請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78079
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王大銘 | |
dc.contributor.author | Chin-Wen Huang | en |
dc.contributor.author | 黃進文 | zh_TW |
dc.date.accessioned | 2021-07-11T14:41:35Z | - |
dc.date.available | 2021-11-02 | |
dc.date.copyright | 2016-11-02 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-20 | |
dc.identifier.citation | 1. 韓佳耘, 以具分散反萃取相支撐式液膜分離回收稀土金屬離子, 化學工程學系碩士論文. 2015, 國立台灣大學.
2. N. Das*, D. Das, Recovery of rare earth metals through biosorption: An overview. Journal of Rare Earths, 2013. 31(10): p. 933 3. S.M. Hwang*, Analysis on the Impact of and Responses to the Global Undersupply of Rare Earth Resources. Specialist Economic Research Department, 2011. 12: p. 233-263 4. E.S.C. Emmanuel, T. Anathi, B. Anandkumar, S. Marimuthu, Accumulation of rare earth elements by siderophore forming Arthrobacter luteolus isolated from rare earth environment of Chavara. India Journal of Biosciences, 2012. 37(1): 25. 5. 陳昱瑋, 以具分散反萃取相支撐式液膜分離回收釹(Nd3+)鏑(Dy3+)離子, 化學工程學系碩士論文. 2013, 國立台灣大學. 6. 郭瑞華, 李梅, 稀土拋光粉的發展及應用. Chinese Rare Earths, 2005. 26(1): p. 82-85 7. 黃紹東, 李學舜, 稀土拋光粉的應用發展簡介. Chinese Rare Earths, 2008. 29(1): p. 59-62 8. Y.J. Jiang, W.H. An, Research on crystal structure and characteristic of lanthanum oxide-cerium oxide system, Chinese Rare Earths. 2013. 34(6): p.61-64. 9. W.Y. Zhao, Z.J. Meng, H.J. Liu, Y.H. Xu, Recovery of rare earth from waste polishing powder, Chinese Rare Earths. 2012. 33(6): p.75-78 10. 林河成, 我國稀土拋光粉的發展現狀及前景. 《中國有色冶金》,2004. p. 32-p35 11. 鄭武成, 稀土拋光粉的物化性能與拋光能力之間的關係. 1981. p. 46-55, 北京工業學院 12. Patnaik, Pradyot, Handbook of Inorganic Chemical Compounds. McGraw-Hill, 2003. p.444–446 13. K.H. Kim, K.B. Shim, The effect of lanthanum on the fabrication of ZrB2–ZrC composites by spark plasma sintering, Materials Characterization. 2003. 50: p. 31-37 14. N. Tzanetakis, K. Scott, Recycling of nickel-metal hydride batteries. I: Dissolutions and solvent extraction of metals, Journal of Chemical Technology and Biotechnology. 2004. 79: p. 919–926. 15. H.C. Kao, P.S. Yen, R.S. Juang*, Solvent extraction of La(III) and Nd(III) from nitrate solutionss with 2-ethylhexylphosphonic acid mono-2-ethlhexyl ester, Chemical Engineering Journal. 2006. 119: p. 167-174 16. L. Zhu, J. Chen, Absorption of Ce(IV) in nitric acid medium by imidazolium anion exchange resin. Journal of Rare Earths, 2011. 29(10): p. 969 17. V.D. Kosynkin, A.A. Arzgatkina, E.N. Ivanov, M.G. Chtoutsa*, A.I. Grabko, A. V. Kardapolov, N.A. Sysina, The study of process production of polishing powder based on cerium dioxide, Journal of Alloys and Compounds. 2000. 24: p. 421-425. 18. D.I. Bleiwas, Potential for Recovery of Cerium Contained in Automotive Catalytic Converters. Department of the Interior, U.S. Geological Survey, 2013. 19. D. Zou, J. Chen, H. Cui, Y. Liu, D. Li, Wet Air Oxidation and Kinetics of Cerium(III) of Rare Earth Hydroxides. Industrial and Engineering Chemistry Research, 2014. 53: p. 13790-13796. 20. 洪基恩, 廢玻璃拋光粉之資源回收、浸漬模擬、生命週期評估與碳足跡, 環境工程學系博士論文. 2014, 大葉大學. 21. L. Ling, N. Wang, Ligand-assisted elution chromatography for separation of lanthanides. Journal of Chromatography A, 2015. 1389: p. 28-38. 22. R.D. Abreu, C.A. Morais, Purification of rare earth elements from monazite sulphuric acid leach liquor and the production of high-purity ceric oxide. Minerals Engineering, 2010. 23(6): p. 536-540. 23. 刘柏禄, 稀土金属熔盐电解技术进展, 世界有色金属, 2009. 12: p. 75-76. 24. G.S. Lee∗, M. Uchikoshi, K. Mimura, M. Isshiki, Separation of major impurities Ce, Pr, Nd, Sm, Al, Ca, Fe, and Zn from La using bis(2-ethylhexyl)phosphoric acid (D2EHPA)-impregnated resin in a hydrochloric acid medium. Separation and Purification Technology, 2010. 71:p. 186–191 25. N.V. Thakur, Separation of rare earths by solvent extraction. Mineral Processing and Extractive Metallurgy Review, 2000. 21(1):p.277. 26. M. Yitzhak , K. Arup , Ion exchange and solvent extraction: A series of advances. Marcel Dekker Inc, 2004. 27. G.M. Ritcey, A.W. Ashbrook, Solvent extraction. Principles and applications to process Metallurgy. Elsevier, Amsterdam, 1984. 2: p. 386–420. 28. M.S. Lee, J.G. Ahn, E.C. Lee, Solvent extraction separation of indium and gallium from sulphate solutionss using D2EHPA. Hydrometallurgy, 2002. 63: p. 269-276. 29. 劉芳宇, 以具分散反萃取相支撐式液膜穩定性之評估. 化學工程學系碩士論文. 2008, 國立台灣大學. 30. A.S. Kertes, C.J. King, Extraction chemistry of fermentation product carboxylic acids. Biotechnology and Bioengineering, 1986. 28: p. 269-282. 31. 陳文偉, 王震宙, 超臨界萃取技術的應用研究進展. 西部糧油科技, 2003 32. 朱屯, 李洲, 溶劑萃取. 化學工業出版社, 2008 33. L.L. Tavlarides, J.H. Bae, C.K. Lee, Solvent-extraction, membranes, and ion-exchange in hydrometallurgical dilute metals separation. Separation Science and Technology, 1987. 22(2-3): p. 581-617. 34. 蔡泓欣, 以液膜萃取分離錳(II)和鎳(II)之研究. 工程科技所博士論文, 2011, 國立台北科技大學 35. T. Sato, Liquid-liquid extraction of rare-earth elements from aqueous acid solutionss by acid organophosphorus compounds. Hydrometallurgy, 1989. 22(1–2): p. 121-140. 36. D.Q. Li, Some chemical problems in the hydrometallurgical industries of rare earth. Progress in Chemistry, 1995. 7: p. 209-213. 37. Li, W., et al., Extraction and separation of yttrium from the rare earths with sec-octylphenoxy acetic acid in chloride media. Separation and Purification Technology, 2007. 54(2): p. 164-169. 38. B.K. Tait, Cobalt-nickel separation: the extraction of cobalt(II) and nickel(II) by Cyanex 301, Cyanex 302 and Cyanex 272, Hydrometallurgy, 1993, 32: 365-372 39. 林格至, 以具分散反萃取相支撐式液膜回收鎳離子之評估. 化學工程學系碩士論文, 2010, 國立台灣大學. 40. 顏銘儒, 以酸性萃取劑萃取稀土元素鑭(III)和鈰(III)之平衡研究. 工程科技所碩士論文, 2014 , 國立台北科技大學 41. J. Rydberg, C. Musikasm, G.R. Choppin, Principles and practices of solvent extraction. Marcel Dekker Inc.,1992. New York 42. F. Xie, et al., A critical review on solvent extraction of rare earths from aqueous solutionss. Minerals Engineering, 2014. 56: p. 10-28. 43. 徐光憲, 袁承業, 稀土的溶劑萃取,科學出版社,2010 44. H. Zhao, S.Q. Xia, P.S. Ma, Use of ionic liquids as 'green' solvents for extractions. Journal of Chemical Technology and Biotechnology, 2005. 80: p. 1089-1095. 45. G.M. Ritcey, A.W. Ashbrook, Solvent Extraction - Principles and applications to process metallurgy - part I. Elsevier, Amsterdam ,1984. 46. Y.Q. Rousseau, Handbook of separation Process Technology. New York: John Wiley&Sons, 1987 47. P.R. Danesi, Separation of Metal Species by Supported Liquid Membranes. Separation Science and Technology, 1984. 19: 857-894, 48. R. Marr, A. Kopp, Liquid membrane technology- A survey of phenomena, mechanisms, and models. International Chemical Engineering, 1982. 22(1): p.44-60 49. S. Vladimir, Liquid membranes : principles and applications in chemical separations and wastewater treatment. New York: Elsevie, 2010. 50. 王樹楷, 銦冶金, 冶金工業出版社, 2007, 北京 51. J. Lyklema, Fundamentals of interface and colloid science. Volume I : Fundamentals, London: Academic Press, 1991. 52. A.J.B. Kemperman, et al., Stability of supported liquid membranes: state of the Art. Separation Science and Technology, 1996. 31:p. 2733-2762. 53. P.R. Danesi, Separation of metal species by supported liquid membrane. Separation Science and Technology, 1984. 19(11-12): p. 857-894 54. R. Chiarizia, Application of supported liquid membranes for removal of nitrate, technetium(VII) and chromium(VI) from groundwater. Journal of Membrane Science, 1991. 55: p. 39-64. 55. S. Belfer, S. Binman, Immobilized Extractants – Selective transport of magnesium and calcium from a mixed chloride solutions via a hollow fiber module. Journal of Applied Polymer Science, 1990. 40: p. 2073-2085. 56. W.S.W. Ho, Y.K. Poddar, New membrane technology for removal of chromium from waste waters. Environmental Progress, 2001. 20: p. 44-52. 57. G.M. Ritcey, A.W. Ashbrook, Solvent extraction - principles and applications to process metallurgy - part 1. Elsevier, Amsterdam, 1984. 58. T.S. Urbanski, P. Fornari, C. Abbruzzese, The extraction of cerium(III) and lanthanum(III) from chloride solutionss with LIX 54. Hydrometallurgy, 1996. 40(1-2): p. 169-179. 59. P. Venkateswaran, K. Palanivelu, Recovery of phenol from aqueous solutions by supported liquid membrane using vegetable oils as liquid membrane. Journal of Hazardous Materials, 2006. 131(1-3): p. 146-152. 60. F.J. Alguacil, C. Caravaca, M.I. Martin, Transport of chromium(VI) through a Cyanex 921-supported liquid membrane from HCl solutionss. Journal of Chemical Technology and Biotechnology, 2003. 78(10): p. 1048-1053. 61. G. Muthuraman, T.T. Teng, Use of vegetable oil in supported liquid membrane for the transportof rhodamine B. Desalination, 2009. 249: p. 1062-1066. 62. 黃靖軒, 以具分散反萃取相支撐式液膜分離並回收Ni2+-Zn2+-Al3+多成分金屬離子. 化學工程學系碩士論文, 2011, 國立台灣大學. 63. T. Sato, H. Watanabe, H. Nakamura, Extraction of latic, tartaric, succinic, and citric acids by triotylamine. Buneki Kagaku, 1985. 34: p. 559-563. 64. D. Horbez, A. Storck, Coupling between electrolysis and liquid-liquid extraction in an undivided electrochemical reactor: applied to the oxidation of Ce 3+ to Ce 4+ in an emulsion. Journal of Applied Electrochemistry, 1991. 21:p. 915-921. 65. P.H. Tedesco, V.B. De Rimi, J.A., Extraction of tetravalent metals with di(2-ethylhexyl) phosphoric acid—III cerium. Journal of Inorganic and Nuclear Chemistry, 1967. 29: p. 2813-2817. 66. L.U.O. Xinghua, X. Huang, Z. Zhu, Z. Long , Y. Liu, Synergistic extraction of cerium from sulfuric acid medium using mixture of 2-ethylhexyl phosphonic acid mono 2-ethylhexyl ester and Di-(2-ethyl hexyl) phosphoric acid as extractant. Journal of Rare Earths, 2009. 27: p. 119. 67. S. Acharya, S. Mishra, P.K. Misra, Studies on extraction and separation of La(III) with DEHPA and PC88A in petrofin. Hydrometallurgy, 2015. 156: p. 12-16. 68. F.E. Kosinski, H. Bostian, Lanthanum solvent extraciton mechanisms using di-(2-ethylhexyl) phosphoric acid. Journal of Inorganic and Nuclear Chemistry, 1969. 31: p. 3623-3631. 69. S. Yin, W. Wu, X. Bian, Y. Luo, F. Zhang, Solvent extraction of La(III) from chloride medium in the presence of two water soluble complexing agents with di-(2-ethylhexyl) phosphoric acid. Industrail & Engineering Chemistry Ressearch, 2013. 52: p. 8558-8564. 70. I.A. Dibrov, D.E. Chirkst, T.E. Litvinova, Thermodynamic analysis of cerium(III) extraction from sulfate solutionss with salts of quaternary ammonium bases. Russian Journal of Applied Chemistry, 2002. 75: p. 191-194. 71. D. Grant*, Thermal instability of cerium(IV) sulphuric acid solutions. Journal of Inorganic and Nuclear Chemistry, 1964. 25: p. 337-346. 72. M. F. Barakat*, M. M. Abdel-Hamid, Valency stabilization of polyvalent ions during gamma-irrdiation of their aqueous solutionss by sacrifial protection ii Valency stablizaiton of Ce(IV) by bromate ions. Journal of Radioanalytical and Nuclear Chemistry, 1996. 211: p. 461-471. 73. R.W. Johson, D.S. Martin, Kinetics of the oxidation of cerium(III) by concentraiton nitric acid. ournal of Inorganic and Nuclear Chemistry, 1959. 10: p. 94-102. 74. V.P. Shilov, A.V. Gogolev, A.M. Fedoseev, and V.P. Perminov, Mechanism of cerium(III) oxidaiton with ozone in sulfuric acid solutionss. Radiochemistry, 2014. 56: p. 400-403. 75. L.A. Knechi, Oxidation of cerium(III) to cerium(IV) using a mixture of hot concentration pepchloric and sulfuric acids. Analytica Chimica Acta, 1967. 39: p. 349-355. 76. J.B., Ionic equilibria in analytical chemistry. Springer Science & Business, 2012, p. 233. 77. 王郁, 水汙染控制工程(化工版). 化學工業出版社, 2008. 78. H. Ebendorff-Heidepriem*, D. Ehrt, Formation and UV absorption of cerium, europium and terbium ions in different valencies in glasses. Optical Materials, 2000. 15: p.7-25. 79. P. Ramakul*, U. Mooncluen, Y. Yanachawakul, N. Leepipatpiboon, Mass transport modeling and analysis on the mutual separation of lanthanum(III) and cerium(IV) through a hollow fiber supported liquid membrane. Journal of Industrial and Engineerinig Chemistry, 2012. 18: p. 1606-1611. 80. 裴亮, 分散支撑液膜在稀土金属迁移与分离回收中的应用研究. 环境工程学系博士論文, 2010, 西安理工大学. 81. A.W. Wylie, Extraciton of ceric nitrate by solvents. Journal of the Chemical Society, 1951. p.1474 82. Y.A. El-Nadi, Lanthanum and neodymium from Egyptian monazite: Synergistic extractive separation using organophosphorus reagents. Hydrometallurgy, 2012, 119-120:p. 23-29. 83. S. Fana, X. Zhaoa, N. Songa, Y. Shia, Q. Jiaa, W. Liaob, Studies on the synergistic extraction of rare earths from nitrate medium with mixtures of sec-nonylphenoxy acetic acid and 1,10-phenanthroline. Separation and Purification Technology, 2010, 18: p. 241-245. 84. F. Zhang, W. Wu, X. Bian,W. Zeng, Synergistic extraction and separation of lanthanum (III) and cerium (III) using a mixture of 2-ethylhexylphosphonicmono-2-ethylhexyl ester and di-2-ethylhexyl phosphoric acid in the presence of two complexing agents containing lactic acid and citric acid, Hydrometallurgy, 2014. 249:p. 238-243. 85. 張廣強,黃世德, 分析化學上冊, 學苑出版社, 2000. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78079 | - |
dc.description.abstract | 因稀土元素具高經濟價值,且最大宗出產國中國限制出口配額造成稀土金屬供給危機,故近年來稀土金屬的分離回收技術已成為國內外重要經濟及科技研究議題。本研究使用具分散反萃取相支撐式液膜分離搭配氧化、沉澱技術,對拋光粉廢液中的鑭鈰稀土離子進行分離與回收。
本研究提出四種程序組合來分離鑭鈰離子,並評估各種組合的分離效能及鑭離子損失率。第一種為兩階段式具分散反萃取相支撐式液膜分離法,先以第一階段液膜移除四價鈰離子,再以第二階段液膜移除三價鈰離子;第二種為氧化程序結合兩階段液膜分離法,先將大部分三價鈰離子氧化成四價,以第一階段液膜移除四價鈰離子,再以第二階段液膜移除剩餘的少量三價鈰離子;第三種為沉澱結合液膜分離法,調整pH值讓四價鈰離子沉澱,再以液膜法移除三價鈰離子;第四種方法結合氧化、沉澱及液膜法,先將大部分三價鈰離子氧化成四價,調整pH值讓四價鈰離子沉澱,最後再以液膜法移除三價鈰離子。四種程序組合均可將拋光粉廢液中的鈰離子移除,亦可將拋光粉廢液中的少量鎵、釹、鐠等離子移除,可得到高純度的鑭離子溶液。四種組合的鑭離子損失率分別為24%、14%、35%及23%,第二種方式的鑭損失率最低,為14%,但需兩步液膜操作,分離成本較高;第三種方式的分離操作最簡單,但損失最高;而第四種方式雖然鑭離子損失率高於第二種方式,但可以省下一步液膜操作,分離成本會降低。我們認為:日後放大製程時,使用第三種或第四種方式因只需一步液膜操作,成本會較低,選用第四種方式雖然損失率較第三種方式低,但因使用溴酸鈉氧化程序,須額外考量後續鹵素廢液處理問題,選用第三種方式程序上雖然簡便,但鑭離子損失率偏高。選用第三或第四種方式,各有其優劣,需進一步進行成本分析,才能明確判斷選用何者較有利。 | zh_TW |
dc.description.abstract | The separation and recovery of rare-earth metals from waste streams have gained much research attention because of the increasing demands and the strategic control of supply by China. In this study, supported liquid membranes with strip dispersion (SLMSD), together with oxidation and precipitation processes, were applied to the recovery and separation of ceriumand lanthanum ions from the waste streams of polishing industries.
We proposed four separation schemes and evaluated their efficiencies and the resulted lanthanum loss. The methods include: (1) two SLMSD processes; to remove cerium(IV) ions first with the first SLMSD process and then cerium(III) with the second one; (2) oxidation and two SLMSD processes, to oxidize first most of the cerium(III) ions into cerium(IV) and then to adopt two SLMSD processes to remove cerium(IV) and the remaining cerium(III); (3) precipitation and SLMSD, to precipitate cerium(IV) ions first by adjusting pH and then to remove cerium(III) with SLMSD; (4) oxidation-precipitation-SLMSD, to oxidize most of the cerium(III) ions into cerium(IV), then to precipitate cerium(IV) ions by adjusting pH, and to remove cerium(III) with SLMSD. With these separation schemes, we could not only remove almost all cerium ions, but also eliminate most of the impurity ions such as neodymium, praseodymium and gallium. Lanthanum ions with high purity can thus be obtained. The loss percentages of lanthanum ions with the four methods were 24%, 14%, 35% and 23%, respectively. The second scheme gave the lowest loss of lanthanum ions, but the separation cost would be high because two SLMSD processes were needed. The third scheme was simpler, compared with the other schemes, but the loss of lanthanum ions was the highest. The lanthanum loss of the fourth scheme was higher, compared with the second scheme, but the cost would be lower since it required only one SLMSD process. For future scale up, we suggest the use of the third or fourth methods because they are more feasible than the other two. The third and fourth schemes have their own advantages and disadvantages and it needs more investigations to find out which one has the edge for pratical applications. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T14:41:35Z (GMT). No. of bitstreams: 1 ntu-105-R03524057-1.pdf: 3619973 bytes, checksum: 316f3e1378a4ffb1be353a557c079f20 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 第一章 緒論 1
第二章 文獻回顧 7 2-1 稀土金屬 7 2-1-1 鑭元素 7 2-1-2 鈰元素 8 2-2 稀土金屬回收分離 11 2-3 液液萃取 13 2-3-1 液液萃取原理 13 2-3-2 液液萃取操作程序 15 2-3-3 物理萃取 17 2-3-4 化學萃取 18 2-3-4-1萃取劑 19 2-3-4-2 稀釋劑 31 2-3-4-3 修飾劑 34 2-4 液膜分離技術 35 2-4-1 液膜輸送機制與原理 36 2-4-1-1 簡單擴散傳送 36 2-4-1-2 載體輔助傳送 37 2-4-1-3 偶聯輔助傳送 38 2-4-2 液膜型式 40 2-4-2-1 乳化式液膜 40 2-4-2-2 支撐式液膜 43 2-4-3 支撐式液膜限制及改善 47 2-4-3-1 膜相流失 47 2-4-3-2 第三相生成 48 2-4-3-3 水傳遞現象 49 2-4-5 支撐式液膜操作參數 51 2-4-5-1 水相進料溶液 51 2-4-5-2 有機膜相溶液 52 2-4-5-3 溫度 53 2-4-5-4 支撐體結構 53 第三章 實驗原理及理論 55 3-1具分散反萃取相支撐式液膜分離法 55 3-1-1 鑭鈰離子萃取平衡 55 3-1-1-1四價鈰離子萃取平衡 56 3-1-1-2三價鑭鈰離子萃取平衡 58 3-1-2 具分散反萃取相支撐式液膜傳輸理論 61 3-2 鈰離子氧化還原 67 3-3 沉澱法分離 70 第四章 實驗方法 71 4-1 設備與儀器 71 4-2 實驗藥品 73 4-3 實驗步驟 75 4-3-1 拋光粉廢液分析 75 4-3-1-1 感應耦合電漿-原子發射光譜 (Inductively Coupled Plasma-Atomic Emission Spectroscopy, ICP-AES) 75 4-3-1-2可見光紫外光分光光譜儀 (UV/VIS Spectophotometer) 76 4-3-2 具分散反萃取相支撐式液膜 77 4-3-3 批次搖瓶式實驗 80 4-3-4 鈰(III)離子氧化 81 4-3-5 鑭鈰離子沉澱 82 第五章 結果與討論 83 5-1拋光粉廢液分析 84 5-1-1 拋光粉廢液分析(ICP) 84 5-1-2 拋光粉廢液中鈰離子分析(UV/VIS) 85 5-1-2-1 鈰離子標準曲線 85 5-1-2-2 拋光粉廢液中鈰離子分析 89 5-2 具分散反萃取相支撐式液膜法 92 5-2-1 鑭(III)鈰(IV)離子溶液分離 92 5-2-1-1 鑭(III)鈰(IV)離子晶體配製溶液 92 5-2-1-2 拋光粉廢液 101 5-2-2 鑭(III)鈰(III)離子溶液分離 106 5-2-3-1 鑭(III)鈰(III)離子晶體配製溶液 106 5-2-3-2 鑭(III)鈰(III)離子拋光粉廢液 109 5-2-3-3 鑭(III)離子溶液濃縮及回收 122 5-3 氧化及液膜分離法 124 5-3-1 溴酸鈉氧化鈰(III)離子溶液 124 5-3-1-1 晶體配製溶液 124 5-3-1-2 拋光粉廢液 127 5-3-2 液膜分離 129 5-3-2-1 鈰(IV)離子分離 129 5-3-2-2 鑭(III)鈰(III)離子分離 132 5-4 沉澱及液膜分離法 134 5-4-1 晶體配製溶液 134 5-4-2 拋光粉廢液 137 5-4-2-1 沉澱鈰(IV)離子 137 5-4-2-2 液膜分離 141 5-5 氧化、沉澱及液膜分離法 143 5-5-1 氧化及沉澱 143 5-5-2 液膜分離 147 5-6 各種分離法綜合評估 149 第六章 結論與建議 153 參考文獻 155 | |
dc.language.iso | zh-TW | |
dc.title | 具分散反萃取相支撐式液膜、氧化與沉澱法分離回收鑭鈰稀土金屬離子 | zh_TW |
dc.title | Separation and Recovery of Lanthanum and Cerium by
Supported Liquid Membrane with Strip Dispersion, Oxidation and Precipitation | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 謝子陽 | |
dc.contributor.oralexamcommittee | 謝學真,李清華 | |
dc.subject.keyword | 支撐式液膜,鑭,鈰,氧化,沉澱, | zh_TW |
dc.subject.keyword | supported liquid membrane with strip dispersion,lanthanum,cerium,oxidation,precipitation, | en |
dc.relation.page | 160 | |
dc.identifier.doi | 10.6342/NTU201603498 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-21 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-R03524057-1.pdf 目前未授權公開取用 | 3.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。