請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7813完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳章甫(Chang-Fu Wu) | |
| dc.contributor.author | Yi-Chen Chou | en |
| dc.contributor.author | 周宜蓁 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:54:29Z | - |
| dc.date.available | 2022-03-01 | |
| dc.date.available | 2021-05-19T17:54:29Z | - |
| dc.date.copyright | 2017-03-01 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-02-10 | |
| dc.identifier.citation | Almeida, S., Silva, A., Garcia, S., Henriques, E., and Miranda, M. (2014). Traffic-related air pollution in an industrial area. WIT Transactions on Ecology and the Environment, 181, 683-694.
Bates, M., Bruno, P., Caputi, M., Caselli, M., de Gennaro, G., and Tutino, M. (2008). Analysis of polycyclic aromatic hydrocarbons (PAHs) in airborne particles by direct sample introduction thermal desorption GC/MS. Atmospheric Environment, 42(24), 6144-6151. doi:http://dx.doi.org/10.1016/j.atmosenv.2008.03.050 Behymer, T. D., and Hites, R. A. (1985). Photolysis of polycyclic aromatic hydrocarbons adsorbed on simulated atmospheric particulates. Environmental Science & Technology, 19(10), 1004-1006. doi:10.1021/es00140a020 Blanchard, P., Brook, J. R., and Brazal, P. (2002). Chemical characterization of the organic fraction of atmospheric aerosol at two sites in Ontario, Canada. Journal of Geophysical Research-Atmospheres, 107(D21). doi:10.1029/2001jd000627 Caricchia, A. M., Chiavarini, S., and Pezza, M. (1999). Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the city of Naples (Italy). Atmospheric Environment, 33(23), 3731-3738. doi:http://dx.doi.org/10.1016/S1352-2310(99)00199-5 Chen, M.-R., Tsai, P.-J., and Wang, Y.-F. (2008). Assessing inhalatory and dermal exposures and their resultant health-risks for workers exposed to polycyclic aromatic hydrocarbons (PAHs) contained in oil mists in a fastener manufacturing industry. Environment international, 34(7), 971-975. doi:http://dx.doi.org/10.1016/j.envint.2008.02.008 Chow, J. C., Watson, J. G., Mauderly, J. L., Costa, D. L., Wyzga, R. E., Vedal, S., . . . Heuss, J. M. (2006). Health effects of fine particulate air pollution: lines that connect. Journal of the Air & Waste Management Association, 56(10), 1368-1380. Clément, N., Muresan, B., Hedde, M., and François, D. (2015). PAH dynamics in roadside environments: Influence on the consistency of diagnostic ratio values and ecosystem contamination assessments. Science of The Total Environment, 538, 997-1009. doi:http://dx.doi.org/10.1016/j.scitotenv.2015.08.072 DeMarini, D. M., Brooks, L. R., Warren, S. H., Kobayashi, T., Gilmour, M. I., and Singh, P. (2004). Bioassay-directed fractionation and Salmonella mutagenicity of automobile and forklift diesel exhaust particles. Environmental Health Perspectives, 112(8), 814-819. Dockery, D. W., and Pope, C. A. (1994). Acute respiratory effects of particulate air pollution. Annual review of public health, 15(1), 107-132. Esteve, W., Budzinski, H., and Villenave, E. (2006). Relative rate constants for the heterogeneous reactions of NO2 and OH radicals with polycyclic aromatic hydrocarbons adsorbed on carbonaceous particles. Part 2: PAHs adsorbed on diesel particulate exhaust SRM 1650a. Atmospheric Environment, 40(2), 201-211. doi:http://dx.doi.org/10.1016/j.atmosenv.2005.07.053 Falkovich, A. H., and Rudich, Y. (2001). Analysis of semivolatile organic compounds in atmospheric aerosols by direct sample introduction thermal desorption GC/MS. Environmental Science & Technology, 35(11), 2326-2333. doi:10.1021/es000280i Fang, G. C., Chang, C. N., Wu, Y. S., Fu, P. P., Yang, I. L., and Chen, M. H. (2004). Characterization, identification of ambient air and road dust polycyclic aromatic hydrocarbons in central Taiwan, Taichung. Sci Total Environ, 327(1-3), 135-146. doi:10.1016/j.scitotenv.2003.10.016 Galarneau, E. (2008). Source specificity and atmospheric processing of airborne PAHs: Implications for source apportionment. Atmospheric Environment, 42(35), 8139-8149. doi:http://dx.doi.org/10.1016/j.atmosenv.2008.07.025 Grandesso, E., Ballesta, P. P., and Kowalewski, K. (2013). Thermal desorption GC-MS as a tool to provide PAH certified standard reference material on particulate matter quartz filters. Talanta, 105, 101-108. doi:10.1016/j.talanta.2012.11.047 Gras, J., and Ayers, G. (1983). Marine aerosol at southern mid‐latitudes. Journal of Geophysical Research: Oceans (1978–2012), 88(C15), 10661-10666. Grimmer, G., Jacob, J., and Naujack, K.-W. (1983). Profile of the polycyclic aromatic compounds from crude oils. Fresenius' Journal of Analytical Chemistry, 314(1), 29-36. Guo, H., Lee, S. C., Ho, K. F., Wang, X. M., and Zou, S. C. (2003). Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmospheric Environment, 37(38), 5307-5317. doi:http://dx.doi.org/10.1016/j.atmosenv.2003.09.011 Guo, S., Hu, M., Guo, Q., Zhang, X., Schauer, J. J., and Zhang, R. (2013). Quantitative evaluation of emission controls on primary and secondary organic aerosol sources during Beijing 2008 Olympics. Atmospheric Chemistry and Physics, 13(16), 8303-8314. doi:10.5194/acp-13-8303-2013 Gupta, A., Kumar, R., Kumari, K. M., and Srivastava, S. S. (2003). Measurement of NO2, HNO3, NH3 and SO2 and related particulate matter at a rural site in Rampur, India. Atmospheric Environment, 37(34), 4837-4846. doi:http://dx.doi.org/10.1016/j.atmosenv.2003.07.008 Han, Y., and Zhu, T. (2015). Health effects of fine particles (PM2. 5) in ambient air. Science China Life Sciences, 1-3. Ho, S. S., Yu, J. Z., Chow, J. C., Zielinska, B., Watson, J. G., Sit, E. H., and Schauer, J. J. (2008). Evaluation of an in-injection port thermal desorption-gas chromatography/mass spectrometry method for analysis of non-polar organic compounds in ambient aerosol samples. J Chromatogr A, 1200(2), 217-227. doi:10.1016/j.chroma.2008.05.056 Ho, S. S. H., Chow, J. C., Watson, J. G., Ng, L. P. T., Kwok, Y., Ho, K. F., and Cao, J. J. (2011). Precautions for in-injection port thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) as applied to aerosol filter samples. Atmospheric Environment, 45(7), 1491-1496. doi:10.1016/j.atmosenv.2010.12.038 Ho, S. S. H., and Yu, J. Z. (2004). In-injection port thermal desorption and subsequent gas chromatography-mass spectrometric analysis of polycyclic aromatic hydrocarbons and n-alkanes in atmospheric aerosol samples. Journal of Chromatography A, 1059(1-2), 121-129. doi:10.1016/j.chroma.2004.10.013 IARC. (1987). Overall evaluations of carcinogenicity: an updating of IARC Monographs volumes 1 to 42. IARC Monogr Eval Carcinog Risks Hum Suppl, 7, 1-440. IARC. (2004). Tobacco smoke and involuntary smoking. IARC Monogr Eval Carcinog Risks Hum, 83, 1-1438. Kameda, Y., Shirai, J., Komai, T., Nakanishi, J., and Masunaga, S. (2005). Atmospheric polycyclic aromatic hydrocarbons: size distribution, estimation of their risk and their depositions to the human respiratory tract. Science of The Total Environment, 340(1–3), 71-80. doi:http://dx.doi.org/10.1016/j.scitotenv.2004.08.009 Kavouras, I. G., Koutrakis, P., Tsapakis, M., Lagoudaki, E., Stephanou, E. G., Von Baer, D., and Oyola, P. (2001). Source Apportionment of Urban Particulate Aliphatic and Polynuclear Aromatic Hydrocarbons (PAHs) Using Multivariate Methods. Environmental Science & Technology, 35(11), 2288-2294. doi:10.1021/es001540z Khalili, N. R., Scheff, P. A., and Holsen, T. M. (1995). PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions. Atmospheric Environment, 29(4), 533-542. doi:http://dx.doi.org/10.1016/1352-2310(94)00275-P Kim, D., Kumfer, B. M., Anastasio, C., Kennedy, I. M., and Young, T. M. (2009). Environmental aging of polycyclic aromatic hydrocarbons on soot and its effect on source identification. Chemosphere, 76(8), 1075-1081. doi:http://dx.doi.org/10.1016/j.chemosphere.2009.04.031 Kloog, I., Zanobetti, A., Nordio, F., Coull, B., Baccarelli, A., and Schwartz, J. (2015). Effects of airborne fine particles (PM2. 5) on deep vein thrombosis admissions in the northeastern United States. Journal of thrombosis and haemostasis: JTH, 13(5), 768-774. Kulkarni, P., and Venkataraman, C. (2000). Atmospheric polycyclic aromatic hydrocarbons in Mumbai, India. Atmospheric Environment, 34(17), 2785-2790. doi:http://dx.doi.org/10.1016/S1352-2310(99)00312-X Lavrich, R. J., and Hays, M. D. (2007). Validation studies of thermal extraction-GC/MS applied to source emissions aerosols. 1. Semivolatile analyte-nonvolatile matrix interactions. Anal Chem, 79(10), 3635-3645. doi:10.1021/ac0623282 Li, C. K., and Kamens, R. M. (1993). The use of polycyclic aromatic hydrocarbons as source signatures in receptor modeling. Atmospheric Environment. Part A. General Topics, 27(4), 523-532. doi:http://dx.doi.org/10.1016/0960-1686(93)90209-H Liao, H.-T., Kuo, C.-P., Hopke, P. K., and Wu, C.-F. (2013). Evaluation of a modified receptor model for solving multiple time resolution equations: a simulation study. Aerosol Air Qual Res, 13, 1253-1262. Liao, H.-T., Yau, Y.-C., Huang, C.-S., Chou, C. C.-K., Hopke, P. K., and Wu, C.-F. (2016). Source apportionment of urban air pollutants using constrained receptor models with a priori profile information. Submitted. Mandalakis, M., Tsapakis, M., Tsoga, A., and Stephanou, E. G. (2002). Gas–particle concentrations and distribution of aliphatic hydrocarbons, PAHs, PCBs and PCDD/Fs in the atmosphere of Athens (Greece). Atmospheric Environment, 36(25), 4023-4035. doi:http://dx.doi.org/10.1016/S1352-2310(02)00362-X Manoli, E., Kouras, A., and Samara, C. (2004). Profile analysis of ambient and source emitted particle-bound polycyclic aromatic hydrocarbons from three sites in northern Greece. Chemosphere, 56(9), 867-878. doi:http://dx.doi.org/10.1016/j.chemosphere.2004.03.013 Marr, L. C., Dzepina, K., Jimenez, J. L., Reisen, F., Bethel, H. L., Arey, J., . . . Molina, M. J. (2006). Sources and transformations of particle-bound polycyclic aromatic hydrocarbons in Mexico City. Atmospheric Chemistry and Physics, 6(6), 1733-1745. doi:10.5194/acp-6-1733-2006 Masclet, P., Mouvier, G., and Nikolaou, K. (1986). Relative decay index and sources of polycyclic aromatic hydrocarbons. Atmospheric Environment (1967), 20(3), 439-446. doi:http://dx.doi.org/10.1016/0004-6981(86)90083-1 Miguel, A. H., Kirchstetter, T. W., Harley, R. A., and Hering, S. V. (1998). On-Road Emissions of Particulate Polycyclic Aromatic Hydrocarbons and Black Carbon from Gasoline and Diesel Vehicles. Environmental Science & Technology, 32(4), 450-455. doi:10.1021/es970566w Nielsen, T. (1996). Traffic contribution of polycyclic aromatic hydrocarbons in the center of a large city. Atmospheric Environment, 30(20), 3481-3490. doi:http://dx.doi.org/10.1016/1352-2310(96)00096-9 Nisbet, I. C., and LaGoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol, 16(3), 290-300. Niu, J., Sun, P., and Schramm, K.-W. (2007). Photolysis of polycyclic aromatic hydrocarbons associated with fly ash particles under simulated sunlight irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 186(1), 93-98. doi:http://dx.doi.org/10.1016/j.jphotochem.2006.07.016 Orru, H., Maasikmets, M., Lai, T., Tamm, T., Kaasik, M., Kimmel, V., . . . Forsberg, B. (2011). Health impacts of particulate matter in five major Estonian towns: main sources of exposure and local differences. Air Quality, Atmosphere & Health, 4(3), 247-258. doi:10.1007/s11869-010-0075-6 Pandey, P. K., Patel, K. S., and Lenicek, J. (1999). Polycyclic Aromatic Hydrocarbons: Need for Assessment of Health Risks in India? Study of An Urban-Industrial Location in India. Environmental Monitoring and Assessment, 59(3), 287-319. doi:10.1023/A:1006169605672 Park, S. S., Kim, Y. J., and Kang, C. H. (2002). Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmospheric Environment, 36(17), 2917-2924. doi:http://dx.doi.org/10.1016/S1352-2310(02)00206-6 Ravindra, K., Bencs, L., Wauters, E., de Hoog, J., Deutsch, F., Roekens, E., . . . Van Grieken, R. (2006). Seasonal and site-specific variation in vapour and aerosol phase PAHs over Flanders (Belgium) and their relation with anthropogenic activities. Atmospheric Environment, 40(4), 771-785. doi:http://dx.doi.org/10.1016/j.atmosenv.2005.10.011 Ravindra, K., Sokhi, R., and Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmospheric Environment, 42(13), 2895-2921. doi:http://dx.doi.org/10.1016/j.atmosenv.2007.12.010 Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T. (1993). Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environmental Science & Technology, 27(4), 636-651. doi:10.1021/es00041a007 Samet, J., and Krewski, D. (2007). Health effects associated with exposure to ambient air pollution. Journal of Toxicology and Environmental Health, Part A, 70(3-4), 227-242. Samoli, E., Analitis, A., Touloumi, G., Schwartz, J., Anderson, H. R., Sunyer, J., . . . Katsouyanni, K. (2005). Estimating the Exposure–Response Relationships between Particulate Matter and Mortality within the APHEA Multicity Project. Environmental Health Perspectives, 113(1), 88-95. doi:10.1289/ehp.7387 Sanderson, E. G., Raqbi, A., Vyskocil, A., and Farant, J. P. (2004). Comparison of particulate polycyclic aromatic hydrocarbon profiles in different regions of Canada. Atmospheric Environment, 38(21), 3417-3429. doi:http://dx.doi.org/10.1016/j.atmosenv.2004.03.026 Shen, H., Tao, S., Liu, J., Huang, Y., Chen, H., Li, W., . . . Lin, N. (2013). Global lung cancer risk from PAH exposure highly depends on emission sources and individual susceptibility. Scientific reports, 4, 6561-6561. Simcik, M. F., Eisenreich, S. J., and Lioy, P. J. (1999). Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmospheric Environment, 33(30), 5071-5079. doi:http://dx.doi.org/10.1016/S1352-2310(99)00233-2 Simon, H., Bhave, P., Swall, J., Frank, N., and Malm, W. (2011). Determining the spatial and seasonal variability in OM/OC ratios across the US using multiple regression. Atmospheric Chemistry and Physics, 11(6), 2933-2949. Tsapakis, M., and Stephanou, E. G. (2005). Occurrence of gaseous and particulate polycyclic aromatic hydrocarbons in the urban atmosphere: study of sources and ambient temperature effect on the gas/particle concentration and distribution. Environmental pollution, 133(1), 147-156. doi:http://dx.doi.org/10.1016/j.envpol.2004.05.012 US-EPA. (2003.). Appendix A to 40 CFR. Part 4 23-126 Priority Pollutants. Available from https://www3.epa.gov/region1/npdes/permits/generic/prioritypollutants.pdf. van Drooge, B. L., Nikolova, I., and Ballesta, P. P. (2009). Thermal desorption gas chromatography-mass spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from ambient air particulate matter. J Chromatogr A, 1216(18), 4030-4039. doi:10.1016/j.chroma.2009.02.043 Vasconcellos, P. C., Zacarias, D., Pires, M. A. F., Pool, C. S., and Carvalho, L. R. F. (2003). Measurements of polycyclic aromatic hydrocarbons in airborne particles from the metropolitan area of São Paulo City, Brazil. Atmospheric Environment, 37(21), 3009-3018. doi:http://dx.doi.org/10.1016/S1352-2310(03)00181-X Vasilakos, C., Levi, N., Maggos, T., Hatzianestis, J., Michopoulos, J., and Helmis, C. (2007). Gas–particle concentration and characterization of sources of PAHs in the atmosphere of a suburban area in Athens, Greece. Journal of hazardous materials, 140(1–2), 45-51. doi:http://dx.doi.org/10.1016/j.jhazmat.2006.06.047 Wang, D., Yang, M., Jia, H., Zhou, L., and Li, Y. (2008). Seasonal variation of polycyclic aromatic hydrocarbons in soil and air of Dalian areas, China: an assessment of soil-air exchange. J Environ Monit, 10(9), 1076-1083. doi:10.1039/b805840g Wang, G., Kawamura, K., Zhao, X., Li, Q., Dai, Z., and Niu, H. (2007). Identification, abundance and seasonal variation of anthropogenic organic aerosols from a mega-city in China. Atmospheric Environment, 41(2), 407-416. doi:http://dx.doi.org/10.1016/j.atmosenv.2006.07.033 WHO. (1987). Air quality guidelines for Europe. WHO. (2000). Air quality guidelines for Europe. Yin, L., Niu, Z., Chen, X., Chen, J., Zhang, F., and Xu, L. (2014). Characteristics of water-soluble inorganic ions in PM2. 5 and PM2. 5–10 in the coastal urban agglomeration along the Western Taiwan Strait Region, China. Environmental Science and Pollution Research, 21(7), 5141-5156. Yu, J. Z., Huang, X. H., Ho, S. S., and Bian, Q. (2011). Nonpolar organic compounds in fine particles: quantification by thermal desorption-GC/MS and evidence for their significant oxidation in ambient aerosols in Hong Kong. Anal Bioanal Chem, 401(10), 3125-3139. doi:10.1007/s00216-011-5458-5 Yu, P. X. C. L. C., and Guoying, Q. S. S. (1999). A PRELIMINARY RESEARCH ON PHOTODEGRADATION OF PAHs IN AEROSOLS. Environmental Chemistry, 4, 006. 張文馨. (2008). 北投焚化爐附近社區空氣中PM2.5、PM10及PAHs濃度研究. 許鈴艷. (2005). 大氣懸浮微粒中多環芳香烴化合物分佈特性之研究. Retrieved from http://handle.ncl.edu.tw/11296/ndltd/33644211479966039177 蔡俊鴻. (1993). 都市大氣中多環芳香族碳氫化合物特徵成分與濃度分佈特性. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7813 | - |
| dc.description.abstract | 懸浮微粒 (particulate matter, PM) 是人類行為所產生的空氣污染物之一,其中細懸浮微粒 (fine particulate matter, PM2.5) 內有許多有機成分,包含多環芳香烴物質 (polycyclic aromatic hydrocarbons, PAHs)。數種多環芳香烴物已被證實有突變性與致癌性,對人體造成健康上的傷害。多環芳香烴主要產生於不完全燃燒,而都市中交通道路被認為是產生多環芳香烴的主要來源。
本研究使用石英濾紙採集大氣環境中細懸浮微粒,搭配熱脫附氣相層析質譜儀 (thermal desorption gas chromatography/mass spectrometry, TD-GC/MS) 分析附著於懸浮微粒上的多環芳香烴之濃度,熱脫附方法相較於傳統液體萃取法可減少實驗所需時間以及降低不必要的污染,本研究嘗試優化實驗參數以便分離、偵測多環芳香烴,於環境中所測得最高濃度物質為 Benzo[ghi]perylene,其春季平均濃度為 0.28 ng/m3、夏季為 0.26 ng/m3,合併文獻與本研究的環境濃度值,可看到北部地區不同區域之採樣結果,皆以較高環數物質濃度為主,利用特徵比值也顯示交通為重要污染來源。 另一方面本研究基於少量環境樣本推估人體暴露多環芳香烴之風險值為 1.87×10-5,高於可接受風險值10-6,顯示環境中的多環芳香烴可能具有致癌風險。同時運用風險來源鑑定分析 (risk apportionment),推估研究區域中污染源之健康風險。在污染源當中,PM2.5 質量主要貢獻來源為衍生性氣膠,然而多環芳香烴物質量主要貢獻者來自油燃燒,此汙染源也為多環芳香烴風險值之最大貢獻來源,顯示出質量貢獻與健康風險之來源並不一定相同,在健康評估上應考慮各污染源之組成成分。又本研究僅探討多環芳香烴物可能對人體造成的毒性,應同時將多種有致癌風險的物質納入毒性考量,才能更有效保護人體健康。 | zh_TW |
| dc.description.abstract | Fine particulate matter (PM2.5), one of the most common anthropogenic air pol-lutants, comprises many organic species, including polycyclic aromatic hydrocarbons (PAHs). PAHs are known to be mutagenic and considered as potential human carcino-gens. Road traffic is well recognized as a major source of PAH emissions.
To measure PAHs in PM2.5, ambient samples (n=29) were collected on quartz-fiber filters using Harvard Impactors and analyzed by thermal desorption gas chromatography/mass spectrometry (TD-GC/MS). Compared to solvent extraction (SE) approach, TD reduces sample pre-treatment and requires only a small portion of sample for analysis. This study attempted to optimize the TD operative parameters to improve the efficiency of PAH analysis. The optimized method was applied to the field samples collected during spring and summer in 2015. Results indicated that BghiP showed the highest average concentrations amon-gthe measured PAHs, which were 0.28 ng/m3 in spring and 0.26 ng/m3 in summer. The high molecular weight PAHs were dominant in PM2.5 compared to the low molecular weight PAHs. In addition, the BaP equivalent cancer risk calculated from the toxicology equivalency factor (TEF) was 1.87 X 10-5 during the study period, which is considered to be hazardous to human health. In this study, the largest contributor to PM2.5 mass concentration was secondary aerosol/ long-range transport factor while combustion factor was the major source of PAHs. This indicated a large contributor to mass concentration may not correspond to a higher risk. Therefore, the source composition should be considered when assessing health impact. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:54:29Z (GMT). No. of bitstreams: 1 ntu-106-R03844014-1.pdf: 2797019 bytes, checksum: bfa8190d54c600002f3bf88382c1a4c4 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 一、介紹 1
1.1背景說明 1 二、文獻回顧 3 2.1懸浮微粒的來源 3 2.2 多環芳香烴之形成與來源 3 2.3 多環芳香烴之污染源分類 4 2.4 多環芳香烴空氣污染物其排放特徵比值 5 2.5多環芳香烴的突變性和致癌性 6 2.6熱脫附進樣系統 7 三、材料與方法 9 3.1採樣地點 9 3.2採樣方法 9 3.3熱脫附樣本分析方法 9 3.4定量方法 11 3.5方法偵測極限之測定 11 四、結果與討論 13 4.1 TDU 優化討論 13 4.2 多環芳香烴採樣分析 14 4.3方法偵測極限與準確度 15 4.4附著在PM2.5上的多環芳香烴濃度分析 15 4.5多環芳香烴濃度與其他因子相關性比較 16 4.6 多環芳香烴特徵值推估污染來源 17 4.7 多環芳香烴健康風險推估 19 4.8 多環芳香烴物種質量與特定污染源相關性 20 4.9 PAH BaPeq濃度與特定污染源之相關性 23 五、結論與建議 26 文獻 56 附錄 63 | |
| dc.language.iso | zh-TW | |
| dc.title | 利用熱脫附氣相層析質譜法分析空氣微粒中多環芳香烴並探討與特定污染源之相關性 | zh_TW |
| dc.title | Analysis of polycyclic aromatic hydrocarbons by Thermal Desorption-GC/MS and evaluation of source-specific associations | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 蔡詩偉(Shih-Wei Tsai) | |
| dc.contributor.oralexamcommittee | 陳志傑(Chih-Chieh Chen) | |
| dc.subject.keyword | 熱脫附,多環芳香烴,風險推估,特徵比值,氣相層析質譜分析, | zh_TW |
| dc.subject.keyword | thermal desorption,polycyclic aromatic hydrocarbons,risk apportionment,diagnosis ratio,GC/MS, | en |
| dc.relation.page | 71 | |
| dc.identifier.doi | 10.6342/NTU201700452 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2017-02-10 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 環境衛生研究所 | zh_TW |
| 顯示於系所單位: | 環境衛生研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf | 2.73 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
