345.
Tiwari, S.B., Belachew, A., Ma, S.F., Young, M., Ade, J., Shen, Y., Marion, C.M., Holtan, H.E., Bailey, A., Stone, J.K., Edwards, L., Wallace, A.D., Canales, R.D., Adam, L., Ratcliffe, O.J., and Repetti, P.P. (2012). The EDLL motif: a potent plant transcriptional activation domain from AP2/ERF transcription factors. The Plant journal : for cell and molecular biology 70, 855-865.
Wang, L., Kim, J., and Somers, D.E. (2013). Transcriptional corepressor TOPLESS complexes with pseudoresponse regulator proteins and histone deacetylases to regulate circadian transcription. Proceedings of the National Academy of Sciences 110, 761-766.
Windram, O., Madhou, P., McHattie, S., Hill, C., Hickman, R., Cooke, E., Jenkins, D.J., Penfold, C.A., Baxter, L., Breeze, E., Kiddle, S.J., Rhodes, J., Atwell, S., Kliebenstein, D.J., Kim, Y.S., Stegle, O., Borgwardt, K., Zhang, C., Tabrett, A., Legaie, R., Moore, J., Finkenstadt, B., Wild, D.L., Mead, A., Rand, D., Beynon, J., Ott, S., Buchanan-Wollaston, V., and Denby, K.J. (2012). Arabidopsis defense against Botrytis cinerea: chronology and regulation deciphered by high-resolution temporal transcriptomic analysis. The Plant cell 24, 3530-3557.
Wu, K., Zhang, L., Zhou, C., Yu, C.-W., and Chaikam, V. (2008). HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J Exp Bot 59, 225-234.
Xu, Z.S., Chen, M., Li, L.C., and Ma, Y.Z. (2011). Functions and application of the AP2/ERF transcription factor family in crop improvementF. J Integr Plant Biol 53, 570-585.
Yang, Z., Tian, L., Latoszek-Green, M., Brown, D., and Wu, K. (2005). Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. In Plant molecular biology, pp. 585-596.
Yoo, S.D., Cho, Y.H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature protocols 2, 1565-1572.
Zhang, F., Yao, J., Ke, J., Zhang, L., Lam, V.Q., Xin, X.-F., Zhou, X.E., Chen, J., Brunzelle, J., and Griffin, P.R. (2015). Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling. Nature 525, 269-273.
Zhao, Y., Wei, T., Yin, K.Q., Chen, Z., Gu, H., Qu, L.J., and Qin, G. (2012). Arabidopsis RAP2. 2 plays an important role in plant resistance to Botrytis cinerea and ethylene responses. New Phytol 195, 450-460.
Zhou, C., Zhang, L., Duan, J., Miki, B., and Wu, K. (2005). HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. The Plant cell 17, 1196-1204.
Zhu, Z., Xu, F., Zhang, Y., Cheng, Y.T., Wiermer, M., Li, X., and Zhang, Y. (2010). Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor. Proceedings of the National Academy of Sciences 107, 13960-13965.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78177-
dc.description.abstract植物在受到病原菌攻擊時會啟動免疫反應從而引起一系列免疫基因的表達。這個過程需要非常精細的轉錄水平上的重新編碼。舉例來說,乙烯調控因子在植物調節免疫反應中有著重要的作用。在我們實驗室之前的研究中發現,阿拉伯芥過表達ERF19基因時表現出比野生型更加容易被灰霉病菌感染的性狀。這種性狀是通過抑制免疫基因PDF1.2a以及PR3的表達所導致的。在我的研究中,構建了ERF19的功能缺失植株,發現它們表現出比野生型更加抗灰霉病菌感染的性狀。通過原生質體瞬時表達實驗發現ERF19是轉錄激活子而ERF19過表達植株中的免疫基因被抑制。於是我通過酵母雙雜交,蛋白質免疫共沉澱以及雙分子螢光光互補實驗發現ERF19蛋白可以和NINJA抑制複合體有交互作用。更有趣的是,在ninja突變體中過表達ERF19蛋白會嚴重改變阿拉伯芥的生長表型以及抗病表型。所有這些新的發現對於研究ERF轉錄因子參與植物免疫反應有嶄新的意義。zh_TW
dc.description.abstractWhen attacked by pathogens, plants activate the immune responses to regulate the inducible expression of a large set of defense genes. This process requires effective transcriptional reprogramming. For example, ethylene responsive factor (ERF) transcription factors (TFs) have been shown to play critical roles in regulating immune responses in plants. In the Zimmerli laboratory, overexpression of ERF19 was shown to increase Arabidopsis susceptibility to Botrytis cinerea (B. cinerea) via repression of the induction of the jasmonic acid (JA) defense marker genes PDF1.2a and PR3. In this study, I generated pERF19:ERF19-EAR transgenic lines and these loss-of-function plants exhibited increased resistance to B. cinerea, when compared to wild type (WT) plants. ERF19 acted as a transcriptional activator, however defense genes were repressed in ERF19 overexpression lines. Using the yeast two hybrid, Co-IP and BiFC assays, ERF19 was shown to associate with the NINJA repressor complex. Moreover, overexpression of ERF19 in Arabidopsis ninja mutant strongly changes the developmental pattern and defense phenotype of the plant. Notably, a strong increased susceptibility to B. cinerea was observed. All these findings provide new insight on how ERF TFs regulate plant immunity.en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:44:50Z (GMT). No. of bitstreams: 1
ntu-105-R03b42032-1.pdf: 2139015 bytes, checksum: c8ca13789c8e19e4fce71d95eb076b4d (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsContents
誌謝 i
摘要 ii
Abstract iii
Contents iv
Introduction 1
Arabidopsis defenses against B. cinerea 1
Pathogen-associated molecular patterns-triggered immunity and effector-triggered immunity 1
Chitin-triggered immunity 2
ERF transcription factors 3
Roles of ERF proteins in biotic stress 4
The role of NINJA in JA signaling 4
EAR motif-mediated transcriptional repression in plants 5
Mechanism of action of the co-repressor TPL 6
HDACs participate in the defense response 6
Materials and Methods 8
Plant materials and growth conditions 8
Transgenic plants 8
Pathogen infection assay 9
β-estradiol induction before pathogen infection 9
PAMP treatment 9
Genomic DNA extraction 10
RNA extraction and gene expression analysis 10
Protoplast transactivation assay 11
Transient expression in Nicotiana Benthamiana 11
Subcellular localization in Nicotiana benthamiana leaves 12
Yeast two-hybrid assays 12
Bimolecular Fluorescence Complementation assays 12
Co-immunoprecipitation assay in Arabidopsis protoplast 13
SDS-PAGE and Immunoblotting 13
Accession numbers 14
Results 15
Loss of ERF19 function is linked with enhanced resistance to B. cinerea 15
pERF19:ERF19-SRDX transgenic lines display enhanced expression of defense gene 15
Generation of Arabidopsis ERF19 artificial microRNA transgenic lines 16
Subcellular localization of ERF19 in Nicotiana benthamiana 17
ERF19 directly interacts with NINJA in vitro 17
ERF19 associates with the NINJA repressor complex in vivo 18
ERF19 associates with HDA6 and HDA19 in vivo 18
Arabidopsis ninja mutant exhibit enhanced resistance while NINJA overexpression lines are more susceptible to B. cinerea 19
Overexpress ERF19 in Arabidopsis ninja mutant showed altered developmental phenotype 20
Lines overexpressing ERF19 in the ninja mutant exhibits strong increased susceptibility to B. cinerea 20
Discussion 21
Future Perspectives 24
Figures 25
Figure 1. Disease responses of pERF19:ERF19-SRDX transgenic plants to B. cinerea infection. 25
Figure 2. Response of ERF19 to amiRNA. 27
Figure 3. Subcellular localization of ERF19. 28
Figure 4. Direct interaction of ERF19 with NINJA but not with TPL, HDA6 or HDA19 by Y2H 29
Figure 5. ERF19 associates with TPL in vivo. 30
Figure 6. Association of ERF19 with NINJA, HDA6 and HDA19 but not with TPL by BiFC 31
Figure 7. Disease responses of ninja mutant and NINJA overexpression plants to B. cinerea infection. 32
Figure 8. Development and defense phenotype of ninja mutant overexpressing ERF19. 33
Figure 9. Model for ERF19-mediated defense repression in Arabidopsis. 34
Supplementary Figures 35
Figure S1. Constitutive and inducible overexpression lines of ERF19 were more susceptible to B. cinerea infection than WT. 35
Figure S2. ERF19 associates with NINJA, HDA6 and HDA19 by Co-IP in Arabidopsis protoplast. 36
Figure S3. NINJA repress the activation of ERF19. 37
Tables 39
Table 1. Mutant alleles used in this study 39
Table 2. Primers used for ninja mutant check 39
Table 3. Primers used for ERF19 amiRNA plasmid construction 39
Table 4. Primers used for plasmid construction 40
Table 5. Primers used for qRT-PCR 40
dc.language.isoen
dc.titleERF19和NINJA抑制複合體參與阿拉伯芥抗灰霉病的功能性分析zh_TW
dc.titleFunctional analysis of ERF19 and NINJA repressor complex involved in plant defense against Botrytis cinereaen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳克強(Keqiang Wu),鄭貽生(Yi-Sheng Cheng),王雅筠(Ya-Yun Wang)
dc.subject.keyword阿拉伯芥,灰黴菌,乙烯反應因子,NINJA抑制子,自然免疫,zh_TW
dc.subject.keywordArabidopsis thaliana,Botrytis cinerea,ethylene responsive factor,NINJA repressor complex,innate immunity,en
dc.relation.page48
dc.identifier.doi10.6342/NTU201601705
dc.rights.note有償授權
dc.date.accepted2016-08-02
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-R03b42032-1.pdf
  目前未授權公開取用
2.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved