Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78056
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂良鴻(Liang-Hung Lu)
dc.contributor.authorJhih-Hong Linen
dc.contributor.author林志鴻zh_TW
dc.date.accessioned2021-07-11T14:40:54Z-
dc.date.available2022-02-20
dc.date.copyright2017-02-20
dc.date.issued2016
dc.date.submitted2016-10-03
dc.identifier.citation[1] D. Davino, A. Giustiniani, and C. Visone, “Capacitive load effects on a magnetostrictive fully coupled energy harvesting device,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4108–4111, Oct. 2009.
[2] Y. J. Sang, X. L. Huang, H. X. Liu, and P. Jin, “A vibration-based hybrid energy harvester for wireless sensor systems,” IEEE Trans. Magn., vol. 48, no. 11, pp. 4495–4498, Nov. 2012.
[3] G. Cha and Y. S. Ju, “Pyroelectric energy harvesting using liquid-based switchable thermal interfaces,” Sens. Actuators A, Phys., vol. 189, pp. 100–107, Jan. 2013.
[4] V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys., vol. 101, no. 12, p. 123114, Jun. 2007.
[5] S. Boisseau, G. Despesse, S. Monfray, O. Puscasu, and T. Skotnicki, “Semi-flexible bimetal-based thermal energy harvesters,” Smart Mater. Struct., vol. 22, no. 2, p. 025021, Jan. 2013.
[6] P. Li, Y. M. Wen, and L. X. Bian, “Enhanced magnetoelectric effects in composite of piezoelectric ceramics, rare-earth iron alloys, and ultrasonic horn,” Appl. Phys. Lett., vol. 90, no. 2, p. 022503, Jan. 2007.
[7] P. Li, Y. M. Wen, P. G. Liu, X. S. Li, and C. B. Jia, “A magnetoelectric energy harvester and management circuit for wireless sensor network,” Sens. Actuators A, Phys., vol. 157, no. 1, pp. 100–106, Jan. 2010.
[8] P. Li, Y. M. Wen, C. B. Jia, and X. S. Li, “A magnetoelectric composite energy harvester and power management circuit,” IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2944–2951, Jul. 2011.
[9] S.-D. Kwon, “A T-shaped piezoelectric cantilever for fluid energy harvesting,” Appl. Phys. Lett., vol. 97, no. 16, p. 164102, Oct. 2010.
[10] H. W. Kim, S. Priya, K. Uchino, and R. E. Newnham, “Piezoelectric energy harvesting under high pre-stressed cyclic vibrations,” J. Electroceram., vol. 15, no. 1, pp. 27–34, Sep. 2005.
[11] Y. Zhu, J. W. Zu, and L. Guo, “A magnetoelectric generator for energy harvesting from the vibration of magnetic levitation,” IEEE Trans. Magn., vol. 48, no. 11, pp. 3344–3347, Nov. 2012.
[12] X. Z. Dai, Y. M. Wen, P. Li, J. Yang, and G. Y. Zhang, “Modeling, characterization and fabrtication of vibration energy harvester using Terenol-D/PZT/Terfenol-D composite transducer,” Sens. Actuators A, Phys., vol. 156, no. 2, pp. 350–358, Dec. 2009.
[13] “Citizen eco-drive,” [Online]. Available: http://www.citizenwatch.com/en-us/watches/collections/citizen-eco-drive/ [Sep. 09, 2016]
[14] “Wireless charging with Verizon wireless,” [Online]. Available: http://www.verizonwireless.com/wcms/consumer/wireless-charging.html [Sep. 09, 2016]
[15] “Power monitoring product,” [Online]. Available: http://www.eclife.com.tw/dc/moreinfo_24140.htm [Sep. 09, 2016]
[16] “Intelligent power monitoring device,” [Online]. Available: http://www.eclife.com.tw/dc/moreinfo_41179.htm [Sep. 09, 2016]
[17] “Household electricity socket management,” [Online]. Available: https://www.itri.org.tw/chi/eel/p4.asp?RootNodeId=070&NavRootNodeId=0735&NodeId=073522&ArticleNBR=1159 [Sep. 09, 2016]
[18] CRC handbook of thermoelectrics, R. D. Rowe, Eds. New York, NY, USA: CRC Press, 1995.
[19] “Thermoelectric modules,” [Online]. Available: http://www.mouser.com/ds/2/223/THR-DS-HT8,12,F2,4040,11,W6-597968.pdf [Sep. 18, 2016]
[20] D. C. Daly and A. P. Chandrakasan, “An energy-efficient OOK transceiver for wireless sensor networks,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1003-1011, May. 2007.
[21] M. K. Raja and Y. P. Xu, “A 52 pJ/bit OOK transmitter with adaptable data rate,” in Proc. IEEE Asian Solid-State Circuits Conf., 2008, pp. 341-345.
[22] J. Bae, N. Cho, and H. -J. Yoo, “A 490uW fully MICS compatible FSK transceiver for implantable devices,” in IEEE Symposium on VLSI Circuits Digest Technical Papers, pp. 36-37, June 2009.
[23] J. Pandey and B. P. Otis, “A Sub-100 μW MICS/ISM band transmitter based on injection-locking and frequency multiplication,” IEEE Journal of Solid-State Circuits, vol. 46, no. 5, pp. 1049-1058, May. 2011.
[24] “Receive sensitivity of the radio,” [Online]. Available: http://www.tranzeo.com/allowed/Tranzeo_Link_Budget_Whitepaper.pdf [Sep. 26, 2016]
[25] “Link budget,” [Online]. Available: http://www.radius.net/eng/services/radio-networking-tools/radio-fade-margin/ [Sep. 26, 2016]
[26] B. Razavi, RF Microelectronic. 2nd ed. Upper Saddle River, NJ: Pearson, 2012.
[27] A. S. Sedra and K. C. Smith, Microelectronic Circuits, 6th Ed., New York, NY USA: Oxford University Press, 2009.
[28] “MHz range crystal unit SMD, MA-406/MA-505/MA-506,” Seiko Epson Corporation, [Online]. Available: http://www.epsondevice.com/docs/qd/en/DownloadServlet?id-ID000652 [Sep. 09, 2016]
[29] P. P. Mercier, S. Bandyopadhyay, A. C. Lysaght, K. M. Stankovic, and A. P. Chandrakasan, “A sub-nW 2.4 GHz transmitter for low datarate sensing applications,” IEEE J. Solid-State Circuits, vol. 49, no. 7, pp. 1463–1474, Jul. 2014.
[30] L. Zhang, H. Jiang, J. Wei, J. Dong, F. Li, W. Li, J. Gao, J. Cui, B. Chi, C. Zhang, and Z. Wang, “A Reconfigurable Sliding-IF Transceiver for 400 MHz/2.4 GHz IEEE 802.15.6/ZigBee WBAN Hubs With Only 21% Tuning Range VCO,” IEEE Journal of Solid-State Circuits, vol. 48, no. 11, pp. 2705–2716, Nov 2013.
[31] Q. Zhang, P. Feng, Z. Geng, X. Yan, and N. Wu, “A 2.4-GHz energye-fficient transmitter for wireless medical applications,” IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 1, pp. 39–47, Feb. 2011.
[32] M. K. Raja, X. Chen, Y. D. Lei, B. Zhao, B. C. Yeung, and X. Yuan, “A 18 mW Tx, 22 mW Rx transceiver for 2.45 GHz IEEE 802.15.4 WPAN in 0.18-μm CMOS,” in 2010 IEEE Asian Solid State Circuits Conf., 2010, pp. 1–4.
[33] C. P. Basso, Switch-Mode Power Supplies SPICE Simulations and Practical Designs, New York, NY, USA: McGraw-Hill, 2008.
[34] H. Banba, H. Shiga, A. Umezawa, T. Miyaba, T. Tanzawa, S. Atsumi, and K. Sakui, “A CMOS bandgap reference circuit with sub-1-V operation,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 670–674, May 1999.
[35] S. Mondal and R. Paily, ' An Efficient On-Chip Switched-Capacitor-Based Power Converter for a Microscale Energy Transducer,' IEEE Transactions on Circuits and Systems II, Express Briefs, vol. 63, no. 3, pp. 254-258, Mar. 2016.
[36] T. Ozaki, T. Hirose, H. Asano, N. Kuroki, and M. Numa, “A fully-integrated, high-conversion-ratio and dual-output voltage boost converter with MPPT for low-voltage energy harvesting,” in Proc. IEEE Asian Solid-State Circuits Conf., 2015, pp. 1–4.
[37] T. Ozaki, T. Hirose, T. Nagai, K. Tsubaki, N. Kuroki, and M. Numa, “A 0.21-V Minimum Input, 73.6% Maximum Efficiency, Fully Integrated Voltage Boost Converter with MPPT for Low-Voltage Energy Harvesters,” in Proc. Eur. Solid-State Circuits Conf., 2014, pp. 255 - 258.
[38] A. Richelli, L. Colalongo, S. Tonoli, and Z. M. Kovacs-Vajna, “A 0.2–1.2 V DC/DC boost converter for power harvesting applications,” IEEE Trans. Power Electron., vol. 24, no. 6, pp. 1541–1546, Jun. 2009.
[39] E. J. Carlson, K. Strunz, and B. P. Otis, “A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 741–750, Apr. 2010.
[40] J. M. Damaschke, “Design of a low-input-voltage converter for thermoelectric generator,” IEEE Trans. Ind. Appl., vol. 33, no. 5, pp. 1203–1207, Sep./Oct. 1997.
[41] Y. K. Ramadass and A. P. Chandrakasan, “A batteryless thermoelectric energy-harvesting interface circuit with 35 mV startup voltage,” in IEEE Int. Solid-State Conf. Dig. Tech. Papers, 2010, pp. 486–487.
[42] F. Zhang, Y. Zhang, J. Silver, Y. Shakhsheer, M. Nagaraju, A. Klinefelter, J. Pandey, J. Boley, E. Carlson, A. Shrivastava, B. Otis, and B. Calhoun, “A batteryless 19 μW MICS/ISM-band energy harvesting body area sensor node SoC,” in IEEE Int. Solid-State Conf. Dig. Tech. Papers, 2012, pp. 298–299.
[43] P. S. Weng, H. Y. Tang, P. C. Ku, and L. H. Lu, “50 mV-input batteryless boost converter for thermal energy harvesting,” IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 1031–1041, Apr. 2013.
[44] P. H. Chen, K. Ishida, K. Ikeuchi, X. Zhang, K. Honda, Y. Okuma, Y. Ryu, M. Takamiya, and T. Sakurai, “A 95 mV-startup step-up converter with VTH-tuned oscillator by fixed-charge programming and capacitor pass-on scheme,” in IEEE Int. Solid-State Conf. Dig. Tech. Papers, 2011, pp. 216–217.
[45] J. P. Im, S. W.Wang, K. H. Lee, Y. J. Woo, Y. S. Yuk, T. H. Kong, S. W. Hong, S. T. Ryu, and G. H. Cho, “A 40 mV transformer-reuse self-startup boost converter with MPPT control for thermoelectric energy harvesting,” in IEEE Int. Solid-State Conf. Dig. Tech. Papers, 2012, pp. 104–105.
[46] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.
[47] “Dickson charge pump,” [Online]. Available: https://en.wikipedia.org/wiki/Voltage_multiplier [Sep. 26, 2016]
[48] Y. C. Chen, S. C. Yu, S. H. Cheng, and Y. T. Cheng, “A Flexible Inductive Coil Tag for Household Two-Wire Current Sensing Applications,” IEEE Sens. J., vol. 12, no. 6, pp. 2129–2134, Jun. 2012.
[49] “Low-power RF protocol from Texas Instruments,” [Online]. Available: http://www.ti.com/tool/simpliciti [Sep. 18, 2016]
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78056-
dc.description.abstract回收浪費掉的熱能以及有效率的使用能源是現今很重要的研究主題。目前能源擷取技術能夠將散佈在環境中的能源浪費回收起來,並且轉換成電能提供給電子電路做使用。因為熱電材料透過家中過載電線以及環境的溫差擷取熱能,產生出來的電壓是會變動的,因此需要設計一個可以提供穩定的輸出電壓給電子電路的升壓器。
在無線感測網路裡包含了各種無線感測節點在許多不同的應用之中,而能源擷取器在自主供電的無線感測器裡是一個關鍵的元件。隨著物聯網的成長,增加了無線感測資訊傳輸的需求。在互補式金屬氧化物半導體擁有低成本、低功耗以及高整合度的特性,大部分的無線感測器都喜愛使用互補式金屬氧化物半導體製程。由於以上因素,本論文提出了一個適用於電力監控之自主供電無線感測系統。
zh_TW
dc.description.abstractThe concepts of the waste heat energy recovery and efficient power consumption have been one of the most significant research topics. The Energy harvesting technology enables to recover the waste energy dispersed into the environment and convert it into electrical energy to supply low power circuits. The thermoelectric generator induced voltage from the temperature difference between the overload power-line and the ambient could be variation. Therefore, a boost converter is mandatory to provide a regulated output voltage as the power supply for the electronic circuits.
Wireless sensor networks (WSNs) consisting of several wireless sensor nodes are used in various applications. Energy harvesters are key components of self-power wireless sensors. With growing interest in the Internet of things (IoT), there has been increasing demand for wireless transmission of information captured by various sensors. The complementary metal-oxide-semiconductor (CMOS) process has a low cost, low power and high integration characteristics so that it becomes the new preference of the wireless sensor node which has simple signal reception and transmission systems. In this work, a batteryless wireless sensor system for power-line monitoring is presented.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:40:54Z (GMT). No. of bitstreams: 1
ntu-105-R02943170-1.pdf: 4797739 bytes, checksum: f71478dc7231d465600e6a4a536ba598 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 v
摘要 vii
Abstract ix
Contents xi
List of Figures xv
List of Tables xix
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis Organization 3
Chapter 2 Background 5
2.1 Power Monitoring Development 5
2.2 Evolution of Thermoelectric Generators 7
Chapter 3 A Supply Voltage Adaptive Wireless OOK Transmitter 11
3.1 Introduction 12
3.2 Circuit Implementation of the Proposed Supply Voltage Adaptive Wireless OOK Transmitter 13
3.2.1 RF link budget 15
3.2.2 The on-chip LC voltage-controlled oscillator 16
3.2.3 The buffer and OOK modulator 18
3.2.4 The cascode class-AB power amplifier 19
3.2.5 Adaptive PA gate bias control 21
3.2.6 Clock generator 22
3.3 Experimental Results 24
3.4 Conclusion 32
Chapter 4 A Fully Electrical Startup Batteryless Boost Converter 33
4.1 Introduction 34
4.2 Circuit Implementation of the Proposed Fully Electrical Startup Batteryless Boost Converter 35
4.2.1 The auxiliary ring oscillator 36
4.2.2 The auxiliary boost converter 37
4.2.3 ZCS-controlled boost converter 39
4.2.4 Self-PWM control and peripheral circuits 42
4.3 Experimental Results 45
4.4 Conclusion 49
Chapter 5 A Fully Electrical Startup Boost Converter Improvement 51
5.1 Introduction 52
5.2 Circuit Implementation of the Proposed Fully Electrical Low Voltage Startup Batteryless Boost Converter 53
5.2.1 Active inductor-based oscillator 54
5.2.2 The voltage multiplier 56
5.2.3 Boost converter in asynchronous rectifying mode 57
5.2.4 Boost converter in ZCS-controlled synchronous mode 58
5.3 Simulation Results 60
5.4 Conclusion 66
Chapter 6 System Demonstration 67
6.1 Introduction 68
6.2 System Architecture 69
6.2.1 The flexible current sensor 70
6.2.2 Analog front-end circuit 71
6.2.3 Programmable wireless transceiver module 72
6.2.4 System integration on PCB 73
6.3 Experimental Results 75
6.4 Conclusion 77
Chapter 7 Conclusion 79
Bibliography 83
dc.language.isoen
dc.title適用於電力監控之自主供電無線感測系統zh_TW
dc.titleA Batteryless Wireless Sensor System for Power-Line Monitoringen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.oralexamcommittee黃俊郎(Jiun-Lang Huang),鄭裕庭(Yu-Ting Cheng)
dc.subject.keyword能源擷取,熱電材料,升壓器,無線感測網路,自主供電,電力監控,zh_TW
dc.subject.keywordEnergy harvesting,thermoelectric generator,boost converter,wireless sensor networks,self-power,power-line monitoring,en
dc.relation.page89
dc.identifier.doi10.6342/NTU201603588
dc.rights.note有償授權
dc.date.accepted2016-10-04
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-R02943170-1.pdf
  目前未授權公開取用
4.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved