Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78091
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周呈霙
dc.contributor.authorLin-Kuei Suen
dc.contributor.author蘇琳貴zh_TW
dc.date.accessioned2021-07-11T14:41:57Z-
dc.date.available2026-08-18
dc.date.copyright2016-11-02
dc.date.issued2016
dc.date.submitted2016-08-18
dc.identifier.citationBox, G.E.P., Jenkins, G.M., 1976. Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco, CA.
Cheng, B., Titterington, D.M., 1994. Neural networks: A review from a statistical perspective. Statistical Science 9 (1), 2–54.
Cottrell, M., Girard, B., Girard, Y., Mangeas, M., Muller, C., 1995. Neural modeling for time series: a statistical stepwise method for weight elimination. IEEE Transactions on Neural Networks 6 (6), 1355–1364.
Cybenko, G., 1989. Approximation by superpositions of a sigmoi- dal function. Mathematical Control Signals Systems 2, 303– 314.
Engle, R.F., 1982. Autoregressive conditional heteroskedasticity with estimates of the variance of UK inflation. Econometrica 50, 987–1008.
Funahashi, K., 1989. On the approximate realization of continuous mappings by neural networks. Neural Networks 2, 183–192.
Gershenfeld, N.A., Weigend, A.S., 1993. The future of time series: learning and understanding. In: Weigend, A.S., Gershenfeld, N.A. (Eds.), Time Series Prediction: Forecasting the Future and Understanding the Past. Addison-Wesley, Reading, MA, pp. 1–70.
Granger, C.W.J., Anderson, A.P., 1978. An Introduction to Bilinear Time Series Models. Vandenhoeck and Ruprecht, Go ̈ttingen.
Granger, C.W.J., Terasvirta, T., 1993. Modelling Nonlinear Economic Relationships. Oxford University Press, Oxford.
Hall, J. F. and A. K. Deb. 1988. Prediction of overhead transmission line ampacity by stochastic and deterministic models. IEEE Trans. Power Deliv. 3(2): 789–800.
Heckenbergerova, J., P. Musilek, and K. Filimonenkov. 2011. Assessment of seasonal static thermal ratings of overhead transmission conductors. IEEE Power and Energy Society General Meeting, 2011.
Heckenbergerova, J., P. Musilek, M. M. I. Bhuiyan, D. Koval, and E. Pelikan. 2010. Identification of Critical Aging Segments and Hotspots of Power Transmission Lines. 2010 9th International Conference on Environment and Electrical Engineering (EEEIC) pp. 175-178.
Hornik, K., 1993. Some new results on neural network approxi- mation. Neural Networks 6, 1069–1072.
Hornik, K., 1991. Approximation capabilities of multilayer feed- forward networks. Neural Networks 4, 251–257.
Hu, M.J.C., 1964. Application of the adaline system to weather forecasting. Master Thesis, Technical Report 6775-1, Stanford Electronic Laboratories, Stanford, CA, June.
IEEE std 738-2006 (Revision of IEEE Std 738-1993). 2007. Standard For Calculating The Current-Temperature of Bare Overhead Conductors.
Irie, B., Miyake, S., 1988. Capabilities of three-layered percep- trons. In: Proceedings of the IEEE International Conference on Neural Networks, I, pp. 641–648.
Jollifee, I. T. 2002. Principal Component Analysis. 2nd edition. New York: Springer-Verlag New York, Inc.
Kim, D. M., J. M. Cho, H. S. Lee, H. S. Jung, and J. K. Kim. 2006. Prediction of Dynamic Line Rating Based on Assessment Risk by Time Series Weather Model. International Conference on Probabilistic Methods Applied to Power Systems, PMAPS 2006.
Kim, S. D. and M. M. Morcos. 2013. An Application of Dynamic Thermal Line Rating Control System to Up-Rate the Ampacity of Overhead Transmission Lines. IEEE Trans. Power Delivery. 28(2): 1231-1232.
Korea: KEPCO KDN. 2013. Transmission line on-line monitoring system. Available at: https://www.kdn.com/home3/we/gs/WEGS_0312.jsp. Accessed 24 June 2013.
Li, Y. and D. Niu. 2010. Application of Principal Component Regression Analysis in power load forecasting for medium and long term. 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE) pp. V3-201-V3-203.
Lapedes, A., Farber, R., 1987. Nonlinear signal processing using neural networks: prediction and system modeling. Technical Report LA-UR-87-2662, Los Alamos National Laboratory, Los Alamos, NM.
Lippmann, R.P., 1987. An introduction to computing with neural nets, IEEE ASSP Magazine, April, 4–22.
Matus, M., D. Saez, M. Favley, C. Suazo-Martinez, J. Moya, G. Jimenez-Estevez, R. Palma-Behnke, G. Olguin, and P. Jorquera. 2012. Identification Of Critical Spans For Monitoring Systems In Dynamic Thermal Rating. IEEE Trans. Power Deliv. 27(2): 1002-1009.
Pankratz, A., 1983. Forecasting with Univariate Box-Jenkins Models: Concepts and Cases. John Wiley, New York.
Protura. 2012. Power line sensor. Available at: http://www.protura.no. Accessed 1 October 2012.
Ripley, B.D., 1993. Statistical aspects of neural networks. In: Barndorff-Nielsen, O.E., Jensen, J.L., Kendall, W.S. (Eds.),
Networks and Chaos-Statistical and Probabilistic Aspects. Chapman and Hall, London, pp. 40–123.
Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. Learning internal representation by back- propagating errors. In: Rumelhart, D.E., McCleland, J.L., the PDP Research Group (Eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press, MA.
Sharda, R., Patil, R.B., 1992. Connectionist approach to time series prediction: An empirical test. Journal of Intelligent Manufacturing 3, 317–323.
Tang, Z., Almeida, C., Fishwick, P.A., 1991. Time series forecast- ing using neural networks vs Box-Jenkins methodology. Simu- lation 57 (5), 303–310.
The Economist. 2012. India’s infrastructure. Available at: http://english.cw.com.tw/article.do?action=show&id=13747. Accessed 19 June 2013.
Tong, H., Lim, K.S., 1980. Threshold autoregressive, limit cycles and cyclical data. Journal of the Royal Statistical Society Series B 42 (3), 245–292.
USA: Underground Systems Inc. 2011. Power donut. Available at: http://www.usi-power.com/. Accessed 1 October 2012.
Weigend, A.S., Huberman, B.A., Rumelhart, D.E., 1990. Predict- ing the future: A connectionist approach. International Journal of Neural Systems 1, 193–209.
Werbos, P.J., 1974. Beyond regression: new tools for prediction and analysis in the behavioral sciences. Ph.D. thesis, Harvard University.
Werbos, P.J., 1988. Generalization of backpropagation with appli- cation to a recurrent gas market model. Neural Networks 1, 339 – 356.
White, H., 1989. Learning in artificial neural networks: A statisti- cal perspective. Neural Computation 1, 425–464.
Yang Y., R. Harley, D. Divan, T. Habetler. 2009. Adaptive Echo State Network to Maximize Overhead Power Line Dynamic Thermal Rating. IEEE Energy Conversion Congress and Exposition, 2009 (ECCE 2009) pp. 2247-2254.
Yang, Y., F. Lambert, and D. Divan. 2007. A Survey on Technologies for Implementing Sensor Networks for Power Delivery Systems. IEEE Power Engineering Society General Meeting, 2007.
Yang C., L. Lu, H. Lin, R. Guan, X. Shi, and Y. Liang. 2008. A Fuzzy-Statistics-Based Principal Component Analysis (FS-PCA) Method for Multispectral Image Enhancement and Display. IEEE Trans. Geosci. Remote Sens. 46(11): 3937–3947.
Zhang, Z. S., D. M. Xiao, and Y. Li. 2009. Rogowski Air Coil Sensor Technique For On-Line Partial Discharge Measurement Of Power Cables. IET Sci. Meas. Technol. 3(3): 187-196.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78091-
dc.description.abstract超高壓輸電線電塔扮演著民生用電與工業用電的重要角色,超高壓輸電線的安全性被視為一重要的課題,其中,超高壓輸電線線溫是安全性一重要的指標,目前,多由IEEE Std. 738 輔以氣象資料估測超高壓輸電線線溫,經由文獻,已知風速為影響輸電線線溫最重要的因素。
由於估算超高壓輸電線路之風速資料為中央氣象局使用全台各地氣象觀測站之觀測資料代入STMAS-2D經由內插法產生2.5公里 2.5公里之氣象格點資料,此套方法可有效保留大範圍之氣象資訊,但並無考慮到台灣地形之高低起伏大,氣象格點之風速與真實風速容易產生誤差,透過估算過去五年之全台超高壓輸電線路線溫,發現在台灣山谷地區容易產生熱點,顯示此氣象格點風速資料無法有效代表山谷地形之真實風速,因此,本研究欲建立一適合台灣山谷地形知風速模型。近年來,風速模型研究蓬勃發展,目前大部分研究多使用類神經網路於風速模型中,其擁有優異處理非線性關係且可學習和自適應不確定系統的優點,因此,本研究使用人工類神經網路針對台灣之山谷地形設計ㄧ風速模型,利用中央氣象局提供之數十年風速資料,期望透過此模型能得到更真實的風速。
本研究將氣象格點資料代入本研究之風速模型產生風速與真實風速之RMSE為0.9880優於原氣象格點風速之RMSE值2.0318,使用本研究之風速模型風速估算超高壓輸電線溫,RMSE為8.8542優於使用氣象格點資料之RMSE值10.6003,期望在特定的地形(例如山谷地形),動態熱容量預測模型使用本研究之風速模型能得到更真實的線溫,提供台灣電力公司調度人員可靠參考依據。
zh_TW
dc.description.abstractEHV transmission lines play an important role in supplying industrial and household electricity. The safety of EHV transmission lines is seen as an important issue. The line temperature of EHV transmission lines is an important indicator of the safety of power transmission. In this study, the IEEE Std. 738 is combined with meteorological data to estimate EHV transmission line temperature. Based on previous studies, wind speed is found to be most important factor that affects the transmission line temperature.
In this study, the wind speed data used to estimate the EHV transmission line temperature are provided by the Central Weather Bureau in Taiwan. The data observed by the weather stations are put into the STMAS-2D to generate meteorological grid data by using an interpolation method.
This method does not take the impacts brought by topographic features into account, causing error between the meteorological grid of wind speed and true wind speed. Based on the temperature data of the EHV transmission lines in the past 5 years, the meteorological wind grid data cannot effectively represent the true wind speed in valleys. Therefore, this study proposes to develop a wind speed model for valleys in Taiwan. In recent years, research on wind speeds has used artificial neural networks as wind speed models, because artificial neural networks are able to deal with nonlinear and uncertain factors and do adaptive learning. Therefore, in this study an artificial neural network is used to develop a wind speed model for valleys in Taiwan.
In this study, the meteorological grid data are incorporated with the developed wind speed model, and the RMSE for the new wind speed model is 0.9880, which is small than the RMSE for the original meteorological grid model (the RMSE is 2.0318). When using the new wind speed model to estimate the temperature of EHV transmission lines, the RMSE is 8.8542, which is also smaller than the RMSE when the original meteorological grid data are used for line temperature estimation (the RMSE is 10.6003). These results suggest that after taking terrain features into account, such as the wind speeds in valleys, the dynamic thermal rating forecasting model can generate more accurate line temperature estimation, and the temperature estimated by such a method can provide dispatchers in Taiwan power company reliable reference.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:41:57Z (GMT). No. of bitstreams: 1
ntu-105-R03631040-1.pdf: 2521202 bytes, checksum: 8d7a1975f7e545e82294fb896f06a84c (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents中文摘要 i
ABSTRACT ii
List of Illustrations vi
List of Tables vii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 3
1.3 Organization 4
Chapter 2 Literature Review 6
2.1 EHV Transmission Lines 7
2.2 Dynamic Thermal Rating 11
2.3 EHV Transmission Lines Temperature Prediction 15
2.4 Probability Function Used in Wind Engineering 17
2.5 Artificial Neural Network 20
Chapter 3 The Effect of Taiwan’s Valley Topography on Wind Speed 26
3.1 IEEE Std. 738 27
3.2 IEEE Std. 738 Model Validation 34
3.3 Historical Line Temperature of the EHV Transmission Lines in Taiwan 37
3.4 Factors of Effect on the Wind Speed in Taiwan 42
3.5 Weibull Winds Speed Model of Valley Topography in Taiwan 43
Chapter 4 The Proposed Method 46
4.1 The Wind Speed Model 46
4.2 Input Data of Weather Data 49
4.3 Artificial Neuron Network 51
4.4 Input-Output Fitting Problem with a Neural Network 53
Chapter 5 Results and Discussion 57
5.1 Input Wind Speed 57
5.2 Proposed Wind Speeds 59
5.3 Estimation of Line Temperatures 61
Chapter 6 Conclusions and Future work 65
6.1 Conclusions 65
6.2 Future Works 66
References 67
dc.language.isoen
dc.title應用類神經網路風速模型估測超高壓輸電線溫:以峽谷地形為例zh_TW
dc.titleAn Artificial Neural Network Based Wind Speed Model for EHV Transmission Line Temperature Estimation: A Case of Valleyen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江昭皚,俞齊山,曾傳蘆
dc.subject.keyword動態熱容量,風速,類神經網路,超高壓輸電線,zh_TW
dc.subject.keywordDynamic thermal rating,Wind speed,Artificial neural network,Extra high voltage,en
dc.relation.page71
dc.identifier.doi10.6342/NTU201603221
dc.rights.note有償授權
dc.date.accepted2016-08-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
dc.date.embargo-lift2026-08-18-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-R03631040-1.pdf
  目前未授權公開取用
2.46 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved