Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78089
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳宗霖(Tzong-Lin Wu)
dc.contributor.authorYen-Ju Linen
dc.contributor.author林彥如zh_TW
dc.date.accessioned2021-07-11T14:41:53Z-
dc.date.available2021-11-02
dc.date.copyright2016-11-02
dc.date.issued2016
dc.date.submitted2016-08-18
dc.identifier.citation[1] C. R. Paul, Introduction to Electromagnetic Compatibility, 2nd ed., New York:Wiely, 2006.
[2] Intel Corporation, “USB 3.0 Radio frequency interference impact on 2.4 GHz wireless devices,” 2012.
[3] T. L. Wu, F. Buesink, and F. Canavero, “Overview of signal integrity and EMC design technologies on PCB: Fundamentals and latest progress,” IEEE Trans. Electromagn. Compat., vol. 55, no. 4, pp. 627–638, 2013.
[4] C. Y. Hsiao, C. H. Tsai, C. N. Chiu, and T. L. Wu, “Radiation suppression for cable-attached packages utilizing a compact embedded common-mode filter,” IEEE Trans. Components, Packag. Manuf. Technol., vol. 2, no. 10, pp. 1696–1703, 2012.
[5] S. J. Wu, C. H. Tsai, T. L. Wu, and T. Itoh, “A novel wideband common-mode suppression filter for gigahertz differential signals using coupled patterned ground structure,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 4, pp. 848–855, 2009.
[6] R. Abhari and G. V. Eleftheriades, “Metallo-dielectric electromagnetic bandgap structures for suppression and isolation of the parallel-plate noise in high-speed circuits,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 6, pp. 1629–1639, 2003.
[7] K. Yanagisawa, F. Zhang, T. Sato, K. Yamasawa, and Y. Miura, “A new wideband common-mode noise filter consisting of Mn-Zn ferrite core and copper/polyimide tape wound coil,” IEEE Trans. Magn., vol. 41, no. 10, pp. 3571–3573, 2005.
[8] D. M. Hockanson, J. L. Drewniak, T. H. Hubing, T. P. Van Doren, F. Sha, and M. J. Wilhelm, “Investigation of fundamental EMI source mechanisms driving common-mode radiation from printed circuit boards with attached cables,” IEEE Trans. Electromagn. Compat., vol. 38, no. 4, pp. 557–566, 1996.
[9] H. W. Shim and T. H. Hubing, “Model for estimating radiated emissions from a printed circuit board with attached cables due to voltage-driven sources,” IEEE Trans. Electromagn. Compat., vol. 47, no. 4, pp. 899–907, 2005.
[10] M. Leone and V. Navrátil, “On the electromagnetic radiation of printed-circuit-board interconnections,” IEEE Trans. Electromagn. Compat., vol. 47, no. 2, pp. 219–226, 2005.
[11] C. Icheln, J. Krogerus, and P. Vainikainen, “Use of balun chokes in small-antenna radiation measurements,” IEEE Trans. Instrum. Meas., vol. 53, no. 2, pp. 498–506, 2004.
[12] S. C. Jung, T. H. Jung, and J. M. Woo, “Design of sleeve dipole antenna for suppressing leakage current on a coaxial cable,” IEEE Antennas Wirel. Propag. Lett., vol. 13, pp. 459–462, 2014.
[13] Y.-C. Tseng, H.-L. Ting, and T.-L. Wu, “A Quadruplet-resonator-based ferrite-free choke for suppressing noise currents on cable shielding,” IEEE Trans. Microw. Theory Tech., vol. 64, no. 1, pp. 86–95, 2016.
[14] X. Duan, B. Archambeault, H. D. Bruens, and C. Schuster, “EM emission of differential signals across connected printed circuit boards in the GHz range,” IEEE Int. Symp. Electromagn. Compat., pp. 50–55, 2009.
[15] T. Matsushima, O. Wada, T. Watanabe, Y. Toyota, and O. Prefecture, “Verification of common-mode-current prediction method based on imbalance difference model for single-channel differential signaling system,” in Proc. Asia-Pacif Int. Symp. Electronmagn. Compat, 2012, vol. 2, pp. 409–412.
[16] D. M. Pozar, Microwave engineering. Hoboken, NJ: J. Wiley, 2005.
[17] 3M Company, “3M™ EMI Absorber AB7000HF Series (Halogen Free)”, AB7000HF Series datasheet, 2015.
[18] M. A. Morgan and T. A. Boyd, “Theoretical and experimental study of a new class of reflectionless filter,”IEEE Trans. Microw. Theory Techn., vol. 59, no. 5, pp. 1214–1221, May 2011.
[19] C. Y. Hsiao, C. H. Cheng, and T. L. Wu, “A new broadband common-mode noise absorption circuit for high-speed differential digital systems,” IEEE Trans. Microw. Theory Tech., vol. 63, no. 6, pp. 1894–1901, 2015.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78089-
dc.description.abstract本論文旨在發展一種具有可拆卸特性的雜訊抑制器,以能夠有效阻絕金屬板上的雜訊傳播為目標。傳統上,此類問題多利用高導磁磁材料貼片作為解決方案,但該方法係利用材料特性導致的損耗吸收雜訊,因此其抑制能力受限於物質特性,並不足以完全消除高頻雜訊,而且該方法缺乏設計的自由度,難以彈性的應用於日漸複雜的電磁干擾問題;與其相較,本研究所提出的雜訊抑制技術係利用電磁共振器為原理,其具有極高的雜訊抑制能力及設計靈活性。
首先,本文根據一個常見的電磁干擾情境,將其簡化以設計一個可以定量衡量抑制器特性的測試板,該測試版主在建立環境使雜訊在單一金屬板上傳播,此設定跳脫了以往將雜訊傳播路徑設定在傳輸線或導波架構的框架,使情況更接近實際雜訊傳播的情形。除此之外,為了加速設計過程,本文提出一個系統化的方法為雜訊抑制器建立電路模型,以便之後進行電路合成。
在本論文中,反射式的雜訊抑制器是利用四分之波長共振器實現,其對雜訊的抑制能力可高達30 dB且其3-dB的雜訊抑制頻寬可達 5.7%。相較之下,商用磁性材料貼片僅能提供約3 dB的雜訊降低效果。藉此可以有效說明,利用共振器的雜訊抑制方法可以更全面而且更有效的阻擋雜訊傳播。
接著,為了完全的將雜訊消除,本文藉由兩種微波電路的原型(單方向吸收器和π型衰減器),合成了兩種吸收式的抑制器。它們在測試板上的雜訊吸收效果,可經由電流分布(模擬)或是磁場分布(模擬及量測)的駐波比證明。換句話說,因為反射式抑制器的高反射特性,其將會有遠大於吸收式抑制器的駐波比。
最後,本文進行了使用電流分布獲取雜訊抑制器在單一金屬板上特性的相關推導,從電流分布得到的資訊,可以獲知雜訊抑制器的反射和吸收特性,亦可以推算出抑制器的反射和吸收功率。
zh_TW
dc.description.abstractThis thesis is dedicated to the development of a new kind of noise suppressor with detachable capability to efficiently mitigate the noise transfer on metal plates. Compared with the conventional method using ferrite-based absorbers, which is inadequate to fully eliminate gigahertz (GHz) noise and lack design freedom, the proposed resonator-based technique features high-level noise rejection and design flexibility. Therefore, it is more suitable to deal with the complicated electromagnetic interferences nowadays.
First of all, a test environment to quantitatively estimate the performance of noise suppressors is constructed based on a simplified version of electromagnetic interference (EMI) scenario. The board aims to create an environment where noise can propagate on a single metal plate. This setup is different from the conventional aspect which often limits the paths of noise transfer to transmission lines or waveguides. Hence, this board is more similar to the situation in practice. And then, in order to accelerate the design process, a systematic procedure is developed by establishing circuit models for the suppressors. Subsequently, this procedure is applied to all suppressors in this thesis.
Next, reflective-type noise suppressors are studied. By utilizing λ/4 strip resonators, high-level noise suppression up to 30 dB can be achieved while the 3-dB suppression bandwidth can be up to 5.7%. In contrast to the commercial ferrite sheets, which provide merely 3-dB noise elimination, the proposed resonator-based suppressors are indeed able to block the noise transfer completely and efficiently.
Afterward, in order to entirely remove noise from devices instead of reflecting it, two absorptive-type noise suppressors (unidirectional absorber and π-type attenuator) are synthesized using classical circuit prototypes. Their absorptive effects on the test board are validated both though simulation and measurement by observing standing wave ratios (SWRs) obtained from current and magnetic field distributions. In other words, due to strong reflection, for reflective-type suppressors, their SWRs will be a lot greater compared with absorptive-type suppressors.
Finally, the derivations about how to extract the properties of suppressors on a single metal plate through current distributions are conducted. From the information provided by current distributions, the reflective and absorptive properties can be known. In addition, the reflected power and absorbed power caused by the suppressors can be calculated.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:41:53Z (GMT). No. of bitstreams: 1
ntu-105-R03942014-1.pdf: 5521801 bytes, checksum: 08a35f2cb8b83cad0167b006c903892a (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員審定書………………………………………………………………...………#
致謝 i
中文摘要 v
ABSTRACT vii
CONTENTS ix
LIST OF FIGURES xii
LIST OF TABLES xvii
Chapter 1 Introduction 1
1.1 Research Motivation 1
1.2 Literature Review 3
1.3 Contributions 4
1.4 Thesis Organization 6
Chapter 2 EMI/RFI Issues in Electronic Products and Test Environment Setup 7
2.1 EMI/RFI Scenarios Statements 7
2.2 Design of Test Board 11
2.3 Systematic Design Procedure 16
2.3.1 Auxiliary Transmission-Line Structure 16
2.3.2 Establishment of Equivalent Circuit Model 18
2.3.3 Systematic Design Procedure 19
Chapter 3 Reflective-Type Noise Suppressors 25
3.1 Quarter-Wavelength Strip Resonators and Their Equivalent Circuit Models 25
3.1.1 Proposed Structure 25
3.1.2 Equivalent Circuit Model 26
3.2 Parameters Study 31
3.2.1 Numbers of Resonators 31
3.2.2 Physical Dimensions 35
3.2.3 Substrate and Conductor Losses 41
3.2.4 Final Fabrication Cases 42
3.3 Experimental Validations 47
3.3.1 Isolation between Microstrip Port and PIFA Port 47
3.3.2 Near-Field Scanning 48
3.4 Comparison with Commercial Ferrite-Based Technique 53
3.5 Summary 53
Chapter 4 Absorptive-Type Noise Suppressors 57
4.1 Background and Motivation of Reflection-Less Noise Suppressors 57
4.2 Introduction to the Resistor-Loaded Resonators 61
4.3 Synthesis of Absorptive-Type Noise Suppressor 67
4.3.1 Unidirectional Absorber 67
4.3.2 T-Type and π-Type Resistive Attenuators 73
4.4 Experimental Verification through Transmission Coefficient between Microstrip Port and PIFA Port 79
4.5 Summary 80
Chapter 5 Validation of Absorptive Effect on the Test Board 85
5.1 Voltage and Current Distributions along Lines Based on Transmission-Line Theory 87
5.1.1 Circuit Analogies of the Test Board 87
5.1.2 Voltage and Current Distributions along a Single Transmission Line 88
5.1.3 Voltage and Current Distributions along Transmission Lines with a Two-Port Network Inserted in between 90
5.2 Interpretation of the Quantities Extracted from the Distributions 93
5.2.1 Standing-wave ratios (SWR) 93
5.2.2 Formula to Extract Power 97
5.2.3 Consideration of Lossy Lines 98
5.3 Methods to Validate the Absorptive Effect on the Test Board 101
5.4 Simulation of Current Distribution 105
5.4.1 Simulation Results of Current Distributions 105
5.4.2 Quantitative Analysis: Low-Loss Approximation 113
5.4.3 Quantitative Analysis: Curve-Fitting Method 117
5.5 Experimental Validation through Near-Field Scanning 129
5.5.1 Simulated Magnetic Fields 129
5.5.2 Experimental Validation 135
5.6 Summary 142
Chapter 6 Conclusion 143
6.1 Conclusion of the Thesis 143
6.2 Suggestions for Future Work 145
Appendix 149
A Explanation of the Auxiliary Structure 149
B Relationship between Terminal Voltages and Currents of a Two-Port Network 151
REFERENCE 155
dc.language.isoen
dc.subject電磁干擾zh_TW
dc.subject反射zh_TW
dc.subject吸收zh_TW
dc.subject駐波比zh_TW
dc.subject鐵磁性材料zh_TW
dc.subject雜訊抑制器zh_TW
dc.subjectstanding wave ratioen
dc.subjectferrite materialsen
dc.subjectnoise suppressorsen
dc.subjectElectromagnetic interference (EMI)en
dc.subjectabsorption reflectionen
dc.title應用於降低電磁干擾之可拆卸共振型雜訊抑制器zh_TW
dc.titleResonator-Based Noise Suppressors with Detachable Capability for the Mitigation of Electromagnetic Interferenceen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳瑞北(Ruey-Beei Wu),瞿大雄,陳士元(Shih-Yuan Chen),馬自莊(Tzyh-Ghuang Ma)
dc.subject.keyword電磁干擾,雜訊抑制器,鐵磁性材料,駐波比,吸收,反射,zh_TW
dc.subject.keywordElectromagnetic interference (EMI),noise suppressors,ferrite materials,standing wave ratio,absorption reflection,en
dc.relation.page157
dc.identifier.doi10.6342/NTU201603318
dc.rights.note有償授權
dc.date.accepted2016-08-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-R03942014-1.pdf
  未授權公開取用
5.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved