請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78053
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王愛玉(Ai-Yu Wang) | |
dc.contributor.author | Yu-Kuang Chen | en |
dc.contributor.author | 陳昱光 | zh_TW |
dc.date.accessioned | 2021-07-11T14:40:48Z | - |
dc.date.available | 2022-02-21 | |
dc.date.copyright | 2017-02-21 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-10-11 | |
dc.identifier.citation | 林維治 (1996) 林維治先生竹類論文集. 臺灣省林業試驗所
葉勝雄 (2011) 在綠竹生長過程中差異性表現基因之檢定. 博士論文. 國立台灣大學生命科學院生化科技學系 莊榮輝、王愛玉、劉瑞芬、黃鵬林 (2012) 生物技術核心實驗. 國立台灣大學生物技術中心 王人雙 (2015) 綠竹 BohLOL1 基因之選殖與分析. 碩士論文. 國立台灣大學生命科學院生化科技學系 Alexandrov NN, Brover VV, Freidin S, Troukhan ME, Tatarinova TV, Zhang H, Swaller TJ, Lu YP, Bouck J, Flavell RB, Feldmann KA (2009) Insights into corn genes derived from large-scale cDNA sequencing. Plant Mol Biol 69: 179-194 Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (2003) Current Protocols in Molecular Biology, Vol 1. John Wiley & Sons, Inc, New York Aviv DH, Rustérucci C, Holt BF, Dietrich RA, Parker JE, Dangl JL (2002) Runaway cell death, but not basal disease resistance, in lsd1 is SA- and NIM1/NPR1-dependent. Plant J 29: 381-391 Balazadeh S, Parlitz S, Mueller-Roeber B, Meyer RC (2008) Natural developmental variations in leaf and plant senescence in Arabidopsis thaliana. Plant Biol 1: 136-147 Bao Y, Song WM, Jin YL, Jiang CM, Yang Y, Li B, Huang WJ, Liu H, Zhang HX (2014) Characterization of Arabidopsis Tubby‑like proteins and redundant function of AtTLP3 and AtTLP9 in plant response to ABA and osmotic stress. Plant Mol Biol 86: 471–483 Bart R, Chern M, Park CJ, Bartley L, Ronald PC (2006) A novel system for gene silencing using siRNAs in rice leaf and stem-derived protoplasts. Plant Methods 2: 13 Bedford MT, Frankel A, Yaffe MB, Clarke S, Leder P, Richard S (2000) Arginine methylation inhibits the binding of proline-rich ligands to Src Homology 3, but not WW, domains. J Biol Chem 275: 16030–16036 Chai T, Zhou J, Liu J, Xing D (2015) LSD1 and HY5 antagonistically regulate red light induced-programmed cell death in Arabidopsis. Front Plant Sci 6: 292 Cingolani G, Petosa C, Weis K, Müller CW (1999) Structure of importin-β bound to the IBB domain of importin-α. Nature 399: 221-229 Coll NS, Vercammen D, Smidler A, Clover C, Van Breusegem F, Dangl JL, Epple P (2010) Arabidopsis type I metacaspases control cell death. Science 330: 1393-1397 Dietrich RA, Delaney TP, Uknes SJ, Ward ER, Ryals JA, Dangl JL (1994) Arabidopsis mutants simulating disease resistance response. Cell 77: 565-577 Dietrich RA, Richberg MH, Schmidt R, Dean C, Dangl JL (1997) A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell 88: 685–694 Einarson MB, Pugacheva EN, Orlinick JR (2007) Identification of protein-protein interactions with Glutathione-S-Transferase (GST) fusion proteins. Cold Spring Harb Protoc Cold Spring Harbor Laboratory Press, New York. Epple P, Mack AA, Morris VRF, and Dangl JL (2003) Antagonistic control of oxidative stress-induced cell death in Arabidopsis by two related, plant-specific zinc finger proteins. Proc Natl Acad Sci 100: 6831-6836 Guo J, Bai P, Yang Q, Liu F, Wang X, Huang L, Kang Z (2013) Wheat zinc finger protein TaLSD1, a negative regulator of programmed cell death, is involved in wheat resistance against stripe rust fungus. Plant Physiol Biochem 71: 164-172 Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557-580 Hartley JL, Temple GF, Brasch MA (2000) DNA cloning using in vitro site-specific recombination. Genome Res 10: 1788-1795. Hayashi M and Nishimura M (2003) Entering a new era of research on plant peroxisomes. Curr Opin Cell Biol 6: 577-582 He S, Huang K, Zhang X, Yu X, Huang P, An C (2011a) The LSD1-type zinc finger motifs of Pisum sativa LSD1 are a novel nuclear localization signal and interact with importin alpha. PLoS ONE 6: e22131 He S, Tan G, Liu Q, Huang K, Ren J, Zhang X, Yu X, Huang P, An C (2011b) The LSD1-interacting protein GILP is a LITAF domain protein that negatively regulates hypersensitive cell death in Arabidopsis. PLoS ONE 6: e18750 Huang L, Zhang H, Hong Y, Liu S, Li D, Song F (2015) Stress-responsive expression, subcellular localization and protein–protein interactions of the rice metacaspase family. Int J Mol Sci 16: 6216-16241 Huang X, Li Y, Zhang X, Zuo J, Yang S (2010) The Arabidopsis LSD1 gene plays an important role in the regulation of low temperature-dependent cell death. New Phytol 187: 301-312 Jabs T, Dietrich RA, Dangl JL (1996) Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273: 1853–1856 Kaminaka H, Näke C, Epple P, Dittgen J, Schütze K, Chaban C, Holt BF, Merkle T, Schäfer E, Harter K, Dangl JL (2006) bZIP10-LSD1 antagonism modulates basal defense and cell death in Arabidopsis following infection. EMBO J 25: 4400–4411 Kay BK, Willimson MP, SUDOL M (2000) The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J 14: 231-41 Kliebenstein DJ, Dietrich RA, Martin AC, Last RL, Dangl JL (1999) LSD1 regulates salicylic acid induction of copper zinc superoxide dismutase in Arabidopsis thaliana. Mol Plant Microbe Interact 12: 1022–1026 Klug A and Rhodes D (1987) Zinc fingers: a novel protein fold for nucleic acid recognition. Cold Spring Harbor Symp Quant Biol 52: 473-482 Kowanetz K, Szymkiewicz I, Haglund K, Kowanetz M, Husnjak K, Taylor JD, Soubeyran P, Engstrom U, Ladbury JE, Dikic I (2003) Identification of a novel proline-arginine motif involved in CIN85-dependent clustering of Cbl and down-regulation of epidermal growth factor receptors. J Biol Chem 278: 39735–39746 Landy A (1989) Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annu Rev Biochem 58: 913-949 Li N, Zhang DS, Liu HS, Yin CS, Li XX, Liang WQ, Yuan Z, Xu B, Chu HW, Wang J, Wen TQ, Huang H, Luo D, Ma H, Zhang DB (2006) The Rice Tapetum Degeneration Retardation Gene Is Required for Tapetum Degradation and Anther Development. Plant Cell 18: 2999-3014 Li X, Etxeberria E, Van den Ende W (2013a) Vacuolar protein sorting mechanisms in plants. FEBS J 280: 979–993 Li Y, Chen L, Mu J, Zuo J (2013b) LESION SIMULATING DISEASE1 interacts with catalases to regulate hypersensitive cell death in Arabidopsis. Plant Physiol 163: 1059-1070 Lin CS (2007) Improving multiple shoot proliferation in bamboo mosaic virus-free Bambusa oldhamii munro propagation by liquid culture. Hortscience 42: 1243-1246 Lin CS and Chang WC (1998) Micropropagation of Bambusa edulis through nodal explants of field-grown culms and flowering of regenerated plantlets. Plant Cell Rep 17: 617-620 Liu Q and Xue Q (2007) Molecular phylogeny, evolution, and functional divergence of the LSD1-like gene family: inference from the rice genome. J Mol Evol 64: 354-363 Mateo A, Mühlenbock P, Rustérucci C, Chang CC, Miszalski Z, Karpińska B, Parker JE, Mullineaux PM, Karpiński S (2004) LESION SIMULATING DISEASE 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiol 136: 2818-2830 Mühlenbock P, Plaszczyca M, Plaszczyca M, Mellerowicz E, Karpiński S (2007) Lysigenous aerenchyma formation in Arabidopsis is controlled by LESION SIMULATING DISEASE1. Plant Cell 19: 3819–3830 Mühlenbock P, Szechynska-Hebda M, Plaszczyca M, Baudo M, Mateo A, Mullineaux PM, Parker JE, Karpińska B, Karpiński S (2008) Chloroplast signaling and LESION SIMULATING DISEASE1 regulate crosstalk between light acclimation and immunity in Arabidopsis. Plant Cell 20: 2339–2356 Otegui MS, Noh YS, Martínez DE, Vila Petroff MG, Staehelin LA, Amasino RM, Guiamet JJ (2005) Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. Plant J 41: 831-844 Phizicky EM and Fields S (1995) Protein-Protein Interactions: Methods for Detection and Analysis. Microbiol Rev 59: 94-123 Richard H. Maier, Christina J. Brandner, Helmut Hintner, Johann W. Bauer, and Kamil Önder (2008) Construction of a reading frame–independent yeast two-hybrid vector system for site-specific recombinational cloning and protein interaction screening. BioTechniques 45: 235-244 Sambrook J (2001) Molecular cloning: A laboratory manual/ Joseph Sambrook, David W. Russell. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. Schmid M, Simpson DJ, Sarioglu H, Lottspeich F, Gietl C (2001) The ricinosomes of senescing plant tissue bud from the endoplasmic reticulum. Proc Natl Acad Sci 98: 5353-5358 Stintzi A and Browse J (2000) The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci 97: 10625–10630 Strassner J, Schaller F, Frick UB, Howe GA, Weiler EW, Amrhein N, Macheroux P, Schaller A (2002) Characterization and cDNA-microarray expression analysis of 12-oxophytodienoate reductases reveals differential roles for octadecanoid biosynthesis in the local versus the systemic wound response. Plant J 32: 585-601 Tani T, Sobajima H, Okada K, Chujo T, Arimura S, Tsutsumi N, Nishimura M, Seto H, Nojiri H, Yamane H (2008) Identification of the OsOPR7 gene encoding 12-oxophytodienoate reductase involved in the biosynthesis of jasmonic acid in rice. Planta 227: 517-526 Torres MA, Jones JD, Dangl JL (2005) Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nat Genet 37: 1130-1134 Ueda K (1960) Studies on the physiology of bamboo: with reference to practical application. Forest Bulletin 30. Kyoto, Japan: Kyoto university Wang L, Pei Z, Tian Y, He C (2005) OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation. Mol Plant Microbe Interact 18: 375-384 Walter M, Chaban C, Schütze K, Batistic O, Weckermann K, Näke C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40: 428–438 Williams R (2016) Noncoding RNAs not so noncoding. TheScientist Wituszyńska W, Ślesak I, Vanderauwera S, Szechyńska-Hebda M, Kornaś A, Van Der Kelen K, Mühlenbock P, Karpińska B, Maćkowski S, Van Breusegem F, Karpiński S (2013) LESION SIMULATING DISEASE1, ENHANCED DISEASE SUSCEPTIBILITY1, and PHYTOALEXIN DEFICIENT4 conditionally regulate cellular signaling homeostasis, photosynthesis, water use efficiency, and seed yield in Arabidopsis. Plant Physiol 161: 1795-1805 Wu FH, Shen SC, Lee LY, Lee SH, Chan MT, Lin CS (2009) Tape-Arabidopsis sandwich—a simpler Arabidopsis protoplast isolation method. Plant Methods 5: 16 Wu J, Zhu C, Pang J, Zhang X, Yang C, Xia G, Tian Y, He C (2014) OsLOL1, a C2C2-type zinc finger protein, interacts with OsbZIP58 to promote seed germination through the modulation of gibberellin biosynthesis in Oryza sativa. Plant J 80: 1118-1130 Wu TH, Liao MH, Kuo WY, Huang CH, Hsieh HL, Jinn TL (2011) Characterization of copper/zinc and manganese superoxide dismutase in green bamboo (Bambusa oldhamii): Cloning, expression and regulation. Plant Physiol Biochem 49: 195-200 Xu C and He C (2007) The rice OsLOL2 gene encodes a zinc finger protein involved in rice growth and disease resistance. Mol Genet Genomics 278: 85-94 Yeh SH, Lee BH, Liao SC, Tsai MH, Tseng YH, Chang HC, Yang CC, Jan HC, Chiu YC, Wang AY (2013) Identification of genes differentially expressed during the growth of Bambusa oldhamii. Plant Physiol Biochem 63: 217-226 Yeh SH, Lin CS, Wu FH, Wang AY (2011) Analysis of the expression of BohLOL1, which encodes an LSD1-like zinc finger protein in Bambusa oldhamii. Planta 234: 1179–1189 Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2: 1565-1572 Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D, Wang J, Wang H (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7: 30 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78053 | - |
dc.description.abstract | BohLOL1 為綠竹中與阿拉伯芥 LSD1 (Lesions Simulating Disease resistance 1) 及 LOL1 (LSD-One-Like 1) 同源的基因,參與在竹的快速生長與抵禦生物逆境。本研究的目的,在生長時期的綠竹筍中找出與 BohLOL1 有交互作用的蛋白質。藉由酵母菌雙雜交系統 (yeast two-hybrid, Y2H) 於綠竹筍之 cDNA library 中,篩選得到 25 株與 BohLOL1 具交互作用的候選蛋白質。依據其於其它物種中同源基因的功能與細胞內定位資訊,挑選其中 7 株以進行進一步的確認。以綠竹筍 total RNA 為模版進行反轉錄聚合酶連鎖反應 (reverse transcription-polymerase chain reaction, RT-PCR),以選殖其全長編碼序列 (coding sequence, CDS),並以 BohLOL1 為釣餌進行 Y2H 分析。結果顯示僅有 2 株與 BohLOL1 有交互作用。此 2 株於阿拉伯芥與水稻中的同源蛋白質分別為 12-oxophytodienoate reductase (OPR) 與 cysteine protease precursor (CYSEP);因此,將其分別命名為 BoOPR 與 BoCYSEP。於大腸桿菌中表現重組BohLOL1 與 BoOPR 蛋白質並進行共免疫沉澱分析 (co-immunoprecipitation, Co-IP),結果再次證實兩種蛋白質具交互作用。此外,細胞內定位分析顯示 BohLOL1 位於細胞核與細胞質、BoOPR 位於細胞核與過氧化體、BoCYSEP 位於細胞核與細胞質中未明的聚集。進一步於雙分子螢光互補分析 (bimolecular fluorescence complementation, BiFC) 中,驗證了 BohLOL1 與 2 株候選蛋白質的交互作用,並觀察到 BohLOL1 與 BoOPR 之交互作用位於過氧化體及其它未明胞器;BohLOL1 與 BoCYSEP 之交互作用位於細胞質中未明的聚集。依據上述之結果以及 BoOPR 與 BoCYSEP 於阿拉伯芥及水稻中同源蛋白質的功能,推測 BohLOL1 參與在多種細胞路徑中:藉由與 BoOPR 產生交互作用,BohLOL1 可能與抵禦病源菌時訊息傳遞分子的合成有關;藉由與 BoCYSEP 產生交互作用,BohLOL1 可能與植物生長時蛋白質的降解有關。 | zh_TW |
dc.description.abstract | BohLOL1, a homolog of Arabidopsis LSD1 (Lesions Simulating Disease resistance 1) and LOL1 (LSD-One-Like 1) in Bambusa oldhamii, participates in bamboo growth and in the response to biotic stress. The objective of this study is to identify proteins that interact with BohLOL1 in growing bamboo shoots. By using yeast two-hybrid (Y2H) screening, 25 candidates that putatively interacted with BohLOL1 were obtained from a bamboo shoot cDNA library. According to the functions and subcellular localization informations of their homologous genes in other plant species, 7 candidates were selected for further confirmation. The full-length coding sequence (CDS) were cloned by reverse transcription-polymerase chain reaction with total RNA from bamboo shoots as a template, and then subjected to Y2H analysis with BohLOL1 as the bait. The results showed that only two candidates did interact with BohLOL1. Their homologous proteins in Arabidopsis thaliana and Oryza sativa were 12-oxophytodienoate reductase (OPR) and cysteine protease precursor (CYSEP), respectively; therefore, these two candidates were named as BoOPR and BoCYSEP, respectively. The BohLOL1 and BoOPR recombinant proteins were expressed in E. coli and subjected to co-immunoprecipitation (Co-IP) analysis. The result again confirmed the interaction between each other. Besides, subcellular localization analysis showed that BohLOL1 was localized in the nucleus and cytoplasm, BoOPR was localized in the nucleus and peroxisomes, and BoCYSEP was localized in the nucleus and forming unknown aggregates. Furthermore, the interactions between BohLOL1 and BoOPR or BoCYSEP were confirmed by bimolecular fluorescence complementation (BiFC) analysis and the results showed that the interaction between BohLOL1 and BoOPR occurred in peroxisomes and in other unknown organelle and the interaction between BohLOL1 and BoCYSEP occurred in unknown spots present in the cytoplasm. According to the above results and the finctions of the homologs of BoOPR and BoCYSEP in Arabidopsis thaliana and Oryza sativa, BohLOL1 was proposed to participate in multiple cellular pathways: by interacting with BoOPR, BohLOL1 may be involved in synthesis of signaling molecules for pathogen defense; by interacting with BoCYSEP, BohLOL1 may be involved in protein degradation for supporting plant growth. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T14:40:48Z (GMT). No. of bitstreams: 1 ntu-105-R03B22007-1.pdf: 10580380 bytes, checksum: 9b1c00e19cfbe4e787a46cdac98c4ce4 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 目錄 I
縮寫表 IV 摘要 VI Abstract VII 第一章 研究背景 1.1 緒論 1 1.2 LSD1 及 LOL 之相關研究 1 1.2.1 於阿拉伯芥之相關研究 1 1.2.2 於水稻及其它物種之相關研究 3 1.2.3 LSD1家族胺基酸序列特性 3 1.2.4 LSD1家族與其它蛋白質的交互作用 4 1.3 綠竹 BohLOL1 之研究 5 1.4 本研究之目的與策略 6 第二章 實驗材料 2.1 植物材料 7 2.1.1 綠竹 (Bambusa oldhamii) 7 2.1.2 阿拉伯芥 (Arabidopsis thaliana) 7 2.2 菌種 7 2.2.1 大腸桿菌 (Escherichia coli) 7 2.2.2 酵母菌 (Saccharomyces cerevisiae) 8 2.3 質體 8 2.4 實驗藥品與儀器 10 2.4.1 實驗藥品 10 2.4.2 實驗儀器 11 第三章 實驗方法 3.1 酵母菌雙雜交系統 (Yeast Two-Hybrid System, Y2H) 分析 12 3.1.1 Y2H 質體之建構 12 3.1.2 酵母菌質體 DNA 之轉形 14 3.1.3 pDEST-GBKT7-BohLOL1/Y2HGold 轉形株之毒性與自我活化測試 15 3.1.4 cDNA Library 之篩選 16 3.1.5 酵母菌質體 DNA 之萃取與身份確認 17 3.1.6 確認 cDNA Library 篩選之正確性 18 3.1.7 候選 cDNA 序列之分析 18 3.2 於綠竹中選殖候選序列全長 CDS 19 3.2.1 綠竹 Total RNA 之萃取與 1st Strand cDNA 之合成 19 3.2.2 引子之設計與 PCR 選殖候選序列全長 CDS 19 3.2.3 TA Cloning 20 3.3 全長候選 CDS 的 Y2H 分析 20 3.4 Co-IP 分析 21 3.4.1重組蛋白質表現質體之建構 21 3.4.2 大腸桿菌蛋白質之表現與萃取 22 3.4.3 Co-IP 分析 22 3.5 植物原生質體 (Protoplast) 之製備與轉形 23 3.5.1 短暫性表現質體之建構 23 3.5.2 阿拉伯芥原生質體之製備與轉形 24 3.5.3 綠竹原生質體之製備與轉形 25 第四章 結果與討論 4.1 酵母菌雙雜交系統分析 27 4.1.1 pDEST-GBKT7-BohLOL1/Y2HGold 轉形株之毒性與自我活化測試 27 4.1.2 綠竹 cDNA Library 之篩選 28 4.1.3 一對一雜交分析確認正反應株之正確性 29 4.1.4 候選 cDNA 序列之分析 29 4.2 選殖候選序列全長 CDS 30 4.3 全長候選 CDS 的 Y2H 分析 30 4.4 Co-IP 分析 32 4.5 植物原生質體之製備與轉形 33 4.5.1 細胞內定位分析 33 4.5.2 BiFC 分析 33 4.6 BohLOL1 與其結合蛋白質可能之功能 34 第五章 結論與未來展望 5.1 結論 38 5.2 未來方向 39 參考文獻 40 圖與表 47 附錄圖與表 81 | |
dc.language.iso | zh-TW | |
dc.title | 與綠竹 BohLOL1 具交互作用之蛋白質探討 | zh_TW |
dc.title | Studies on the Interactions between BohLOL1 and Other Proteins in Bambusa oldhamii | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊健志,洪傳揚,林崇熙,葉汀峰 | |
dc.subject.keyword | 竹,BohLOL1,蛋白質間交互作用,細胞內定位,12-oxophytodienoate reductase,cysteine protease precursor, | zh_TW |
dc.subject.keyword | bamboo,BohLOL1,protein-protein interactions,subcellular location,12-oxophytodienoate reductase,cysteine protease precursor, | en |
dc.relation.page | 106 | |
dc.identifier.doi | 10.6342/NTU201603660 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-10-12 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科技學系 | zh_TW |
顯示於系所單位: | 生化科技學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-R03B22007-1.pdf 目前未授權公開取用 | 10.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。