Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78008
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李妮鍾(Ni-Chung Lee)
dc.contributor.authorShu-Yuan Huangen
dc.contributor.author黃淑媛zh_TW
dc.date.accessioned2021-07-11T14:39:32Z-
dc.date.available2025-08-19
dc.date.copyright2020-09-10
dc.date.issued2020
dc.date.submitted2020-08-17
dc.identifier.citation1. Lango Allen, H., et al., Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature, 2010. 467(7317): p. 832-8.
2. Wit, J.M., et al., Genetic analysis of short children with apparent growth hormone insensitivity. Horm Res Paediatr, 2012. 77(5): p. 320-33.
3. McEvoy, B.P. and P.M. Visscher, Genetics of human height. Econ Hum Biol, 2009. 7(3): p. 294-306.
4. Perola, M., et al., Combined genome scans for body stature in 6,602 European twins: evidence for common Caucasian loci. PLoS Genet, 2007. 3(6): p. e97.
5. Hirschhorn, J.N. and G. Lettre, Progress in genome-wide association studies of human height. Horm Res, 2009. 71 Suppl 2: p. 5-13.
6. Weedon, M.N. and T.M. Frayling, Reaching new heights: insights into the genetics of human stature. Trends Genet, 2008. 24(12): p. 595-603.
7. Argente, J., Challenges in the Management of Short Stature. Horm Res Paediatr, 2016. 85(1): p. 2-10.
8. Andrade, A.C., Y.H. Jee, and O. Nilsson, New Genetic Diagnoses of Short Stature Provide Insights into Local Regulation of Childhood Growth. Horm Res Paediatr, 2017. 88(1): p. 22-37.
9. Quanjer, P.H., et al., All-age relationship between arm span and height in different ethnic groups. 2014. 44(4): p. 905-912.
10. Rappold, G., et al., Genotypes and phenotypes in children with short stature: clinical indicators of SHOX haploinsufficiency. J Med Genet, 2007. 44(5): p. 306-13.
11. Lin, Y.J., et al., Association of human height-related genetic variants with familial short stature in Han Chinese in Taiwan. Sci Rep, 2017. 7(1): p. 6372.
12. Hauer, N.N., et al., Genetic screening confirms heterozygous mutations in ACAN as a major cause of idiopathic short stature. Sci Rep, 2017. 7(1): p. 12225.
13. Tatsi, C., et al., Aggrecan Mutations in Nonfamilial Short Stature and Short Stature Without Accelerated Skeletal Maturation. J Endocr Soc, 2017. 1(8): p. 1006-1011.
14. Gkourogianni, A., et al., Clinical Characterization of Patients With Autosomal Dominant Short Stature due to Aggrecan Mutations. J Clin Endocrinol Metab, 2017. 102(2): p. 460-469.
15. Hattori, A., et al., Next generation sequencing-based mutation screening of 86 patients with idiopathic short stature. Endocr J, 2017. 64(10): p. 947-954.
16. Sentchordi-Montane, L., et al., Heterozygous aggrecan variants are associated with short stature and brachydactyly: Description of 16 probands and a review of the literature. Clin Endocrinol (Oxf), 2018. 88(6): p. 820-829.
17. Al Kaissi, A., et al., [Hip dysplasia and spinal osteochondritis (Scheuermann's disease) in a girl with type II manifesting collagenopathy]. Orthopade, 2013. 42(11): p. 963-8.
18. Karczewski, K.J., et al., The mutational constraint spectrum quantified from variation in 141,456 humans. bioRxiv, 2020: p. 531210.
19. Hauer, N.N., et al., Clinical relevance of systematic phenotyping and exome sequencing in patients with short stature. Genet Med, 2018. 20(6): p. 630-638.
20. Amano, N., et al., Identification and functional characterization of two novel NPR2 mutations in Japanese patients with short stature. J Clin Endocrinol Metab, 2014. 99(4): p. E713-8.
21. Landrum, M.J., et al., ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res, 2018. 46(D1): p. D1062-D1067.
22. Vuralli, D., et al., Growth Hormone Deficiency in a Child with Neurofibromatosis-Noonan Syndrome. J Clin Res Pediatr Endocrinol, 2016. 8(1): p. 96-100.
23. Burkitt Wright, E.M., et al., Can the diagnosis of NF1 be excluded clinically? A lack of pigmentary findings in families with spinal neurofibromatosis demonstrates a limitation of clinical diagnosis. J Med Genet, 2013. 50(9): p. 606-13.
24. 蔡甫昌, et al., 次世代定序基因檢測與諮詢之倫理與準則. 2020. 24(2): p. 125-141.
25. Bush, L.W., et al., Pediatric clinical exome/genome sequencing and the engagement process: encouraging active conversation with the older child and adolescent: points to consider—a statement of the American College of Medical Genetics and Genomics (ACMG). Genetics in Medicine, 2018. 20(7): p. 692-694.
26. Wang, S.R., et al., Large-scale pooled next-generation sequencing of 1077 genes to identify genetic causes of short stature. J Clin Endocrinol Metab, 2013. 98(8): p. E1428-37.
27. Shapiro, L., et al., Whole-exome sequencing gives additional benefits compared to candidate gene sequencing in the molecular diagnosis of children with growth hormone or IGF-1 insensitivity. Eur J Endocrinol, 2017. 177(6): p. 485-501.
28. Huang, Z., et al., Genetic Evaluation of 114 Chinese Short Stature Children in the Next Generation Era: a Single Center Study. Cell Physiol Biochem, 2018. 49(1): p. 295-305.
29. Yang, L., et al., Pathogenic gene screening in 91 Chinese patients with short stature of unknown etiology with a targeted next-generation sequencing panel. BMC Med Genet, 2018. 19(1): p. 212.
30. Lin, Y.J., et al., Genetic Architecture Associated With Familial Short Stature. J Clin Endocrinol Metab, 2020. 105(6).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78008-
dc.description.abstract背景
身材矮小是小兒內分泌門診中最常見的就診原因,但造成身材矮小的因素,包括父母身高與進入青春期的年紀、環境因素、營養、賀爾蒙失調、系統性疾病及遺傳等因素。根據全基因組關聯分析(genome-wide association study, GWAS),目前已知有大於600個以上的基因與身材矮小有關。部份基因變異造成的臨床表現十分相似,各自影響身高的強度亦不同,因此需要藉由高通量的次世代基因定序技術(Next Generation Sequencing , NGS),才能在短時間內大量定序DNA,來瞭解身材矮小的患者的基因變異與臨床症狀的影響。
方法
自2018年2月至2019年12月間,我們納入台灣地區70位身材矮小並排除體質性生長遲滯及明顯家族性身材矮小的受試者。利用NGS身材矮小相關基因套組檢測來分析可能影響身高的變異。此套組包含194個基因,以及13個用來計算身材矮小風險分數的與人類身高相關的核苷酸多形性(SNP)變異。同時,我們也蒐集受試者的臨床表徵來協助分子診斷的確立。
結果
在這70位患者,共有25名受試者(35.7%)找到身材矮小的致病基因。這些基因包括ACAN, COL10A1, COL11A2, COL2A1, COL9A1, COL9A2, FGFR3, GDF5, NPR2, NF1, PTPN11, LHX4, OBSL1等13個基因。在身材矮小風險分數分析中,無法有效辨別風險分數與是否帶有致病性變異之相關性。
結論
我們的資料顯示身材矮小套組基因檢驗的確可以找到與單基因的身材矮小相關致病性變異,而利用多基因模型的身材矮小風險分析則不適用本研究的族群,較適用於家族性身材矮小(familial short stature , FSS)之族群。
zh_TW
dc.description.abstractBackground
Short stature is the most common encountered complaint in pediatric endocrine clinic with heterogeneous etiology. While evaluating a patient with short stature, many factors including parental heights and their age entering puberty, environmental factors, nutrition, hormonal disorders and systemic disease should be considered. Genome-wide association studies have identified more than 600 genes associated with adult height with genetic heterogeneity and various impacts. Under this situation, next generation sequencing (NGS) is a high-throughput sequencing technique that allows large-scaled DNA sequencing. We used NGS analysis to understand the correlation between short stature associate variants and clinical phenotypes.
Methods
During the period from Feb 2018 to Dec 2019, we included 70 patients with short stature and without constitutional delay of growth and adolescence and familial short stature. NGS-based targeted gene panel were used to search for causative variants. This panel included 194 short stature associate genes and 13 human height related SNPs for calculating short stature risk score. Clinical presentations of these patients were collected as well to help establish molecular diagnosis.
Results
A total of 70 patients were analyzed and 13 disease-causing genes were identified in 25 patients (35.7%), including ACAN, COL10A1, COL11A2, COL2A1, COL9A1, COL9A2, FGFR3, GDF5, NPR2, NF1, PTPN11 and OBSL1 genes. In short stature risk score analysis, there was no significant correlation between risk score and the pathogenicity of disease-causing variants.
Conclusion
Our data demonstrates that the short stature panel could help identify monogenic causes of short stature. However, risk score analysis with polygenic model is more likely to be suitable for patients with familial short stature which were not included in our study.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:39:32Z (GMT). No. of bitstreams: 1
U0001-1508202015443400.pdf: 3286291 bytes, checksum: 9c0c519cfa4ea17c6975fc531b260943 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 i
中文摘要 ii
Abstract iii
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 1
第三節 身高與基因的關係 2
第四節 身材矮小的相關臨床議題 3
第五節 身材矮小之相關病理機制 4
第六節 身材矮小基因套組之應用 6
第二章 研究方法 8
第一節 受試者納入條件與評估 8
第二節 評估身高的參數 9
第三節 身材矮小疾病相關基因列表 9
第四節 製備基因片段庫Library Design 9
第五節 檢體備製 10
第六節 資料產出與變異分類 10
第七節 與身高相關之遺傳風險因子計算 11
第八節 利用桑格定序法驗證變異 11
第九節 數據統計 12
第三章 研究結果 13
第一節 身材矮小套組基因與覆蓋率分析 13
第二節 受試者分析 13
第三節 身材矮小套組基因檢驗結果 14
I. 與不成比例的身材矮小(DSS)相關之基因變異 15
II. 與成比例身材矮小(PSS)相關之基因變異 18
III. 與極端身材矮小有關的基因變異 19
IV. 其他可能與身高相關風險因子 20
第四節 利用多基因模型評估身材矮小風險 20
第四章 討論 22
參考文獻 28
附錄 31
附錄一 身材矮小的診斷流程 31
附錄二 生長遲緩的分子調控機制與影響途徑。 32

表目錄
表一、身材矮小疾病相關基因套組基因列表 33
表二、身高相關之遺傳風險因子評分表 34
表三、基因套組中非全覆蓋率位置之列表 35
表四、受試者基本資料分析 36
表五、陽性結果比率與篩出基因 37
表六、身材矮小與症狀相關之變異 38
表七、不同wGRS分群之身高與標的身高標準差分數 40
表八、檢出結果與wGRS分群對身高標準差分數 41

圖目錄
圖一、身材矮小相關次世代基因定序流程圖 42
圖二、身材矮小相關次世代基因定序結果簡要圖 43
圖三、ACAN變異之家族S041、S042定序結果 44
圖四、S001家族圖譜與COL10A1基因定序結果 45
圖五、S016家族之COL10A1定序結果 46
圖六、S033家族圖譜與COL2A1定序結果 47
圖七、S019家族圖譜與FGFR3基因定序結果 48
圖八、S028家族圖譜與GDF5基因定序結果、個案與案母之手骨X光攝影 49
圖九、NPR2基因變異之家族S034、S044定序結果 50
圖十、S035之OBSL1基因定序結果 51
圖十一、遺傳風險因子比例 52
dc.language.isozh-TW
dc.subject次世代定序zh_TW
dc.subject多基因模式zh_TW
dc.subject單基因遺傳zh_TW
dc.subject身材矮小zh_TW
dc.subjectNext Generation Sequencing (NGS)en
dc.subjectshort statureen
dc.subjectpolygenic inheritanceen
dc.subjectmonogenic inheritanceen
dc.title次世代基因定序於致病性身材矮小病患之應用zh_TW
dc.titleNext generation sequencing targeting panel for pathogenic short statureen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.author-orcid0000-0001-9191-8113
dc.contributor.coadvisor童怡靖(Yi-Ching Tung)
dc.contributor.oralexamcommittee胡務亮(Wuh-Liang Hwu),簡穎秀(Yin-Hsiu Chien)
dc.subject.keyword身材矮小,次世代定序,多基因模式,單基因遺傳,zh_TW
dc.subject.keywordshort stature,Next Generation Sequencing (NGS),polygenic inheritance,monogenic inheritance,en
dc.relation.page52
dc.identifier.doi10.6342/NTU202003521
dc.rights.note有償授權
dc.date.accepted2020-08-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
dc.date.embargo-lift2025-08-19-
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-1508202015443400.pdf
  未授權公開取用
3.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved