請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78070
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李世光(Chih-Kung Lee) | |
dc.contributor.author | Tsun-Hsu Chen | en |
dc.contributor.author | 陳存勗 | zh_TW |
dc.date.accessioned | 2021-07-11T14:41:18Z | - |
dc.date.available | 2021-11-02 | |
dc.date.copyright | 2016-11-02 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-21 | |
dc.identifier.citation | [1] D. G. Grier, 'A revolution in optical manipulation,' Nature, vol. 424, pp. 810-816, 2003.
[2] S. Neale, M. Mazilu, J. Wilson, K. Dholakia, and T. Krauss, 'The resolution of optical traps created by light induced dielectrophoresis (LIDEP),' Optics express, vol. 15, pp. 12619-12626, 2007. [3] S.-K. Fan, C. Hashi, and C.-J. Kim, 'Manipulation of multiple droplets on N× M grid by cross-reference EWOD driving scheme and pressure-contact packaging,' in Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE The Sixteenth Annual International Conference on, 2003, pp. 694-697. [4] M. Akbari, M. Bahrami, and D. Sinton, 'Optothermal control of local fluid temperature in microfluidics,' in ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, 2010, pp. 637-644. [5] G. Zheltov, V. Lisinetskii, A. Grabtchikov, and V. Orlovich, 'Low-threshold cavitation in water using IR laser pulse trains,' Applied optics, vol. 47, pp. 3549-3554, 2008. [6] S.-Y. Park and P.-Y. Chiou, 'Light-driven droplet manipulation technologies for lab-on-a-chip applications,' Advances in OptoElectronics, vol. 2011, 2011. [7] W. J. Brown and A. L. Williams, 'Piezoelectric motor,' ed: Google Patents, 1948. [8] T. Sashida and T. Kenjo, 'Introduction to ultrasonic motors,' 1993. [9] M. Kuribayashi, S. Ueha, and E. Mori, 'Excitation conditions of flexural traveling waves for a reversible ultrasonic linear motor,' The Journal of the Acoustical Society of America, vol. 77, pp. 1431-1435, 1985. [10] P. Suybangdum, P. Smithmaitrie, and P. Laoratanakul, 'Dual piezoelecttic actuators for the traveling wave ultrasonic linear motor,' in Fourth International Conference on Experimental Mechanics, 2009, pp. 75223I-75223I-7. [11] Y. Roh, S. Lee, and W. Han, 'Design and fabrication of a new traveling wave-type ultrasonic linear motor,' Sensors and Actuators A: Physical, vol. 94, pp. 205-210, 2001. [12] H.-H. Wang, T.-J. Wu, C.-C. Hsu, C.-K. Lee, and Y.-H. Hsu, 'A light-activated optopiezoelectric thin-film actuator for microfluidic applications,' in SPIE BiOS, 2015, pp. 93200D-93200D-5. [13] B.-S. Yoo, S.-H. Choi, C. Lee, and J. Jang, 'Light-induced metastable state in doping-modulated amorphous silicon superlattices,' Superlattices and Microstructures, vol. 4, pp. 133-137, 1988. [14] J. G. Smits, S. I. Dalke, and T. K. Cooney, 'The constituent equations of piezoelectric bimorphs,' Sensors and Actuators A: Physical, vol. 28, pp. 41-61, 1991. [15] C. Lee, 'Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I: Governing equations and reciprocal relationships,' The Journal of the Acoustical Society of America, vol. 87, pp. 1144-1158, 1990. [16] Y. Yang and L. Tang, 'Equivalent circuit modeling of piezoelectric energy harvesters,' Journal of Intelligent Material Systems and Structures, 2009. [17] J. Curie and P. Curie, 'Development by pressure of polar electricity in hemihedral crystals with inclined faces,' Bull. soc. min. de France, vol. 3, p. 90, 1880. [18] W. G. Hankel, '“Piezoelectric”Applied Sciences,' p. 457, 1881. [19] B. Jaffe, Piezoelectric ceramics vol. 3: Elsevier, 2012. [20] 吳朗, 電子陶瓷: 壓電陶瓷: 全欣, 1994. [21] 溫志偉, '以溶-凝膠法製備之層狀鋯鈦酸薄膜微結構分析及生物相容性評估,' 2005. [22] W. P. Mason, 'Electromechanical Transducers and Wave Filters (2nd edn.)Van Nostrand Reinhold,' 1948. [23] H. Hariri, Y. Bernard, and A. Razek, 'A traveling wave piezoelectric beam robot,' Smart Materials and Structures, vol. 23, p. 025013, 2013. [24] T. Takano and Y. Tomikawa, 'Linearly moving ultrasonic motor using a multi-mode vibrator,' Japanese Journal of Applied Physics, vol. 28, p. 164, 1989. [25] 王珮紋, '以行進波驅動微流體晶片內部液體之研發,' 臺灣大學工程科學及海洋工程學研究所學位論文, pp. 1-56, 2015. [26] K. M. Kadish, K. M. Smith, and R. Guilard, The Porphyrin Handbook: Inorganic, organometallic and coordination chemistry vol. 3: Elsevier, 2000. [27] T. Nishi, K. Kanai, Y. Ouchi, M. R. Willis, and K. Seki, 'Evidence for the atmospheric p-type doping of titanyl phthalocyanine thin film by oxygen observed as the change of interfacial electronic structure,' Chemical physics letters, vol. 414, pp. 479-482, 2005. [28] K. Y. Law, 'Organic photoconductive materials: recent trends and developments,' Chemical Reviews, vol. 93, pp. 449-486, 1993. [29] T. Saito, W. Sisk, T. Kobayashi, S. Suzuki, and T. Iwayanagi, 'Photocarrier generation processes of phthalocyanines studied by photocurrent and electroabsorption measurements,' The Journal of Physical Chemistry, vol. 97, pp. 8026-8031, 1993. [30] http://www.sigmaaldrich.com/taiwan.html [31] J. Mizuguchi, G. Rihs, and H. Karfunkel, 'Solid-state spectra of titanylphthalocyanine as viewed from molecular distortion,' The Journal of Physical Chemistry, vol. 99, pp. 16217-16227, 1995. [32] 鈴木信二郎, 朱豊強, and 北川清三, '有機感光体用材料技術 (特集 感光体・太陽電池・磁気記録媒体),' 富士電機技報= Fuji Electric journal, vol. 85, pp. 274-278, 2012. [33] 陳怡臻, '光壓電材料在無閥門式微幫浦之應用,' 臺灣大學工程科學及海洋工程學研究所學位論文, pp. 1-96, 2014. [34] 張雯琪, '研製分佈式感應子及壓電致動器應用之光壓電材料,' 臺灣大學應用力學研究所學位論文, pp. 1-107, 2015. [35] W. Hiller, J. Strahle, W. Kobel, and M. Hanack, 'Polymorphie, Leitfahigkeit und Kristallstrukturen von Oxo-phthalocyaninato-titan (IV),' Zeitschrift fur Kristallographie-Crystalline Materials, vol. 159, pp. 173-184, 1982. [36] K. Oka, O. Okada, and K. Nukada, 'Study of the crystal structure of titanylphthalocyanine by Rietveld analysis and intermolecular energy minimization method,' Japanese journal of applied physics, vol. 31, p. 2181, 1992. [37] S. Yamaguchi and Y. Sasaki, 'Effect of water on primary photocarrier-generation process in Y-form titanyl phthalocyanine,' The Journal of Physical Chemistry B, vol. 104, pp. 9225-9229, 2000. [38] W. Wang, D. Placencia, and N. R. Armstrong, 'Planar and textured heterojunction organic photovoltaics based on chloroindium phthalocyanine (ClInPc) versus titanyl phthalocyanine (TiOPc) donor layers,' Organic Electronics, vol. 12, pp. 383-393, 2011. [39] Z. D. Popovic, M. I. Khan, S. J. Atherton, A.-M. Hor, and J. L. Goodman, 'Study of carrier generation in titanyl phthalocyanine (TiOPc) by electric-field-induced quenching of integrated and time-resolved fluorescence,' The Journal of Physical Chemistry B, vol. 102, pp. 657-663, 1998. [40] S. Zhou, W. Qiu, W. Hu, Y. Liu, F. Bai, and D. Zhu, 'Photoconduction and application of oxotitanium phthalocyanine dual-layered thin films,' Thin Solid Films, vol. 375, pp. 263-266, 2000. [41] Q. Zhang, D. Wang, J. Xu, J. Cao, J. Sun, and M. Wang, 'An investigation of surface photovoltaic properties of TiOPc and AlClPc,' Materials chemistry and physics, vol. 82, pp. 525-528, 2003. [42] C. Kresge, M. Leonowicz, W. Roth, J. Vartuli, and J. Beck, 'Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism,' nature, vol. 359, pp. 710-712, 1992. [43] V. Gulbinas, 'Transient absorption of photoexcited titanylphthalocyanine in various molecular arrangements,' Chemical Physics, vol. 261, pp. 469-479, 2000. [44] http://www.solgel.com/articles/nov00/mennig.htm [45] H. Cong and W. Cao, 'Colloidal crystallization induced by capillary force,' Langmuir, vol. 19, pp. 8177-8181, 2003. [46] T.-H. Chen, H.-H. Wang, Y.-H. Hsu, and C.-K. Lee, 'Integrating optopiezoelectric actuators and a two-mode excited linear ultrasonic motor for microfluidics,' in SPIE BiOS, 2016, pp. 97050Q-97050Q-6. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78070 | - |
dc.description.abstract | 在近年的研究中已有許多利用光來產生力場的方式,如光鉗利用雷射光束的能量梯度來控制微小粒子,亦有光電濕潤,利用光感電極的方式改變液滴局部的表面張力來控制液滴的移動,或是利用光介電泳的方式透過特殊光圖騰產剩的斥力與引力來控制粒子動方向,但是上述的光控方式都沒辦法產生較大的力量輸出。直到光壓電複合材料的出現之後,才大幅提昇了光轉力的強度,並且已有將光感電極運用於微幫浦的技術,但是光敏材料操作在高頻率的情況之下的反應仍有待改善。光壓電複合材料的出現,使得光感電極出現了更多樣化的應用,而若是將光敏材料應用於市面上廣泛出現的壓電超音波馬達中,則可以獲得更佳的驅動選擇性與其應用。
本論文嘗試開發光敏材料並優化其高頻響應,並與壓電材料進行結合,製作可以光學的方式來調控的光壓電複合材料,以光驅動為出發點,製作一靈敏的光控音波馬達,目的為以光驅動的方式,在有限的結構中產生行進波,使裝置能夠利用行進波來移動。該複合材料是透過感光敏材料TiOPc (Titanyl Phthalocyanine)薄膜以及雙層的壓電材料PZT (Lead Zirconate Titanate)來製作。 為了改善TiOPc光敏材料在高頻之下的阻抗變化率不足的問題,本文針對不同的濃度、配方與製程方式所製作出的光敏材料TiOPc薄膜進行探討,以精密阻抗分析儀(Agilent 4294A)進行量測,以探討其照光前後阻抗之變化及電學特性的阻抗分析實驗,找出最佳的配方與製程組合進一步地將其應用於音波馬達的光感電極上。 過去在音波馬達的開發上,有許多的研究都使用旋轉式超音波馬達利用時間與空間相位差90度的兩駐波(Standing wave)疊合產生行進波的方式來設計直線型超音波馬達,但是效率並不佳甚至是無法運作,原因是直線型超音波馬達一直無法克服邊界的效應,有效的在小尺度的有限結構中產生行進波,而近年的研究中則出現了將結構中兩相鄰的正交模態進行疊合的方式來產生行進波,而本論文亦將嘗試利用此方式來進行直線型超音波馬達的設計與製作,將極化方向相反的壓電片貼合成一雙層的Bimorph結構,並透過驅動頻率介於兩相鄰共振頻之間的訊號來驅動具有特別有效電極位置安排的壓電材料,以激發出結構中兩相鄰的彎曲模態,透過模態的疊合可在有限結構中得到一行進波,本論文將針對音波馬達行進波的產生,進行理論的推導、數值模擬與實驗來印證行進波產生的方式。 本研究並將優化後的光敏材料與壓電音波馬達進行結合,將音波馬達的上電極透過一系列的製程替換為光感電極,進行光驅動實驗,驗證光壓電音波馬達的可行性,成功開發一光驅動式的直線型超音波馬達。 | zh_TW |
dc.description.abstract | In this thesis, photoconductive titanium oxide phthalocyanine (TiOPc) was used as the active ingredient to enable the virtual electrode in an optopiezoelectric composite based piezoelectric actuator. By illuminating light with a designed wavelength and intensity onto a pre-set area of TiOPc coating, the effective impedance of the illuminated area can decrease. The optopiezoelectric composites is constructed with a layer of TiOPc coating, a layer of ITO transparent electrode, and a piezoelectric actuator. Different concentration of TiOPc nanoparticles and dopants were also studied. It was verified that by illuminating a light source to TiOPc coating, the driving voltage applied on the piezoelectric actuator can be increased for activating the piezoelectric actuator. This spatial control capability provided a platform for controlling the distributed forces by an optical means with selective exposure area.
Once the optopiezoelectric composite material was optimized, a two-mode excited linear sonic motor was designed and developed to be driven by spacial illumination. To overcome the common challenge of a linear ultrasonic motor, the reflective wave generated by finite boundaries, the superposition of two adjoining bending modes called ‘two mode excitation’ were applied. When the frequency of input signal was the average of two adjoining resonance frequencies, the transversal displacement could be considered as the superposition of these mode shapes. Comparing with the vibration-absorbing device, two mode excitation was more flexible capability. Combining the two linear sonic motor and TiOPc thin film, we successfully fabricated the optopiezoelectric sonic motor. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T14:41:18Z (GMT). No. of bitstreams: 1 ntu-105-R03543071-1.pdf: 9233050 bytes, checksum: 89d0874e60720fc75f5e56765214f30c (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iv 目錄 v 圖目錄 viii 表目錄 xii 第1章 緒論 1 1.1 前言 1 1.2 文獻回顧 1 1.2.1 光操控技術 1 1.2.2 超音波馬達 3 1.3 研究目的 5 第2章 光壓電音波馬達結構設計 6 2.1 設計理念 6 2.2 系統架構 6 2.3 結構設計 7 2.3.1 材料選擇 7 2.3.2 光壓電音波馬達結構 7 2.3.3 光壓電音波達等效電路 10 第3章 壓電材料特性介紹與基礎理論 12 3.1 材料介紹 12 3.1.1 起源 12 3.1.2 壓電效應 12 3.1.3 壓電材料的種類 13 3.2 理論推導 14 3.2.1 壓電材料本構方程式 14 3.2.2 壓電薄板本構方程式 18 3.2.3 有效表面電極 22 3.2.4 統御方程式 (governing equation) 之推導 23 3.2.5 雙固定端(Fixed-fixed) 25 3.2.6 雙自由端(Free-free) 30 第4章 直線型超音波馬達之工作原理 32 4.1 具有反射波吸收結構 32 4.2 不具反射波吸收結構 32 4.2.1 駐波形式 32 4.2.2 行進波形式 34 第5章 有限元素模擬分析 41 5.1 模型的建立與參數設定 41 5.2 模型尺寸對共振頻之影響 42 5.3 雙訊號輸入結構位移分析 43 第6章 音波馬達 47 6.1 共振頻量測 47 6.1.1 Fixed-fixed 47 6.1.2 Free-free 49 6.2 邊界條件行進波驅動實驗 50 6.2.1 Free-free 50 6.2.2 Fixed-fixed 52 第7章 光敏材料特性與介紹 54 7.1 TiOPc光感特性與其應用 55 7.2 TiOPc薄膜等效電路 57 7.3 TiOPc的種類與選擇 59 7.4 光感電極的開發 60 7.4.1 TiOPc光感電極介紹 60 7.4.2 TiOPc薄膜製程 60 7.4.3 浸塗製程介紹 61 7.4.4 TiOPc薄膜電性分析 63 7.4.5 等效阻抗量測與分析 67 7.4.6 電阻率量測與分析 75 7.4.7 介電常數量測與分析 82 7.4.8 RC時間常數計算與分析 89 7.4.9 最佳化薄膜製程參數選擇 96 7.4.10 TiOPc 50% 不同光源之比較 96 第8章 光壓電音波馬達 98 8.1 阻抗匹配與電極設計 98 8.2 共振頻與阻抗變化率量測 100 8.3 光驅動實驗 103 第9章 結論與未來展望 105 9.1 結論 105 9.2 未來展望 105 Reference 106 附錄 110 | |
dc.language.iso | zh-TW | |
dc.title | TiOPc光壓電致動器線性音波馬達之開發 | zh_TW |
dc.title | Research and Development of TiOPc of Optopiezoelectric Actuator Enabled Linear Sonic Motor | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 許聿翔(Yu-Hsiang Hsu),吳光鐘(Kuang-Chong Wu) | |
dc.contributor.oralexamcommittee | 林世智(Shih-Jue Lin),谷振濤(Jen-Tau Gu) | |
dc.subject.keyword | 壓電材料,光敏材料,光壓電材料,直線型超音波馬達,雙模態激發, | zh_TW |
dc.subject.keyword | Piezoelectric material,photoconductive material,optopiezoelectric material,linear ultrasonic motor,two mode excitation, | en |
dc.relation.page | 111 | |
dc.identifier.doi | 10.6342/NTU201603501 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-22 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-R03543071-1.pdf 目前未授權公開取用 | 9.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。