請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78085完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱雪萍(Hsueh-Ping Chu) | |
| dc.contributor.author | Chia-Heng Fan | en |
| dc.contributor.author | 范嘉恆 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:41:46Z | - |
| dc.date.available | 2025-08-20 | |
| dc.date.copyright | 2020-08-24 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-16 | |
| dc.identifier.citation | Blackburn, E.H., Switching and signaling at the telomere. Cell, 2001. 106(6): p. 661-73. Harley, C.B., A.B. Futcher, and C.W. Greider, Telomeres shorten during ageing of human fibroblasts. Nature, 1990. 345(6274): p. 458-60. Zhang, X., et al., Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. Genes Dev, 1999. 13(18): p. 2388-99. de Lange, T., Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev, 2005. 19(18): p. 2100-10. Greider, C.W. and E.H. Blackburn, Telomeres, telomerase and cancer. Sci Am, 1996. 274(2): p. 92-7. Greider, C.W. and E.H. Blackburn, Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell, 1985. 43(2 Pt 1): p. 405-13. Yu, G.L., et al., In vivo alteration of telomere sequences and senescence caused by mutated Tetrahymena telomerase RNAs. Nature, 1990. 344(6262): p. 126-32. Venteicher, A.S., et al., Identification of ATPases pontin and reptin as telomerase components essential for holoenzyme assembly. Cell, 2008. 132(6): p. 945-57. Venteicher, A.S., et al., A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis. Science, 2009. 323(5914): p. 644-8. Stern, J.L., et al., Telomerase recruitment requires both TCAB1 and Cajal bodies independently. Mol Cell Biol, 2012. 32(13): p. 2384-95. Hastie, N.D., et al., Telomere reduction in human colorectal carcinoma and with ageing. Nature, 1990. 346(6287): p. 866-8. Counter, C.M., et al., Telomerase activity in human ovarian carcinoma. Proc Natl Acad Sci U S A, 1994. 91(8): p. 2900-4. Tzukerman, M., et al., Identification of a Novel Transcription Factor Binding Element Involved in the Regulation by Differentiation of the Human Telomerase (hTERT) Promoter. Molecular Biology of the Cell, 2000. 11. Kirwan, M. and I. Dokal, Dyskeratosis congenita, stem cells and telomeres. Biochim Biophys Acta, 2009. 1792(4): p. 371-9. Chen, J.L., M.A. Blasco, and C.W. Greider, Secondary structure of vertebrate telomerase RNA. Cell, 2000. 100(5): p. 503-14. Lafontaine, D.L., et al., The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev, 1998. 12(4): p. 527-37. Henras, A., et al., Nhp2p and Nop10p are essential for the function of H/ACA snoRNPs. EMBO J, 1998. 17(23): p. 7078-90. Girard, J.P., et al., GAR1 is an essential small nucleolar RNP protein required for pre-rRNA processing in yeast. EMBO J, 1992. 11(2): p. 673-82. Bousquet-Antonelli, C., et al., A small nucleolar RNP protein is required for pseudouridylation of eukaryotic ribosomal RNAs. EMBO J, 1997. 16(15): p. 4770-6. Mason, P.J. and M. Bessler, The genetics of dyskeratosis congenita. Cancer Genet, 2011. 204(12): p. 635-45. Ballew, B.J. and S.A. Savage, Updates on the biology and management of dyskeratosis congenita and related telomere biology disorders. Expert Rev Hematol, 2013. 6(3): p. 327-37. Nicholls, C., et al., Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) induces cancer cell senescence by interacting with telomerase RNA component. Proc Natl Acad Sci U S A, 2012. 109(33): p. 13308-13. Gazzaniga, F.S. and E.H. Blackburn, An antiapoptotic role for telomerase RNA in human immune cells independent of telomere integrity or telomerase enzymatic activity. Blood, 2014. 124(25): p. 3675-84. Ivanyi-Nagy, R., et al., The RNA interactome of human telomerase RNA reveals a coding-independent role for a histone mRNA in telomere homeostasis. Elife, 2018. 7. Minajigi, A., et al., A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science, 2015. Chu, H.P., et al., TERRA RNA Antagonizes ATRX and Protects Telomeres. Cell, 2017. 170(1): p. 86-101 e16. Meier, U.T., The many facets of H/ACA ribonucleoproteins. Chromosoma, 2005. 114(1): p. 1-14. Mitchell, J.R., E. Wood, and K. Collins, A telomerase component is defective in the human disease dyskeratosis congenita. Nature, 1999. 402(6761): p. 551-5. Chen, J.L. and C.W. Greider, Telomerase RNA structure and function: implications for dyskeratosis congenita. Trends Biochem Sci, 2004. 29(4): p. 183-92. Cheng, L., et al., PES1 is a critical component of telomerase assembly and regulates cellular senescence. Sci Adv, 2019. 5(5): p. eaav1090. Broome, H.J. and M.D. Hebert, Coilin displays differential affinity for specific RNAs in vivo and is linked to telomerase RNA biogenesis. J Mol Biol, 2013. 425(4): p. 713-24. Fu, D. and K. Collins, Purification of human telomerase complexes identifies factors involved in telomerase biogenesis and telomere length regulation. Mol Cell, 2007. 28(5): p. 773-85. Gonzalez, O.G., et al., Telomerase stimulates ribosomal DNA transcription under hyperproliferative conditions. Nat Commun, 2014. 5: p. 4599. Bi, Y., et al., WDR82, a key epigenetics-related factor, plays a crucial role in normal early embryonic development in mice. Biol Reprod, 2011. 84(4): p. 756-64. Gerdes, J., et al., Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int J Cancer, 1983. 31(1): p. 13-20. Bullwinkel, J., et al., Ki-67 protein is associated with ribosomal RNA transcription in quiescent and proliferating cells. J Cell Physiol, 2006. 206(3): p. 624-35. Mandel, S. and I. Gozes, Activity-dependent neuroprotective protein constitutes a novel element in the SWI/SNF chromatin remodeling complex. J Biol Chem, 2007. 282(47): p. 34448-56. Mandel, S., G. Rechavi, and I. Gozes, Activity-dependent neuroprotective protein (ADNP) differentially interacts with chromatin to regulate genes essential for embryogenesis. Dev Biol, 2007. 303(2): p. 814-24. Blaj, C., et al., ADNP Is a Therapeutically Inducible Repressor of WNT Signaling in Colorectal Cancer. Clin Cancer Res, 2017. 23(11): p. 2769-2780. Zhang, Y., et al., Human telomerase reverse transcriptase (hTERT) is a novel target of the Wnt/beta-catenin pathway in human cancer. J Biol Chem, 2012. 287(39): p. 32494-511. Schwartz, B.E. and K. Ahmad, Transcriptional activation triggers deposition and removal of the histone variant H3.3. Genes Dev, 2005. 19(7): p. 804-14. Robert, F., et al., A human RNA polymerase II-containing complex associated with factors necessary for spliceosome assembly. J Biol Chem, 2002. 277(11): p. 9302-6. Chu, C., et al., Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell, 2011. 44(4): p. 667-78. Jang, C.W., et al., Histone H3.3 maintains genome integrity during mammalian development. Genes Dev, 2015. 29(13): p. 1377-92. Rishi, A.K., et al., Identification and characterization of a cell cycle and apoptosis regulatory protein-1 as a novel mediator of apoptosis signaling by retinoid CD437. J Biol Chem, 2003. 278(35): p. 33422-35. Kim, J.H., et al., CCAR1, a key regulator of mediator complex recruitment to nuclear receptor transcription complexes. Mol Cell, 2008. 31(4): p. 510-9. Mizuta, S., et al., CCAR1/CoCoA pair-mediated recruitment of the Mediator defines a novel pathway for GATA1 function. Genes Cells, 2014. 19(1): p. 28-51. Zentner, G.E., S.A. Balow, and P.C. Scacheri, Genomic characterization of the mouse ribosomal DNA locus. G3 (Bethesda), 2014. 4(2): p. 243-54. Voon, H.P., et al., ATRX Plays a Key Role in Maintaining Silencing at Interstitial Heterochromatic Loci and Imprinted Genes. Cell Rep, 2015. 11(3): p. 405-18. Cossec, J.C., et al., SUMO Safeguards Somatic and Pluripotent Cell Identities by Enforcing Distinct Chromatin States. Cell Stem Cell, 2018. 23(5): p. 742-757 e8. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78085 | - |
| dc.description.abstract | 端粒是細胞核裡染色體末端的重複序列結構,它可以保護本身序列的完整性並免於和其他染色體融合。當細胞進行分裂時,染色體末端因為沒有辦法複製而造成端粒長度減短,細胞經過多次複製後會因為沒有足夠的端粒保護引發凋亡機制。在細胞中有一種核糖核蛋白複合體叫做端粒酶(telomerase)可以幫助維持端粒長度,其中最重要的兩個結構分別為TERC和TERT,TERC可以當作模板去辨認端粒的結構,並使用TERT的活性去延長端粒長度。在分裂旺盛的細胞例如胚胎幹細胞或生殖細胞中端粒酶的活性普遍比體細胞高,因此這些細胞可以利用端粒酶的延長機制來穩定染色體長度並進行完整的複製。在先前的研究已經指出TERC除了調控端粒的長度之外,也發現它參與其他的調節機制,但是它所扮演的角色仍需要進一步探討。因此我們首先利用iDRiP的方法去看TERC會和哪些蛋白質有交互作用,結果顯示許多蛋白質都參與核糖體合成或是轉錄調控機制,同時也有蛋白質是參與細胞生長與凋零的過程。此外我們也用ChIRP技術去看TERC會和哪些DNA片段鍵結,結果也顯示TERC和核糖體DNA片段以及特定基因上的啟動子或內含子有交互作用,這些結果顯示TERC在核糖體的合成與基因調控機制上扮演一定程度的角色。另外我們從UV-RIP實驗確定RNA聚合酶和TERC有交互作用,並從DNA定序結果分析發現TERC會在基因的啟動子附近以及從染色結果看到TERC有在真染色體上的現象,這些結果都顯示TERC扮演基因調控的角色。最後這些這些實驗結果讓我們發現TERC除了在延長端粒上的機制之外也擔任其他調控機制的角色。 | zh_TW |
| dc.description.abstract | Telomeres are repetitive sequences at the end of the chromosomes, and these structures can protect them from deterioration or fusion with neighboring chromosomes. The ribonucleoprotein complex, telomerase, can prevent end replication problem by its reverse transcriptase activity. Telomerase RNA component (TERC) is one of the key components in the telomerase complex, and it serves as a template to extend telomere structure. Recent studies have shown that TERC is also involved in other cell processes in addition to telomere elongation, but how these mechanisms work is poorly understood. Here we used identification of direct RNA interacting protein (iDRiP) assay to reveal TERC RNA binding proteins and TERC’s potential regulating pathways. The result showed that TERC interacts with many ribonucleoproteins, which are involved in rRNA synthesis, transcription regulation, cell cycle, and telomere maintenance. By chromatin isolation by RNA purification (ChIRP) assay and DNA-seq analyses, we found that TERC also interacts with rDNA locus and DNA binding sites where the products are involved in ribosome synthesis, and apoptosis pathway, suggesting that TERC may regulate ribosome biogenesis and cell proliferation. TERC also binds to promoters and introns, suggesting that TERC participates in gene expression. Furthermore, UV-RNA immunoprecipitation (UV-RIP) experiment shows that RNA polymerase I/II, H3.3 histone variant are associated with TERC in vivo. These data suggest that TERC plays a role in ribosome biogenesis via two distinct mechanisms: contacting ribosomal proteins and transcriptional regulation by binding to RNA polymerase I. TERC also regulates gene expression by targeting to promoters and proteins such as RNA polymerase II and Wdr82. In sum, our study uncovers diverse functions of TERC that is not limited to telomere lengthening. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:41:46Z (GMT). No. of bitstreams: 1 U0001-1408202015341900.pdf: 9917511 bytes, checksum: 596f9fd3c84cbbc07a7146cd484dfdf3 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 論文口試委員審定書 II 誌謝 III 中文摘要 IV Abstract V CONTENTS VII Content of figures IX Content of tables XI Chapter 1 Introduction 1 1.1 Telomere 1 1.2 Telomerase 1 1.3 Telomerase RNA Component (TERC) 2 Chapter 2 Materials and Methods 4 2.1 Embryonic stem cell culture 4 2.2 Preparing mESCs for iDRiP (identification of direct RNA interacting proteins) 4 2.3 iDRiP 5 2.4 Preparing mESCs for ChIRP (Chromatin Isolation by RNA Purification) 7 2.5 ChIRP (1% glutaraldehyde fixation) 7 2.6 ChIRP (1% formaldehyde fixation) 9 2.7 Preparing mESCs for UV-RIP (UV-RNA immunoprecipitation) 10 2.8 UV-RIP 11 2.9 RNA extraction 12 2.10 DNA extraction 13 2.11 Quantitative RT-PCR 13 2.12 DNA library 13 2.13 ChIRP-seq analysis 15 Chapter 3 Result 20 Chapter 4 Discussion 30 Chapter 5 Reference 74 Abbreviation 78 | |
| dc.language.iso | en | |
| dc.subject | TERC | zh_TW |
| dc.subject | 端粒酶 | zh_TW |
| dc.subject | 端粒 | zh_TW |
| dc.subject | 核糖體 | zh_TW |
| dc.subject | telomerase RNA | en |
| dc.subject | telomere | en |
| dc.subject | telomerase | en |
| dc.title | 端粒酶核糖核酸在老鼠胚胎幹細胞中的交互作用體 | zh_TW |
| dc.title | Discovery of telomerase RNA interactome in mouse embryonic stem cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄧述諄(Shu-Chun Teng),陳律佑(Liuh-Yow Chen) | |
| dc.subject.keyword | 端粒,端粒酶,TERC,核糖體, | zh_TW |
| dc.subject.keyword | telomere,telomerase,telomerase RNA, | en |
| dc.relation.page | 80 | |
| dc.identifier.doi | 10.6342/NTU202003435 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-17 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-20 | - |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1408202015341900.pdf 未授權公開取用 | 9.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
