Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78108Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 鄭石通(Shih-Tong Jeng) | |
| dc.contributor.author | Zong-Yan Liu | en |
| dc.contributor.author | 劉宗晏 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:42:29Z | - |
| dc.date.available | 2025-08-14 | |
| dc.date.copyright | 2020-08-28 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-17 | |
| dc.identifier.citation | Addo-Quaye, C., Miller, W., and Axtell, M.J. (2009). CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 25, 130-131. Ando, Y., Maida, Y., Morinaga, A., Burroughs, A.M., Kimura, R., Chiba, J., Suzuki, H., Masutomi, K., and Hayashizaki, Y. (2011). Two-step cleavage of hairpin RNA with 5' overhangs by human DICER. BMC Mol. Biol. 12, 6. Axtell, M.J. (2013). Classification and comparison of small RNAs from plants. Annu. Rev. Plant Biol. 64, 137-159. Axtell, M.J., Snyder, J.A., and Bartel, D.P. (2007). Common functions for diverse small RNAs of land plants. Plant Cell 19, 1750-1769. Axtell, M.J., Westholm, J.O., and Lai, E.C. (2011). Vive la difference: biogenesis and evolution of microRNAs in plants and animals. Genome Biol 12, 221. Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297. Beauclair, L., Yu, A., and Bouche, N. (2010). microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis. Plant J. 62, 454-462. Beloshistov, R.E., Dreizler, K., Galiullina, R.A., Tuzhikov, A.I., Serebryakova, M.V., Reichardt, S., Shaw, J., Taliansky, M.E., Pfannstiel, J., Chichkova, N.V., Stintzi, A., Schaller, A., and Vartapetian, A.B. (2018). Phytaspase-mediated precursor processing and maturation of the wound hormone systemin. New Phytol 218, 1167-1178. Bernstein, E., Caudy, A.A., Hammond, S.M., and Hannon, G.J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363-366. Bhattacharya, R., Koramutla, M.K., Negi, M., Pearce, G., and Ryan, C.A. (2013). Hydroxyproline-rich glycopeptide signals in potato elicit signalling associated with defense against insects and pathogens. Plant Sci. 207, 88-97. Borges, F., and Martienssen, R.A. (2015). The expanding world of small RNAs in plants. Nat. Rev. Mol. Cell Biol. 16, 727-741. Budak, H., and Akpinar, B.A. (2015). Plant miRNAs: biogenesis, organization and origins. Funct Integr Genomics 15, 523-531. Carnavale Bottino, M., Rosario, S., Grativol, C., Thiebaut, F., Rojas, C.A., Farrineli, L., Hemerly, A.S., and Ferreira, P.C. (2013). High-throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane. PLoS One 8, e59423. Chen, Y.C., Siems, W.F., Pearce, G., and Ryan, C.A. (2008). Six peptide wound signals derived from a single precursor protein in Ipomoea batatas leaves activate the expression of the defense gene sporamin. J Biol Chem 283, 11469-11476. Chowdhury, S.D., Sarkar, A.K., and Lahiri, A. (2016). Effect of Inactivating Mutations on Peptide Conformational Ensembles: The Plant Polypeptide Hormone Systemin. J. Chem. Inf. Model. 56, 1267-1281. Clark, S.E., Running, M.P., and Meyerowitz, E.M. (1995). Clavata3 Is a Specific Regulator of Shoot and Floral Meristem Development Affecting the Same Processes as Clavata1. Development 121, 2057-2067. Czech, B., and Hannon, G.J. (2011). Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet 12, 19-31. Dai, X., Zhuang, Z., and Zhao, P.X. (2018). psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Res 46, W49-W54. Del María, R.-g.C., Carlos, S.-H., Carla, S.-H., Angélica, M.-G.N., Neftalí, O.-A., and Paul, D.-F.J. (2005). The expression of the hydroxyproline-rich glycopeptide systemin precursor A in response to (a) biotic stress and elicitors is indicative of its role in the regulation of the wound response in tobacco (Nicotiana tabacum L.). Planta 222, 794-810. Fabian, M.R., Sonenberg, N., and Filipowicz, W. (2010). Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79, 351-379. Farrokhi, N., Whitelegge, J.P., and Brusslan, J.A. (2008). Plant peptides and peptidomics. Plant Biotechnol. J. 6, 105-134. Gao, Y., Gong, X., Cao, W., Zhao, J., Fu, L., Wang, X., Schumaker, K.S., and Guo, Y. (2008). SAD2 in Arabidopsis functions in trichome initiation through mediating GL3 function and regulating GL1, TTG1 and GL2 expression. J Integr Plant Biol 50, 906-917. Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B.W., Nusbaum, C., Lindblad-Toh, K., Friedman, N., and Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644-652. Hackenberg, M., Shi, B.J., Gustafson, P., and Langridge, P. (2013). Characterization of phosphorus-regulated miR399 and miR827 and their isomirs in barley under phosphorus-sufficient and phosphorus-deficient conditions. BMC Plant Biol. 13, 214. Javed, M., Sinha, A., and Shukla, L.I. (2019). Evaluation of mature miR398 family, expression analysis and the post-transcriptional regulation evidence in gamma-irradiated and nitrogen-stressed Medicago sativa seedlings. Int J Radiat Biol 95, 585-596. Jones-Rhoades, M.W., and Bartel, D.P. (2004). Computational identification of plant MicroRNAs and their targets, including a stress-induced miRNA. Molecular Cell 14, 787-799. Jones, J.D., and Dangl, J.L. (2006). The plant immune system. Nature 444, 323-329. Karban, R., and Myers, J.H. (1989). Induced Plant-Responses to Herbivory. Annual Review of Ecology and Systematics 20, 331-348. Khraiwesh, B., Zhu, J.K., and Zhu, J. (2012). Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819, 137-148. Kim, V.N. (2004). MicroRNA precursors in motion: exportin-5 mediates their nuclear export. Trends Cell Biol. 14, 156-159. Kim, Y.J., Zheng, B., Yu, Y., Won, S.Y., Mo, B., and Chen, X. (2011). The role of Mediator in small and long noncoding RNA production in Arabidopsis thaliana. EMBO J 30, 814-822. Kitazumi, A., Kawahara, Y., Onda, T.S., De Koeyer, D., and de los Reyes, B.G. (2015). Implications of miR166 and miR159 induction to the basal response mechanisms of an andigena potato (Solanum tuberosum subsp. andigena) to salinity stress, predicted from network models in Arabidopsis. Genome 58, 13-24. Kozomara, A., and Griffiths-Jones, S. (2014). miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42, D68-73. Kuo, Y.W., Lin, J.S., Li, Y.C., Jhu, M.Y., King, Y.C., and Jeng, S.T. (2019). MicroR408 regulates defense response upon wounding in sweet potato. J Exp Bot 70, 469-483. Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology 10, R25. Lelandais-Briere, C., Sorin, C., Declerck, M., Benslimane, A., Crespi, M., and Hartmann, C. (2010). Small RNA diversity in plants and its impact in development. Curr. Genomics 11, 14-23. Li, C., and Zhang, B. (2016). MicroRNAs in Control of Plant Development. J Cell Physiol 231, 303-313. Li, L., Li, C., Lee, G.I., and Howe, G.A. (2002). Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proc Natl Acad Sci U S A 99, 6416-6421. Li, Y.C., Wan, W.L., Lin, J.S., Kuo, Y.W., King, Y.C., Chen, Y.C., and Jeng, S.T. (2016). Signal transduction and regulation of IbpreproHypSys in sweet potato. Plant Cell Environ. 39, 1576-1587. Lin, J.S., Lin, C.C., Lin, H.H., Chen, Y.C., and Jeng, S.T. (2012). MicroR828 regulates lignin and H2O2 accumulation in sweet potato on wounding. New Phytol 196, 427-440. Liu, H.H., Tian, X., Li, Y.J., Wu, C.A., and Zheng, C.C. (2008). Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14, 836-843. Liu, Q.K., Wang, F., and Axtell, M.J. (2014). Analysis of Complementarity Requirements for Plant MicroRNA Targeting Using a Nicotiana benthamiana Quantitative Transient Assay. Plant Cell 26, 741-753. Lorenz, R., Bernhart, S.H., Honer Zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P.F., and Hofacker, I.L. (2011). ViennaRNA Package 2.0. Algorithms Mol. Biol. 6, 26. Lund, E., and Dahlberg, J.E. (2006). Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs. Cold Spring Harb. Symp. Quant. Biol. 71, 59-66. Matsubayashi, Y., and Sakagami, Y. (1996). Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L. Proc Natl Acad Sci U S A 93, 7623-7627. McGurl, B., Pearce, G., Orozco-Cardenas, M., and Ryan, C.A. (1992). Structure, expression, and antisense inhibition of the systemin precursor gene. Science 255, 1570-1573. Meindl, T., Boller, T., and Felix, G. (1998). The plant wound hormone systemin binds with the N-terminal part to its receptor but needs the C-terminal part to activate it. Plant Cell 10, 1561-1570. Meyers, B.C., Axtell, M.J., Bartel, B., Bartel, D.P., Baulcombe, D., Bowman, J.L., Cao, X., Carrington, J.C., Chen, X., Green, P.J., Griffiths-Jones, S., Jacobsen, S.E., Mallory, A.C., Martienssen, R.A., Poethig, R.S., Qi, Y., Vaucheret, H., Voinnet, O., Watanabe, Y., Weigel, D., and Zhu, J.K. (2008). Criteria for annotation of plant MicroRNAs. Plant Cell 20, 3186-3190. Morin, R.D., Aksay, G., Dolgosheina, E., Ebhardt, H.A., Magrini, V., Mardis, E.R., Sahinalp, S.C., and Unrau, P.J. (2008). Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa. Genome Res. 18, 571-584. Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., and Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621-628. Mosblech, A., Konig, S., Stenzel, I., Grzeganek, P., Feussner, I., and Heilmann, I. (2008). Phosphoinositide and inositolpolyphosphate signalling in defense responses of Arabidopsis thaliana challenged by mechanical wounding. Mol Plant 1, 249-261. Orozco-Cardenas, M., and Ryan, C.A. (1999). Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proceedings of the National Academy of Sciences of the United States of America 96, 6553-6557. Orozco-Cardenas, M., McGurl, B., and Ryan, C.A. (1993). Expression of an antisense prosystemin gene in tomato plants reduces resistance toward Manduca sexta larvae. Proc Natl Acad Sci U S A 90, 8273-8276. Pearce, G., and Ryan, C.A. (2003). Systemic signaling in tomato plants for defense against herbivores. Isolation and characterization of three novel defense-signaling glycopeptide hormones coded in a single precursor gene. J Biol Chem 278, 30044-30050. Pearce, G., Strydom, D., Johnson, S., and Ryan, C.A. (1991). A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253, 895-897. Pearce, G., Moura, D.S., Stratmann, J., and Ryan, C.A. (2001). Production of multiple plant hormones from a single polyprotein precursor. Nature 411, 817-820. Pearce, G., Siems, W.F., Bhattacharya, R., Chen, Y.C., and Ryan, C.A. (2007). Three hydroxyproline-rich glycopeptides derived from a single petunia polyprotein precursor activate defensin I, a pathogen defense response gene. J Biol Chem 282, 17777-17784. Qin, Z., Li, C., Mao, L., and Wu, L. (2014). Novel insights from non-conserved microRNAs in plants. Front Plant Sci 5, 586. Reymond, P., Weber, H., Damond, M., and Farmer, E.E. (2000). Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12, 707-720. Rogers, K., and Chen, X. (2013). Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25, 2383-2399. Rumble, S.M., Lacroute, P., Dalca, A.V., Fiume, M., Sidow, A., and Brudno, M. (2009). SHRiMP: accurate mapping of short color-space reads. PLoS Comput. Biol. 5, e1000386. Ryan, C.A. (2000). The systemin signaling pathway: differential activation of plant defensive genes. Biochim Biophys Acta 1477, 112-121. Ryan, C.A., and Pearce, G. (1998). Systemin: a polypeptide signal for plant defensive genes. Annu Rev Cell Dev Biol 14, 1-17. Sablok, G., Srivastva, A.K., Suprasanna, P., Baev, V., and Ralph, P.J. (2015). isomiRs: Increasing Evidences of isomiRs Complexity in Plant Stress Functional Biology. Front Plant Sci 6, 949. Scheer, J.M., and Ryan, C.A. (1999). A 160-kD systemin receptor on the surface of lycopersicon peruvianum suspension-cultured cells. Plant Cell 11, 1525-1536. Scheer, J.M., and Ryan, C.A., Jr. (2002). The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR receptor kinase family. Proc Natl Acad Sci U S A 99, 9585-9590. Shi, L., Bielawski, J., Mu, J., Dong, H., Teng, C., Zhang, J., Yang, X., Tomishige, N., Hanada, K., Hannun, Y.A., and Zuo, J. (2007). Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis. Cell Res. 17, 1030-1040. Shin, C., Nam, J.W., Farh, K.K., Chiang, H.R., Shkumatava, A., and Bartel, D.P. (2010). Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell 38, 789-802. Shirasawa, K., Tanaka, M., Takahata, Y., Ma, D., Cao, Q., Liu, Q., Zhai, H., Kwak, S.S., Cheol Jeong, J., Yoon, U.H., Lee, H.U., Hirakawa, H., and Isobe, S. (2017). A high-density SNP genetic map consisting of a complete set of homologous groups in autohexaploid sweetpotato (Ipomoea batatas). Sci. Rep. 7, 44207. Stone, J.M., Heard, J.E., Asai, T., and Ausubel, F.M. (2000). Simulation of fungal-mediated cell death by fumonisin B1 and selection of fumonisin B1-resistant (fbr) Arabidopsis mutants. Plant Cell 12, 1811-1822. Sunkar, R., Kapoor, A., and Zhu, J.K. (2006). Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18, 2051-2065. Tafer, H., and Hofacker, I.L. (2008). RNAplex: a fast tool for RNA-RNA interaction search. Bioinformatics 24, 2657-2663. Thatcher, S.R., Burd, S., Wright, C., Lers, A., and Green, P.J. (2015). Differential expression of miRNAs and their target genes in senescing leaves and siliques: insights from deep sequencing of small RNAs and cleaved target RNAs. Plant Cell Environ. 38, 188-200. Thomma, B.P., Cammue, B.P., and Thevissen, K. (2002). Plant defensins. Planta 216, 193-202. Tippmann, H.F. (2004). Analysis for free: comparing programs for sequence analysis. Brief. Bioinform. 5, 82-87. Trindade, I., Capitao, C., Dalmay, T., Fevereiro, M.P., and Santos, D.M. (2010). miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta 231, 705-716. Verslues, P.E., Guo, Y., Dong, C.H., Ma, W., and Zhu, J.K. (2006). Mutation of SAD2, an importin beta-domain protein in Arabidopsis, alters abscisic acid sensitivity. Plant J. 47, 776-787. Wagner, G.P., Kin, K., and Lynch, V.J. (2012). Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory in Biosciences 131, 281-285. Wang, W., Ye, R., Xin, Y., Fang, X., Li, C., Shi, H., Zhou, X., and Qi, Y. (2011). An importin beta protein negatively regulates MicroRNA activity in Arabidopsis. Plant Cell 23, 3565-3576. Wang, X., Wang, Y., Dou, Y., Chen, L., Wang, J., Jiang, N., Guo, C., Yao, Q., Wang, C., Liu, L., Yu, B., Zheng, B., Chekanova, J.A., Ma, J., and Ren, G. (2018). Degradation of unmethylated miRNA/miRNA*s by a DEDDy-type 3' to 5' exoribonuclease Atrimmer 2 in Arabidopsis. Proc Natl Acad Sci U S A 115, E6659-E6667. Weng, S.T., Kuo, Y.W., King, Y.C., Lin, H.H., Tu, P.Y., Tung, K.S., and Jeng, S.T. (2020). Regulation of micoRNA2111 and its target IbFBK in sweet potato on wounding. Plant Sci. 292, 110391. Wu, G., Park, M.Y., Conway, S.R., Wang, J.W., Weigel, D., and Poethig, R.S. (2009). The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138, 750-759. Wyman, S.K., Knouf, E.C., Parkin, R.K., Fritz, B.R., Lin, D.W., Dennis, L.M., Krouse, M.A., Webster, P.J., and Tewari, M. (2011). Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity. Genome Res. 21, 1450-1461. Xie, M., Zhang, S., and Yu, B. (2015). microRNA biogenesis, degradation and activity in plants. Cell Mol Life Sci 72, 87-99. Xie, Z., Allen, E., Fahlgren, N., Calamar, A., Givan, S.A., and Carrington, J.C. (2005). Expression of Arabidopsis MIRNA genes. Plant Physiol. 138, 2145-2154. Yamaguchi, Y., Pearce, G., and Ryan, C.A. (2006). The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proc Natl Acad Sci U S A 103, 10104-10109. Yang, J., Moeinzadeh, M.H., Kuhl, H., Helmuth, J., Xiao, P., Haas, S., Liu, G., Zheng, J., Sun, Z., Fan, W., Deng, G., Wang, H., Hu, F., Zhao, S., Fernie, A.R., Boerno, S., Timmermann, B., Zhang, P., and Vingron, M. (2017). Haplotype-resolved sweet potato genome traces back its hexaploidization history. Nat Plants 3, 696-703. Yang, Z., Ebright, Y.W., Yu, B., and Chen, X. (2006). HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2' OH of the 3' terminal nucleotide. Nucleic Acids Res 34, 667-675. Yang, Z., Zhu, P., Kang, H., Liu, L., Cao, Q., Sun, J., Dong, T., Zhu, M., Li, Z., and Xu, T. (2020). High-throughput deep sequencing reveals the important role that microRNAs play in the salt response in sweet potato (Ipomoea batatas L.). BMC Genomics 21, 164. Zhang, B., Pan, X., Cobb, G.P., and Anderson, T.A. (2006a). Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289, 3-16. Zhang, B., Pan, X., Cannon, C.H., Cobb, G.P., and Anderson, T.A. (2006b). Conservation and divergence of plant microRNA genes. Plant J. 46, 243-259. Zhao, J., Zhang, W., Zhao, Y., Gong, X., Guo, L., Zhu, G., Wang, X., Gong, Z., Schumaker, K.S., and Guo, Y. (2007). SAD2, an importin -like protein, is required for UV-B response in Arabidopsis by mediating MYB4 nuclear trafficking. Plant Cell 19, 3805-3818. Zheng, Y., Zhan, Q.D., Shi, T.T., Liu, J., Zhao, K.J., and Gao, Y. (2020). The nuclear transporter SAD2 plays a role in calcium- and H2O2-mediated cell death in Arabidopsis. Plant J. 101, 324-333. Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31, 3406-3415. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78108 | - |
| dc.description.abstract | 植物在遭受到傷害訊號時,會產生胜肽激素以參與植物防禦機制並觸發相關基因的表達,從而保護植物免於受到病原體的入侵等相關逆境。MicroRNA (miRNA) 是由20-24個核苷酸所組成之非編碼RNA,其藉由與互補序列之鹼基形成配對來降低其目標基因的表現。但是,植物胜肽激素和miRNA之間的關係鮮少被研究。本篇研究中,著重於分析甘藷栽培種臺農57號 (Ipomoea batatas cv. Tainung 57) 中,受到甘藷胜肽激素hydroxyproline-rich glycopeptides (HypSys) 所調控的調控miRNA。因甘藷葉片在機械性損傷後會由IbpreproHypSys剪切而成具有功能之IbHypSys。因此,本實驗以過量表達IbpreproHypSys的轉殖株 (OE) 及野生型 (WT) 甘藷,進行small RNA 次世代定序和轉錄組 (transcriptome) 分析。程式預測的方法則是分析系統葉片中OE在受傷2小時前後的miRNA表現量。分析WT與OE之結果顯示出,共有13種miRNA包含miR166、miR398、miR399、miR403和一些新穎miRNA會因受到傷害而下調表現量。綜合比較transcriptome與miRNAs得知,這些miRNAs是會由IbHypSys胜肽進行調控。此外,miRNA的目標基因則是透過psRNAtarget和CleaveLand4兩個不同的分析方式進行預測。因此找出miR398及其目標基因IbSAD2作為後續研究項目。藉由即時定量PCR的結果顯示,在OE的甘藷之中,IbSAD2的表達明顯高於野生型,表示出IbSAD2是受到IbHypSys所誘導而成。並且在菸草中進行agroinfiltration 確認IbSAD2是會受到miR398辨識並切割。綜上所述,甘藷受到傷害逆境後,會促進IbHypSys產生, IbHypSys則會降低miR398的表現,使IbSAD2的表現增加,以進行傷害防禦反應。 | zh_TW |
| dc.description.abstract | Upon wounding, plants produce peptide hormones to engage in plant defense and trigger the expression of defense genes to protect plants from pathogens. MicroRNAs (miRNAs) are non-coding RNA with 20-24 nucleotides and cleave their targets by base pairing with complementary sequences. However, the relationship between plant peptide hormones and miRNAs is seldom investigated. In this study, the regulation of hydroxyproline-rich glycopeptides (HypSys), a plant peptide hormone, on microRNAs were analyzed in sweet potato (Ipomoea batatas cv. Tainung 57). IbHypSys is cleaved from IbpreproHypSys after wounding. The small RNA deep sequencing and transcriptome data from transgenic sweet potato overexpressing IbpreproHypSys (OE) under wounding for 2 hours were analyzed. After these sequencing data from the systemic leaves of wildtype (WT) and OE were compared, 13 miRNAs, comprising of miR166, miR398, miR399, miR403, and some novel miRNAs, were obtained to be down-regulated by wounding. Comprehensive analysis of the transcriptome data and miRNAs suggested that the expression of miRNAs was affected by IbHypSys peptide. Target genes of miRNAs were also predicted by psRNAtarget and CleaveLand4. The miR398 and its target IbSAD2 was further studied. Results of RT-qPCR indicated that the expression of IbSAD2 was significantly increased in OE than in WT, suggesting the expression of IbSAD2 may be induced by IbHypSys. The recognition of miR398 on its binding site on IbSAD2 was further identified by agroinfiltration, indicating IbSAD2 was a target of miR398. The expression of target gene IbSAD2 might enhance the response of plants to wounding. In conclusion, IbHypSys-induced miRNAs may regulate wounding response, and this research may illuminate wounding defense in sweet potato. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:42:29Z (GMT). No. of bitstreams: 1 U0001-1408202015065100.pdf: 3148664 bytes, checksum: ac961bb5b97a976dab761fdf8e41a154 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 摘要 iii Abstract iv 1 Introduction 1 1.1 Plant Wounding Stresses and Wounding Responses 1 1.2 Plant Peptide Hormones 2 1.3 Hydroxyproline-rich systemins (HypSys) 3 1.4 Biosynthesis pathway of miRNAs in plants 4 1.5 Stress-mediated miRNAs in plants 6 1.6 Prediction of miRNA target genes 6 1.7 Research motivations and objectives 7 2 Materials and methods 9 2.1 Plant materials growth conditions and treatment 9 2.1.1 Sweet potato 9 2.1.2 Tobacco 10 2.2 Process of RNA reverse transcription to cDNA 10 2.2.1 Total RNA extraction 10 2.2.2 RNA Electrophoresis 11 2.2.3 DNase treatment 11 2.2.4 Reverse transcription (RT) 12 2.3 Assay of the gene expression 13 2.3.1 Polymerase Chain Reaction (PCR) 13 2.3.2 Quantitative real time polymerase chain reaction (qRT-PCR) 14 2.3.3 DNA gel electrophoresis 15 2.4 Plasmid construction 15 2.4.1 Gel elution 15 2.4.2 DNA ligation 16 2.4.3 DH5α (E. coli) transformation 16 2.4.4 Plasmid DNA mini extraction 17 2.4.5 DNA sequencing 18 2.4.6 Construction of the vector by restriction enzyme 18 2.5 Agrobacterium-mediated tobacco transformation 18 2.5.1 Preparation of Agrobacterium LBA4404 18 2.5.2 Transformation of Agrobacterium strain LBA4404 19 2.5.3 Agrobacterium-mediated transient expression in tobacco 20 2.6 Next generation sequencing data analysis 21 2.6.1 Small RNA sequencing 21 2.6.2 Raw data cleaning 21 2.6.3 Comparison of the putative primary miRNAs 22 2.6.4 Distinguish the IbHypSys-repressed miRNAs between conserved and novel 24 2.6.5 Prediction of miRNAs target genes 25 3 Results 27 3.1 Construction library of high-throughput small RNA sequencing data 27 3.2 Identification of the conserved and novel IbHypSys-regulated miRNAs 28 3.2.1 Debrief from the small RNA sequencing library 29 3.2.2 Sequence comparison of miRNA candidates and de novo assembly transcriptome 30 3.2.3 Verification of the stem-loop structure in the putative pre-miRNAs 30 3.2.4 miRNAs star strand in the putative pre-miRNAs 31 3.2.5 IbHypSys-repressed putative miRNAs in sweet potato 32 3.3 IbHypSys-repressed miRNAs in sweet potato 33 3.4 Participation of IbHypSys in miR398 regulation 34 3.5 The primary form of sweet potato miR398 35 3.6 The prediction of miR398 target genes 35 3.7 The expression of importin beta-like SAD2 under wounding 37 3.8 Attestation of the relationship between miR398 and importin beta-like SAD2 38 3.9 Importin beta-like SAD2 might contribute to plant defense 39 4 Discussion 41 4.1 The IbHypSys-mediated miRNA candidates of the systemic leaves in sweet potato 41 4.2 Assemble of sweet potato transcriptome sequencing data for miRNAs prediction 42 4.3 Expression level of miR398 in sweet potato 44 4.4 Software for predicting miR398 target gene 45 4.5 Function of miR398 target gene importin beta-like SAD2 47 5 Conclusion 50 6 Figures and figure legends 51 Table 1. Results of small RNA deep sequencings from the systemic leaves of sweet potato 51 Table 2. The unique miRNAs repressed in the systemic leaves of transgenic plant overexpressing IbpreproHypSys 52 Table 3. Prediction of miR398’s target genes 54 Table 4. Primers used in this study 55 Description 55 Reverse Transcript 55 Normal cDNA reverse transcript 55 Small RNA reverse transcript 55 Figure 1. The length distribution counts of all small RNA sequencing data 57 Figure 2. Workflow for the prediction of miRNAs and their targets 58 Figure 3. Pre-miR398, pre-miR399, and pre-miR403 secondary structures predicted by mfold. 59 Figure 4. The expression levels of miR398, miR399, and miR403 in the systemic leaves of transgenic plant overexpressing IbpreproHypSys 60 Figure 5. The expression levels of miR398, miR399, and miR403 in the systemic leaves of wildtype sweet potato 61 Figure 6. The expression levels of miR398 in the local and systemic leaves of wildtype and transgenic sweet potatoes 62 Figure 7. Primary form of miR398 in pCAMBIA-2300 63 Figure 8. Agro-infiltration of primary form of miR398 to tobacco (Nicotiana benthamiana) for examining mature miR398 64 Figure 9. Venn diagram of the analysis results from sweet potato degradome by GSTAr and transcriptome data by psRNAtarget 65 Figure 10. The binding site of miR398 in its predicted target gene importin beta-like SAD2 66 Figure 11. The expression of miR398 target gene importin beta-like SAD2 67 Figure 12. Importin beta-like SAD2 binding site in pCAMBIA-1301 69 Figure 13. Agro-infiltration of primary form of miR398 to tobacco (Nicotiana benthamiana) for examining primary miR398 70 Figure 14. The recognition of SAD2 binding site by mature miR398 was confirmed by agroinfiltration in tobacco 71 Figure 15. Comparison of SAD2 amino acid sequences among Ipomoea batatas, Solanum lycopersicum, and Arabidopsis lyrate 72 Supplemental Table 1. The thermodynamic details of miR398, miR399, and miR403 precursor forms calculated by mfold. 73 Supplemental Table 2. miR398 targets predicted by psRNATarget and GSTAr 76 Supplemental Table 3. The primary SAD2 sequence from sweet potato 78 Supplemental Table 4. BLASTP of importin beta-like SAD2 among plants 80 Supplemental Figure 1. The quality scores given by FastQC 81 Supplemental Figure 2. The results of miR398 target genes predicted by CleaveLand4. 83 7 References 84 | |
| dc.language.iso | en | |
| dc.subject | 甘藷 | zh_TW |
| dc.subject | SAD2 | zh_TW |
| dc.subject | miR398 | zh_TW |
| dc.subject | IbHypSys | zh_TW |
| dc.subject | 系統性傷害 | zh_TW |
| dc.subject | SAD2 | en |
| dc.subject | miR398 | en |
| dc.subject | sweet potato | en |
| dc.subject | systemic wounding | en |
| dc.subject | IbHypSys | en |
| dc.title | 傷害逆境下受IbHypSys調控表達的甘藷microRNAs之研究 | zh_TW |
| dc.title | Analysis of IbHypSys-mediated MicroRNAs upon Wounding in Sweet Potato (Ipomoea batatas cv. Tainung 57) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃浩仁(Hao-Jen Huang),洪傳揚(Chwan-Yang Hong),林振祥(Jeng-Shane Lin) | |
| dc.subject.keyword | 甘藷,系統性傷害,IbHypSys,miR398,SAD2, | zh_TW |
| dc.subject.keyword | sweet potato,systemic wounding,IbHypSys,miR398,SAD2, | en |
| dc.relation.page | 95 | |
| dc.identifier.doi | 10.6342/NTU202003423 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-18 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-14 | - |
| Appears in Collections: | 植物科學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-1408202015065100.pdf Restricted Access | 3.07 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
