Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78019
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧虎生(Huu-Sheng Lur)
dc.contributor.authorChia-Heng Shenen
dc.contributor.author沈家亨zh_TW
dc.date.accessioned2021-07-11T14:39:50Z-
dc.date.available2023-08-16
dc.date.copyright2020-08-28
dc.date.issued2020
dc.date.submitted2020-08-17
dc.identifier.citation王天成. (2018). 以無人機獲取之多光譜影像建立田間作物性狀調查暨栽培管理決策支援系統. 臺灣大學農藝學研究所學位論文, 1-119。
林再發.(1990).白葉枯病對水稻產量與米質之影響及抗病品系之育成.行政院農委會台中區農業改良場研究彙報, 29, 29-38.
Abdulridha, J., Batuman, O., Ampatzidis, Y. (2019). UAV-based remote sensing technique to detect citrus canker disease utilizing hyperspectral imaging and machine learning. Remote Sensing, 11, 1-22.
Ali, H., Abbasi, F. M., Ahmad, H. (2016). Bacterial Blight, a serious threat to productivity of rice (Oryza sativa L.), an overview. International Journal of Biosciences, 9, 154-169.
Atzberger, C. (2013). Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sensing, 5, 949-981.
Balakrishna, K., Rao, M. (2019). Tomato plant leaves disease classification using KNN and PNN. International Journal of Computer Vision and Image Processing, 9, 51-63.
Bannari, A., Asalhi, H., Teillet, P. M. (2002). Transformed difference vegetation index (TDVI) for vegetation cover mapping. Proceeding of IEEE International geoscience and remote sensing symposium, 3053-3055.
Bannari, A., Morin, D., Bonn, F., Huete, A. (1995). A review of vegetation indices. Remote sensing reviews, 13, 95-120.
Brodbeck, C., Sikora, E., Delaney, D., Pate, G., Johnson, J. (2017). Using unmanned aircraft systems for early detection of soybean diseases. Advances in Animal Biosciences, 8, 802-806.
Broge, N. H., Leblanc, E. (2001). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76, 156-172.
Busungu, C., Taura, S., Sakagami, J.-I., Ichitani, K. (2016). Identification and linkage analysis of a new rice bacterial blight resistance gene from XM14, a mutant line from IR24. Breeding science, 66, 636-645.
Cai, N., Zhou, X., Yang, Y., Wang, J., Zhang, D., Hu, R. (2019). Use of UAV images to assess narrow brown leaf spot severity in rice. International Journal of Precision Agricultural Aviation, 2, 38-42.
Cardie, C., Howe, N. (1997). Improving minority class prediction using case-specific feature weights. Proceedings of the Fourteenth International Conference on Machine Learning, 57-65
Chaerle, L., Van Der Straeten, D. (2000). Imaging techniques and the early detection of plant stress. Trends in plant science, 5, 495-501.
Chand, T., Singh, N., Singh, H., Thind, B. (1980). Field efficacy of stable bleaching powder to control bacterial blight of rice. International Rice Research Newsletter, 4, 12-13.
Chaudhary, S. U., Hussain, M., Iqbal, J., Ali, M. A. (2009). Effect of nitrogen doses on incidence of bacterial leaf blight in rice. Journal of Agricultural Research, 47, 253-258.
Chaudhary, S. U., Iqbal, J., Hussain, M. (2012). Effectiveness of different fungicides and antibiotics against bacterial leaf blight in rice. Journal of Agricultural Research, 50, 109-117.
Chen, J. M. (1996). Evaluation of vegetation indices and a modified simple ratio for boreal applications. Canadian Journal of Remote Sensing, 22, 229-242.
Chithrashree, C., Srinivas, C. (2012). Role of antioxidant scavenging enzymes and extracellular polysaccharide in pathogenicity of rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae. African Journal of Biotechnology, 11, 13186-13193.
Chukwu, S. C., Rafii, M. Y., Ramlee, S. I., Ismail, S. I., Oladosu, Y., Okporie, E., Onyishi, G., Utobo, E., Ekwu, L., Swaray, S., Jalloh, M. (2019). Marker-assisted selection and gene pyramiding for resistance to bacterial leaf blight disease of rice (Oryza sativa L.). Biotechnology Biotechnological Equipment, 33, 440-455.
Crippen, R. E. (1990). Calculating the vegetation index faster. Remote sensing of environment, 34, 71-73.
Dangwal, N., Patel, N., Kumari, M., Saha, S. (2016). Monitoring of water stress in wheat using multispectral indices derived from Landsat-TM. Geocarto International, 31, 682-693.
Daughtry, C., Walthall, C., Kim, M., De Colstoun, E. B., McMurtrey Iii, J. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote sensing of environment, 74, 229-239.
Demirer, R., Kutan, A. M., Shen, F. (2012). The effect of ethanol listing on corn prices: Evidence from spot and futures markets. Energy economics, 34, 1400-1406.
Dharmapuri, S., Sonti, R. V. (1999). A transposon insertion in the gumG homologue of Xanthomonas oryzae pv. oryzae causes loss of extracellular polysaccharide production and virulence. FEMS microbiology letters, 179, 53-59.
Duan, B., Fang, S., Zhu, R., Wu, X., Wang, S., Gong, Y., Peng, Y. (2019). Remote estimation of rice yield with unmanned aerial vehicle (UAV) data and spectral mixture analysis. Frontiers in plant science, 10, 1-14.
Durgapal, J. (1985). High virulence of Xanthomonas campestris pv. oryzae a factor in the 1980 epiphytotic in the non-traditional rice-growing region of north-west India. Indian Journal of Agricultural Sciences, 55, 133-135.
Eitel, J., Long, D., Gessler, P., Smith, A. (2007). Using in‐situ measurements to evaluate the new RapidEye™ satellite series for prediction of wheat nitrogen status. International Journal of Remote Sensing, 28, 4183-4190.
Fukunaga, K. (1966). Antibiotics and new fungicides for control of rice diseases. Proceeding of symposium on plant diseases in the pacific XI pacific Science Congress, Tokyo, 170-180.
Furukawa, T., Maekawa, M., Oki, T., Suda, I., Iida, S., Shimada, H., Takamure, I., Kadowaki, K. i. (2007). The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp. The Plant Journal, 49, 91-102.
Furutani, A., Takaoka, M., Sanada, H., Noguchi, Y., Oku, T., Tsuno, K., Ochiai, H., Tsuge, S. (2009). Identification of novel type III secretion effectors in Xanthomonas oryzae pv. oryzae. Molecular plant-microbe interactions, 22, 96-106.
Gamon, J. A., Huemmrich, K. F., Wong, C. Y., Ensminger, I., Garrity, S., Hollinger, D. Y., Noormets, A., Peñuelas, J. (2016). A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers. Proceedings of the national academy of sciences, 113, 13087-13092.
Gitelson, A. A. (2004). Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. Journal of plant physiology, 161, 165-173.
Gitelson, A. A., Merzlyak, M. N., Chivkunova, O. B. (2001). Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochemistry and photobiology, 74, 38-45.
Gnanamanickam, S., Priyadarisini, V. B., Narayanan, N., Vasudevan, P., Kavitha, S. (1999). An overview of bacterial blight disease of rice and strategies for its management. Current Science, 1435-1444.
Goel, N. S., Qin, W. (1994). Influences of canopy architecture on relationships between various vegetation indices and LAI and FPAR: A computer simulation. Remote sensing reviews, 10, 309-347.
Gong, P., Pu, R., Biging, G. S., Larrieu, M. R. (2003). Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data. IEEE transactions on Geoscience and Remote Sensing, 41, 1355-1362.
Goto, M. (2012). Fundamentals of bacterial plant pathology: Academic Press. 266-267.
Govender, M., Chetty, K., Bulcock, H. (2007). A review of hyperspectral remote sensing and its application in vegetation and water resource studies. Water Sa, 33, 145-151.
Guan, S., Fukami, K., Matsunaka, H., Okami, M., Tanaka, R., Nakano, H., Sakai, T., Nakano, K., Ohdan, H., Takahashi, K. (2019). Assessing correlation of high-resolution NDVI with fertilizer application level and yield of rice and wheat crops using small UAVs. Remote Sensing, 11, 1-19.
Guo, G., Wang, H., Bell, D., Bi, Y., Greer, K. (2003). KNN model-based approach in classification. Proceeding of On The Move to Meaningful Internet Systems: CoopIS DOA and ODBASE, 2888, 986-996.
Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90, 337-352.
Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81, 416-426.
Haboudane, D., Tremblay, N., Miller, J. R., Vigneault, P. (2008). Remote estimation of crop chlorophyll content using spectral indices derived from hyperspectral data. IEEE transactions on Geoscience and Remote Sensing, 46, 423-437.
Hammond-Kosack, K. E., Jones, J. D. (1997). Plant disease resistance genes. Annual review of plant biology, 48, 575-607.
Hand, D., Mannila, H., Smyth, P. (2001). Principles of Data Mining. The MIT Press, 208-210.
Hassan, M. A., Yang, M., Rasheed, A., Yang, G., Reynolds, M., Xia, X., Xiao, Y., He, Z. (2019). A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform. Plant science, 282, 95-103.
Horino, O. (1981). Ultrastructural histopathology of rice leaves infected with Xanthomonas campestris pv. oryzae on Kogyoku group rice varieties with different levels of resistance at the seedling stage. Japanese Journal of Phytopathology, 47, 501-509.
Huang, J., De Cleene, M. (1989). How rice plants are infected by Xanthomonas campestris pv. oryzae. Bacterial blight of rice, IRRI, 31-42.
Huete, A. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment. Remote sensing of environment, 25, 295-309.
Hutin, M., Sabot, F., Ghesquière, A., Koebnik, R., Szurek, B. (2015). A knowledge‐based molecular screen uncovers a broad‐spectrum OsSWEET14 resistance allele to bacterial blight from wild rice. The Plant Journal, 84, 694-703.
IRRI. (2013). Standard Evaluation System (SES) for Rice.
Iyer-Pascuzzi, A., Jiang, H., Huang, L., McCouch, S. (2008). Genetic and functional characterization of the rice bacterial blight disease resistance gene xa5. Phytopathology, 98, 289-295.
Kauffman, H. (1973). An improved technique for evaluat-ing resistance of rice varieties to Xanthomonas oryzae. The Plant Disease Reporter, 57, 537-541.
Kaufman, Y. J., Tanre, D. (1992). Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE transactions on Geoscience and Remote Sensing, 30, 261-270.
Khan, M. A., Naeem, M., Iqbal, M. (2014). Breeding approaches for bacterial leaf blight resistance in rice (Oryza sativa L.), current status and future directions. European Journal of Plant Pathology, 139, 27-37.
Khush, G., Mackill, D., Sidhu, G. (1989). Breeding rice for resistance to bacterial blight. Bacterial blight of rice, IRRI, 207-217.
Knipling, E. B. (1970). Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote sensing of environment, 1, 155-159.
Kyratzis, A. C., Skarlatos, D. P., Menexes, G. C., Vamvakousis, V. F., Katsiotis, A. (2017). Assessment of vegetation indices derived by UAV imagery for durum wheat phenotyping under a water limited and heat stressed mediterranean environment. Frontiers in plant science, 8, 1-14.
Lee, K., Kim, S. M., Park, C. W., So, K. H., An, H., Na, S. (2018). Assessment of hyperspectral reflectance on rice leaf inoculated with bacterial leaf blight for applicability of UAV monitoring. Korean Journal of Soil Science and Fertilizer, 51, 360-368.
Lee, Y. J., Yang, C. M., Chang, K. W., Shen, Y. (2008). A simple spectral index using reflectance of 735 nm to assess nitrogen status of rice canopy. Agronomy journal, 100, 205-212.
Lesk, C., Rowhani, P., Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. Nature, 529, 84-87.
Lichtenthaler, H. K. (1996). Vegetation stress: an introduction to the stress concept in plants. Journal of plant physiology, 148, 4-14.
Liu, Z. Y., Wu, H. F., Huang, J. F. (2010). Application of neural networks to discriminate fungal infection levels in rice panicles using hyperspectral reflectance and principal components analysis. Computers and electronics in agriculture, 72, 99-106.
Lorenzen, B., Jensen, A. (1989). Changes in leaf spectral properties induced in barley by cereal powdery mildew. Remote sensing of environment, 27, 201-209.
Ma, S., Yang, L., Romero, R., Cui, Y. (2011). Varying coefficient model for gene–environment interaction: a non-linear look. Bioinformatics, 27, 2119-2126.
Mahlein, A. K. (2016). Plant disease detection by imaging sensors–parallels and specific demands for precision agriculture and plant phenotyping. Plant disease, 100, 241-251.
Mai, X., Meng, M. Q.-H. (2016). Automatic lesion segmentation from rice leaf blast field images based on random forest. Proceeding of IEEE International Conference on Real-time Computing and Robotics, 255-259.
Meah, M. B. (1987). Effect of nitrogen and plant spacing on bacterial leaf blight of rice. Plant Pathogenic Bacteria, 950-954
Mehdy, M. C., Sharma, Y. K., Sathasivan, K., Bays, N. W. (1996). The role of activated oxygen species in plant disease resistance. Physiologia plantarum, 98, 365-374.
Melorose, J., Perroy, R., Careas, S. (2015). World population prospects. United Nations, 1, 1-59.
Mestre, H. (1935). The absorption of radiation by leaves and algae. Proceeding of Cold Spring Harbor symposia on quantitative biology, 3, 191-209.
Mew, T. (1987). Current status and future prospects of research on bacterial blight of rice. Annual review of phytopathology, 25, 359-382.
Mew, T. W., Alvarez, A. M., Leach, J., Swings, J. (1993). Focus on bacterial blight of rice. Plant disease, 77, 5-12.
Mizukami, T., Wakimoto, S. (1969). Epidemiology and control of bacterial leaf blight of rice. Annual review of phytopathology, 7, 51-72.
Montes, J. M., Melchinger, A. E., Reif, J. C. (2007). Novel throughput phenotyping platforms in plant genetic studies. Trends in Plant Science, 12, 433-436.
Mossa, A.-T. H. (2016). Green pesticides: Essential oils as biopesticides in insect-pest management. Journal of environmental science and technology, 9, 354-378.
Nations, U. (2015). World population prospects. United Nations, 1-2.
Nicolas, H. (2004). Using remote sensing to determine of the date of a fungicide application on winter wheat. Crop Protection, 23, 853-863.
Nyvall, R. F. (1999). Field crop diseases. Iowa State University Press.
Okimoto, Y., Misato, T. (1963). Antibiotics as protectant bactericide against bacterial leaf blight of rice plant. Japanese Journal of Phytopathology, 28, 250-257.
Osborne, S., Schepers, J. S., Francis, D., Schlemmer, M. R. (2002). Detection of phosphorus and nitrogen deficiencies in corn using spectral radiance measurements. Agronomy journal, 94, 1215-1221.
Ou, S. H. (1985). Rice diseases. Commonwealth Mycological Institute.
Pearson, R. L., Miller, L. D. (1972). Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie. Remote Sensing of Environment, 1355.
Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48, 119-126,
Rathmann, R., Szklo, A., Schaeffer, R. (2010). Land use competition for production of food and liquid biofuels: An analysis of the arguments in the current debate. Renewable Energy, 35, 14-22.
Ray, S. K., Rajeshwari, R., Sonti, R. V. (2000). Mutants of Xanthomonas oryzae pv. oryzae deficient in general secretory pathway are virulence deficient and unable to secrete xylanase. Molecular plant-microbe interactions, 13, 394-401.
Reddy, A., Katyal, J., Rouse, D., MacKenzie, D. (1979a). Relationship between nitrogen fertilization, bacterial leaf blight severity and yield of rice. Phytopathology, 69, 970-973.
Reddy, A., Mackenzie, D., Rouse, D., Rao, A. (1979b). Relationship of bacterial leaf blight severity to grain yield of rice. Phytopathology, 69, 967-969.
Rehman, A. U., Chohan, S., Abbas, S. H. (2016). Bacterial leaf blight of rice: a disease forecasting model based on meteorological factors in multan, Pakistan. Journal of agricultural research, 54, 707-718.
Rini, P., Dipankar, M., Abhiram, D., Naik, B. (2018). Effect of varietal resistance and nitrogen management on the severity of Bacterial Leaf Blight of rice. Journal of Mycopathological Research, 56, 225-227.
Rondeaux, G., Steven, M., Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55, 95-107.
Roujean, J.-L., Breon, F.-M. (1995). Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 51, 375-384.
Rouse, J., Haas, R., Schell, J., Deering, D. (1974). Monitoring vegetation systems in the Great Plains with ERTS Proceeding. Proceeding of Third Earth Reserves Technology Satellite Symposium, Greenbelt : NASA SP-351, 3010-3017.
Sanseechan, P., Saengprachathanarug, K., Posom, J., Wongpichet, S., Chea, C., Wongphati, M. (2019). Use of vegetation indices in monitoring sugarcane white leaf disease symptoms in sugarcane field using multispectral UAV aerial imagery. Proceeding of IOP Conference Series: Earth and Environmental Science, 301, 1-7.
Shao, T., Qian, Q., Tang, D., Chen, J., Li, M., Cheng, Z., Luo, Q. (2012). A novel gene IBF1 is required for the inhibition of brown pigment deposition in rice hull furrows. Theoretical and Applied Genetics, 125, 381-390.
Sharma, P., Bora, L., Puzari, K., Baruah, A., Baruah, R., Talukdar, K., Kataky, L., Phukan, A. (2017). Review on bacterial blight of rice caused by Xanthomonas oryzae pv. oryzae: different management approaches and role of Pseudomonas fluorescens as a potential biocontrol agent. International Journal of Current Microbiology and Applied Sciences, 6, 982-1005.
Shen, Y., Ronald, P. (2002). Molecular determinants of disease and resistance in interactions of Xanthomonas oryzae pv. oryzae and rice. Microbes and Infection, 4, 1361-1367.
Sims, D. A., Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81, 337-354.
Singh, S. P. (2019). Site specific nutrient management through nutrient decision support tools for sustainable crop production and soil health. Soil Fertility Management for Sustainable Development, 13-23.
Smith, K., Steven, M., Colls, J. (2005). Plant spectral responses to gas leaks and other stresses. International Journal of Remote Sensing, 26, 4067-4081.
Smith, R. (2001). Introduction to remote sensing of the environment. 2001b. www. microimages. com, 1-32.
Sripada, R. P., Heiniger, R. W., White, J. G., Meijer, A. D. (2006). Aerial color infrared photography for determining early in‐season nitrogen requirements in corn. Agronomy Journal, 98, 968-977.
Sripada, R. P., Schmidt, J. P., Dellinger, A. E., Beegle, D. B. (2008). Evaluating multiple indices from a canopy reflectance sensor to estimate corn N requirements. Agronomy journal, 100, 1553-1561.
Staskawicz, B. J., Mudgett, M. B., Dangl, J. L., Galan, J. E. (2001). Common and contrasting themes of plant and animal diseases. Science, 292, 2285-2289.
Steltzer, H., Welker, J. M. (2006). Modeling the effect of photosynthetic vegetation properties on the NDVI–LAI relationship. Ecology, 87, 2765-2772.
Stroppiana, D., Villa, P., Sona, G., Ronchetti, G., Candiani, G., Pepe, M., Busetto, L., Migliazzi, M., Boschetti, M. (2018). Early season weed mapping in rice crops using multi-spectral UAV data. International Journal of Remote Sensing, 39, 5432-5452.
Su, J., Liu, C., Coombes, M., Hu, X., Wang, C., Xu, X., Li, Q., Guo, Lei., Chen, W. H. (2018). Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery. Computers and Electronics in Agriculture, 155, 157-166.
Suresha, M., Shreekanth, K., Thirumalesh, B. (2017). Recognition of diseases in paddy leaves using knn classifier. 2017 2nd International Conference for Convergence in Technology, 663-666.
Tabei, H. (1967). Anatomical studies of rice plant affected with bacterial leaf blight, with special reference to stomatal infection at the coleoptile and the foliage leaf sheath of rice seedling. Japanese Journal of Phytopathology, 33, 12-16.
Tagami, Y. (1962). Historical review of the researchers on bacterial leaf blight of rice caused by Xanthomonas oryzae (Uyeda et Ishiyama) Dowson; Special report. Plant Disease and Insect Pests Forecasting Service, 10, 112.
Thenkabail, P., Lyon, J. G., Turral, H., Biradar, C. (2009). Remote sensing of global croplands for food security. CRC Press.
Tian, L. (2002). Development of a sensor-based precision herbicide application system. Computers and Electronics in Agriculture, 36, 133-149.
Tilman, D., Balzer, C., Hill, J., Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 108, 20260-20264.
Tucker, C. (1979). Red and photographic infrared linear combinations monitoring vegetation. Remote Sensing of Environment, 8, 127–150.
Vincini, M., Frazzi, E., D’Alessio, P. (2008). A broad-band leaf chlorophyll vegetation index at the canopy scale. Precision Agriculture, 9, 303-319.
Wang, P., Hu, B., Xiang, X., Wang, M., Bai, Y., Zhang, B., Zhang, C., Wang, L., Pu, Z., Chen, Z. (2020). A single nucleotide mutation in the fourth exon of RBH1 is responsible for brown hull phenotype in rice. Molecular Breeding, 40, 1-13.
Wang, X., Fan, J., Xing, Y., Xu, G., Wang, H., Deng, J., Wang, Y., Zhang, F., Li, P., Li, Z. (2019). The effects of mulch and nitrogen fertilizer on the soil environment of crop plants. Advances in Agronomy, 153, 121-173.
Xiong, X., Duan, L., Liu, L., Tu, H., Yang, P., Wu, D., Chen, G., Xiong, L., Yang, W., Liu, Q. (2017). Panicle-SEG: a robust image segmentation method for rice panicles in the field based on deep learning and superpixel optimization. Plant Methods, 13, 1-15.
Xue, J., Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and applications. Journal of Sensors, 2017, 1-17.
Yang, C. M. (2010). Assessment of the severity of bacterial leaf blight in rice using canopy hyperspectral reflectance. Precision Agriculture, 11, 61-81.
Yang, C. M., Chen, R. K. (2004). Modeling rice growth with hyperspectral reflectance data. Crop Science, 44, 1283-1290.
Yang, C. M., Cheng, C. H., Chen, R. K. (2007). Changes in spectral characteristics of rice canopy infested with brown planthopper and leaffolder. Crop Science, 47, 329-335.
Yang, C., Odvody, G. N., Fernandez, C. J., Landivar, J. A., Minzenmayer, R. R., Nichols, R. L. (2015). Evaluating unsupervised and supervised image classification methods for mapping cotton root rot. Precision Agriculture, 16, 201-215.
Yang, M. D., Tseng, H. H., Hsu, Y. C., Tsai, H. P. (2020). Semantic segmentation using deep learning with vegetation indices for rice lodging identification in multi-date UAV visible images. Remote Sensing, 12, 1-20.
Yang, Y., Chai, R., He, Y. (2012). Early detection of rice blast (Pyricularia) at seedling stage in Nipponbare rice variety using near-infrared hyper-spectral image. African Journal of Biotechnology, 11, 6809-6817.
Yang, Z., Willis, P., Mueller, R. (2008). Impact of band-ratio enhanced AWIFS image to crop classification accuracy. Proceedings of the 17th William Pecora Memorial Remote Sensing Symposium, 17, 1-11.
Yu, C., Wang, N., Wu, M., Tian, F., Chen, H., Yang, F., Yuan, X., Yang, C., He, C. (2016). OxyR-regulated catalase CatB promotes the virulence in rice via detoxifying hydrogen peroxide in Xanthomonas oryzae pv. oryzae. BMC Microbiology, 16, 269.
Yuan, M., Chu, Z., Li, X., Xu, C., Wang, S. (2010). The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution. The Plant Cell, 22, 3164-3176.
Yuliani, D., Wening, R. H., Sudir, S. (2016). Selection resistance of rice germplasm accessions to bacterial leaf blight. Buletin Plasma Nutfah, 20, 65-76.
Zhang, D. Y., Lan, Y. B., Zhou, X. G., Chen, L. P., Murray, S. C., Zhang, G.-Z. (2015). Research imagery and spectral characteristics of rice sheath blight using three portable sensors. Proceeding of ASABE Annual International Meeting, 2015, 1-11.
Zhang, D., Zhou, X., Zhang, J., Lan, Y., Xu, C., Liang, D. (2018). Detection of rice sheath blight using an unmanned aerial system with high-resolution color and multispectral imaging. PloS one, 13, 1-14.
Zhang, J., Huang, Y., Pu, R., Gonzalez-Moreno, P., Yuan, L., Wu, K., Huang, W. (2019). Monitoring plant diseases and pests through remote sensing technology: A review. Computers and Electronics in Agriculture, 165, 1-14.
Zhang, K., Qian, Q., Huang, Z., Wang, Y., Li, M., Hong, L., Zeng, D., Gu, M., Chu, C., Cheng, Z. (2006). GOLD HULL AND INTERNODE2 encodes a primarily multifunctional cinnamyl-alcohol dehydrogenase in rice. Plant Physiology, 140, 972-983.
Zhang, L., Su, H., Shen, J. (2019). Hyperspectral dimensionality reduction based on multiscale superpixelwise kernel principal component analysis. Remote Sensing, 11, 1-22.
Zhang, N., Wang, M., Wang, N. (2002). Precision agriculture—a worldwide overview. Computers and electronics in agriculture, 36, 113-132.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78019-
dc.description.abstract本研究利用無人機多光譜影像分析技術評估水稻白葉枯病之抗病程度,希望提供具客觀性的田間快篩分級系統,節省人力、加速國內抗病育種的進展。實驗病圃位於彰化大村鄉的台中農業改良場,材料為193個水稻試驗品系與5個栽培品種,共種植兩重複。採用剪葉法進行病菌接種。無人機影像資料包含108年一、二期作。使用主效應分析定位稻穗位置,並採用K-均值群聚演算法 (K-means clustering),將影像分成原始影像、分離土壤後的植株影像和分離土壤及稻穗的葉部影像,最後從影像中萃取42個植生指數 (Vegetation indices) 進行分析。迴歸分析顯示單品種、多品種的罹病率與植生指數具有高相關性,broad-band chlorophyll vegetation index (CVI)與plant senescence reflectance index (PSRI) 指數具有潛力建造罹病程度預測模型,但由於測試資料呈現不平均的分布,造成模型預測的低準確率。因此將五個罹病程度劃分成「具抗性」與「不具抗性」兩個組別,並使用k-最近鄰分類演算法 (k-nearest neighbor, KNN) 建立新模型。儘管模型的預測結果仍受到不平均罹病等級資料的影響,KNN模型仍展示出某些植生指數具有潛力分辨具抗性與不具抗性的水稻。若後續研究採用罹病等級較平均的資料建模,模型的預測結果將更具說服力。結果也顯示不同影像分割的資料並不會影響模型的表現,因此建議後續研究省略影像分割的步驟。本研究的初步結果提供建議給其他欲利用無人機影像建立罹病分類模型的研究者,關於材料準備、影像處理、模型建立的相關意見。相信未來若持續收集影像資料,配合嚴謹的田間調查,確保各罹病等級的資料平均散佈於田中,必可突破不同水稻品種光譜差異的限制,建立預測模型客觀篩選抗病品系的水稻。zh_TW
dc.description.abstractThe purpose of this study is to develop an analytical system using unmanned aerial vehicle (UAV) multispectral imagery. The system aims for quickly differentiating resistant and non-resistant varieties to bacterial leaf blight of rice (Oryza sativa L.). The experimental site was located in the Taichung District Agricultural Research and Extension Station. 193 breeding lines and 5 cultivars with two replicates were tested. Rice was inoculated by the leaf-clipping method. The aerial image data were taken at the first and second crop seasons in 2019. The principal component analysis was used to locate the panicle in the image, and K-means clustering was used to perform the image segmentation. Image data was divided into non-segmented data, vegetation data, and leaf data. Forty-two vegetation indices (VIs) were extracted from the images. Regression analysis between the VIs and disease severity of the single and multiple cultivars had high R2adjusted. However, multi-cultivar regression models showed low prediction accuracy for the five resistance levels of rice. Thus the five resistance levels were reclassified into the “resistant” group and “susceptible” group, and the k-nearest neighbor (KNN) algorithm was adopted to test new models. The KNN models based on VIs showed the potential to differentiate the two resistant groups, but further studies should be tested with a more balanced dataset. According to the results, image segmentation may be unnecessary to build the disease classification models. In this study, the results can give recommendations on preparing materials, image processing, and model selection for the relevant studies. With more data collected in the future, the barrier of differentiation between different levels of disease from multi-varieties can be overcome. Eventually, breeders can apply the UAV multispectral imaging system to select resistant varieties efficiently in the field.en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:39:50Z (GMT). No. of bitstreams: 1
U0001-1508202014240100.pdf: 6177997 bytes, checksum: aef5102fd9d18cf4795735645f96b5f7 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents謝辭 i
摘要 ii
Abstract iii
Content v
List of Figures vi
List of Tables x
Abbreviation table xiii
Introduction 1
Bacterial leaf blight 1
Compatible and incompatible interactions 2
Disease management of bacterial leaf blight 3
Remote sensing in modern agriculture 5
Remote sensing on disease management 6
Spectral characteristics of plants under stress 7
Spectroscopy-based phenotyping 8
Aim of this study 9
Materials and methods 11
Experimental design 11
Measurements of the disease severity 12
UAV Data collection 12
Image preprocessing 13
Image segmentation 15
Statistical analysis 16
Result 29
Disease incidence and data pruning 29
Image preprocessing 29
The process of soil segmentation 29
The process of panicle segmentation 34
Segmentation Result 34
Dataset used for model building 40
Regression models based on the single cultivar 40
Regression model based on the multiple cultivars 53
VIs reflect the difference between the resistant group and the susceptible group 63
K-nearest neighbor (KNN) classification for the resistant and susceptible groups 63
Discussion 91
Challenges of unbalanced disease incidence in field 91
Effectiveness of K-means clustering and PCA on image segmentation 97
Necessity of image segmentation for the model building 102
Limitations of regression models on disease prediction 108
Performance of k-nearest neighbor classifier for BLB resistance 108
Conclusion 112
Reference 116
dc.language.isoen
dc.title無人機多光譜影像分析技術改善水稻白葉枯病之抗病育種
zh_TW
dc.titleUsing UAV Multispectral Imagery to Facilitate the Breeding of Rice Variety to Resist Bacterial Leaf Blight
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張孟基(MEN-CHI CHANG),劉力瑜(LI-YU LIU),董致韡(CHIH-WEI TUNG),楊嘉凌(Jia-Ling Yang)
dc.subject.keyword水稻,白葉枯病,罹病等級,無人機,多光譜,植生指數,抗病育種,KNN,zh_TW
dc.subject.keywordBacterial leaf blight of rice,UAV,Multispectral images,Vegetation indices,Breeding,Disease resistance,KNN,en
dc.relation.page126
dc.identifier.doi10.6342/NTU202003511
dc.rights.note有償授權
dc.date.accepted2020-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
dc.date.embargo-lift2023-08-16-
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
U0001-1508202014240100.pdf
  目前未授權公開取用
6.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved