Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77999
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃筱鈞(Hsiao-Chun Huang)
dc.contributor.authorShang-Fu Chenen
dc.contributor.author陳尚甫zh_TW
dc.date.accessioned2021-07-11T14:39:18Z-
dc.date.available2022-10-03
dc.date.copyright2017-10-03
dc.date.issued2017
dc.date.submitted2017-04-13
dc.identifier.citation1 Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676 (2006).
2 Gonzalez, F., Boue, S. & Izpisua Belmonte, J. C. Methods for making induced pluripotent stem cells: reprogramming a la carte. Nat Rev Genet 12, 231-242, doi:10.1038/nrg2937 (2011).
3 Yu, J. et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 324, 797-801, doi:10.1126/science.1172482 (2009).
4 Fusaki, N., Ban, H., Nishiyama, A., Saeki, K. & Hasegawa, M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85, 348-362 (2009).
5 Kim, D. et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4, 472-476, doi:10.1016/j.stem.2009.05.005 (2009).
6 Warren, L. et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7, 618-630, doi:10.1016/j.stem.2010.08.012 (2010).
7 Zhao, Y. et al. A XEN-like State Bridges Somatic Cells to Pluripotency during Chemical Reprogramming. Cell 163, 1678-1691, doi:10.1016/j.cell.2015.11.017 (2015).
8 Malik, N. & Rao, M. S. A review of the methods for human iPSC derivation. Methods Mol Biol 997, 23-33, doi:10.1007/978-1-62703-348-0_3 (2013).
9 Zhang, Y., Li, W., Laurent, T. & Ding, S. Small molecules, big roles -- the chemical manipulation of stem cell fate and somatic cell reprogramming. J Cell Sci 125, 5609-5620, doi:10.1242/jcs.096032 (2012).
10 Shu, J. et al. Induction of pluripotency in mouse somatic cells with lineage specifiers. Cell 153, 963-975, doi:10.1016/j.cell.2013.05.001 (2013).
11 Sancho-Martinez, I. & Izpisua Belmonte, J. C. Stem cells: Surf the waves of reprogramming. Nature 493, 310-311, doi:10.1038/493310b (2013).
12 Xu, Y. et al. Transcriptional Control of Somatic Cell Reprogramming. Trends Cell Biol 26, 272-288, doi:10.1016/j.tcb.2015.12.003 (2016).
13 Mikkelsen, T. S. et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 454, 49-55, doi:10.1038/nature07056 (2008).
14 Treutlein, B. et al. Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq. Nature 534, 391-395, doi:10.1038/nature18323 (2016).
15 Liu, K., Yu, C., Xie, M., Li, K. & Ding, S. Chemical Modulation of Cell Fate in Stem Cell Therapeutics and Regenerative Medicine. Cell Chem Biol 23, 893-916, doi:10.1016/j.chembiol.2016.07.007 (2016).
16 Trounson, A. & DeWitt, N. D. Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol 17, 194-200, doi:10.1038/nrm.2016.10 (2016).
17 Ghosh, Z. et al. Dissecting the oncogenic and tumorigenic potential of differentiated human induced pluripotent stem cells and human embryonic stem cells. Cancer Res 71, 5030-5039, doi:10.1158/0008-5472.CAN-10-4402 (2011).
18 Batty, J. A., Lima, J. A., Jr. & Kunadian, V. Direct cellular reprogramming for cardiac repair and regeneration. Eur J Heart Fail 18, 145-156, doi:10.1002/ejhf.446 (2016).
19 Doppler, S. A., Deutsch, M. A., Lange, R. & Krane, M. Direct Reprogramming-The Future of Cardiac Regeneration? Int J Mol Sci 16, 17368-17393, doi:10.3390/ijms160817368 (2015).
20 Ebrahimi, B. Engineering cell fate: Spotlight on cell-activation and signaling-directed lineage conversion. Tissue Cell 48, 475-487, doi:10.1016/j.tice.2016.07.005 (2016).
21 Xu, J., Du, Y. & Deng, H. Direct lineage reprogramming: strategies, mechanisms, and applications. Cell Stem Cell 16, 119-134, doi:10.1016/j.stem.2015.01.013 (2015).
22 Li, X. et al. Small-Molecule-Driven Direct Reprogramming of Mouse Fibroblasts into Functional Neurons. Cell Stem Cell 17, 195-203, doi:10.1016/j.stem.2015.06.003 (2015).
23 Tian, E. et al. Small-Molecule-Based Lineage Reprogramming Creates Functional Astrocytes. Cell Rep 16, 781-792, doi:10.1016/j.celrep.2016.06.042 (2016).
24 Fu, Y. Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails. Cell Research 25, 1013-1024 (2015).
25 Zhang, M. et al. Pharmacological Reprogramming of Fibroblasts into Neural Stem Cells by Signaling-Directed Transcriptional Activation. Cell Stem Cell 18, 653-667, doi:10.1016/j.stem.2016.03.020 (2016).
26 Hou, P. et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341, 651-654, doi:10.1126/science.1239278 (2013).
27 Hu, W. et al. Direct Conversion of Normal and Alzheimer's Disease Human Fibroblasts into Neuronal Cells by Small Molecules. Cell Stem Cell 17, 204-212, doi:10.1016/j.stem.2015.07.006 (2015).
28 Zhang, L. et al. Small Molecules Efficiently Reprogram Human Astroglial Cells into Functional Neurons. Cell Stem Cell 17, 735-747, doi:10.1016/j.stem.2015.09.012 (2015).
29 Cheng, L. et al. Direct conversion of astrocytes into neuronal cells by drug cocktail. Cell Res 25, 1269-1272, doi:10.1038/cr.2015.120 (2015).
30 Gao, L. et al. Direct Generation of Human Neuronal Cells from Adult Astrocytes by Small Molecules. Stem Cell Reports 8, 538-547, doi:10.1016/j.stemcr.2017.01.014 (2017).
31 Thoma, E. C. et al. Chemical conversion of human fibroblasts into functional Schwann cells. Stem Cell Reports 3, 539-547, doi:10.1016/j.stemcr.2014.07.014 (2014).
32 Cao, N. et al. Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science 352, 1216-1220, doi:10.1126/science.aaf1502 (2016).
33 Lai, P. L. et al. Efficient Generation of Chemically Induced Mesenchymal Stem Cells from Human Dermal Fibroblasts. Sci Rep 7, 44534, doi:10.1038/srep44534 (2017).
34 Vodyanik, M. A. et al. A mesoderm-derived precursor for mesenchymal stem and endothelial cells. Cell Stem Cell 7, 718-729, doi:10.1016/j.stem.2010.11.011 (2010).
35 Takashima, Y. et al. Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell 129, 1377-1388, doi:10.1016/j.cell.2007.04.028 (2007).
36 Sarugaser, R., Hanoun, L., Keating, A., Stanford, W. L. & Davies, J. E. Human mesenchymal stem cells self-renew and differentiate according to a deterministic hierarchy. PLoS One 4, e6498, doi:10.1371/journal.pone.0006498 (2009).
37 Pittenger, M. F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147 (1999).
38 Nombela-Arrieta, C., Ritz, J. & Silberstein, L. E. The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol 12, 126-131, doi:10.1038/nrm3049 (2011).
39 Cai, J. et al. Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells. J Biol Chem 285, 11227-11234, doi:10.1074/jbc.M109.086389 (2010).
40 In 't Anker, P. S. et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102, 1548-1549, doi:10.1182/blood-2003-04-1291 (2003).
41 Tsai, M. S., Lee, J. L., Chang, Y. J. & Hwang, S. M. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod 19, 1450-1456, doi:10.1093/humrep/deh279 (2004).
42 Lee, O. K. et al. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103, 1669-1675, doi:10.1182/blood-2003-05-1670 (2004).
43 Hou, T. et al. Umbilical cord Wharton's Jelly: a new potential cell source of mesenchymal stromal cells for bone tissue engineering. Tissue Eng Part A 15, 2325-2334, doi:10.1089/ten.tea.2008.0402 (2009).
44 Wang, H. S. et al. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells 22, 1330-1337, doi:10.1634/stemcells.2004-0013 (2004).
45 Battula, V. L. et al. Human placenta and bone marrow derived MSC cultured in serum-free, b-FGF-containing medium express cell surface frizzled-9 and SSEA-4 and give rise to multilineage differentiation. Differentiation 75, 279-291, doi:10.1111/j.1432-0436.2006.00139.x (2007).
46 Battula, V. L., Treml, S., Abele, H. & Buhring, H. J. Prospective isolation and characterization of mesenchymal stem cells from human placenta using a frizzled-9-specific monoclonal antibody. Differentiation 76, 326-336, doi:10.1111/j.1432-0436.2007.00225.x (2008).
47 Raynaud, C. M. et al. Comprehensive characterization of mesenchymal stem cells from human placenta and fetal membrane and their response to osteoactivin stimulation. Stem Cells Int 2012, 658356, doi:10.1155/2012/658356 (2012).
48 Gronthos, S., Mankani, M., Brahim, J., Robey, P. G. & Shi, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97, 13625-13630, doi:10.1073/pnas.240309797 (2000).
49 Yasui, T. et al. Purified Human Dental Pulp Stem Cells Promote Osteogenic Regeneration. J Dent Res 95, 206-214, doi:10.1177/0022034515610748 (2016).
50 Huang, G. T., Gronthos, S. & Shi, S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88, 792-806, doi:10.1177/0022034509340867 (2009).
51 Seifrtova, M. et al. The response of human ectomesenchymal dental pulp stem cells to cisplatin treatment. Int Endod J 45, 401-412, doi:10.1111/j.1365-2591.2011.01990.x (2012).
52 Ab Kadir, R., Zainal Ariffin, S. H., Megat Abdul Wahab, R., Kermani, S. & Senafi, S. Characterization of mononucleated human peripheral blood cells. ScientificWorldJournal 2012, 843843, doi:10.1100/2012/843843 (2012).
53 Allickson, J. G., Sanchez, A., Yefimenko, N., Borlongan, C. V. & Sanberg, P. R. Recent Studies Assessing the Proliferative Capability of a Novel Adult Stem Cell Identified in Menstrual Blood. Open Stem Cell J 3, 4-10, doi:10.2174/1876893801103010004 (2011).
54 Bartsch, G. et al. Propagation, expansion, and multilineage differentiation of human somatic stem cells from dermal progenitors. Stem Cells Dev 14, 337-348, doi:10.1089/scd.2005.14.337 (2005).
55 Riekstina, U., Muceniece, R., Cakstina, I., Muiznieks, I. & Ancans, J. Characterization of human skin-derived mesenchymal stem cell proliferation rate in different growth conditions. Cytotechnology 58, 153-162, doi:10.1007/s10616-009-9183-2 (2008).
56 Mabuchi, Y. et al. LNGFR(+)THY-1(+)VCAM-1(hi+) cells reveal functionally distinct subpopulations in mesenchymal stem cells. Stem Cell Reports 1, 152-165, doi:10.1016/j.stemcr.2013.06.001 (2013).
57 Sacchetti, B. et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131, 324-336, doi:10.1016/j.cell.2007.08.025 (2007).
58 Sowa, Y. et al. Adipose stromal cells contain phenotypically distinct adipogenic progenitors derived from neural crest. PLoS One 8, e84206, doi:10.1371/journal.pone.0084206 (2013).
59 Liu, T. M. et al. Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells 25, 750-760, doi:10.1634/stemcells.2006-0394 (2007).
60 Ong, W. K. et al. Identification of specific cell-surface markers of adipose-derived stem cells from subcutaneous and visceral fat depots. Stem Cell Reports 2, 171-179, doi:10.1016/j.stemcr.2014.01.002 (2014).
61 Yanez, R. et al. Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells 24, 2582-2591, doi:10.1634/stemcells.2006-0228 (2006).
62 Wagner, W. et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33, 1402-1416, doi:10.1016/j.exphem.2005.07.003 (2005).
63 Ogata, Y. et al. Purified Human Synovium Mesenchymal Stem Cells as a Good Resource for Cartilage Regeneration. PLoS One 10, e0129096, doi:10.1371/journal.pone.0129096 (2015).
64 De Bari, C., Dell'Accio, F., Tylzanowski, P. & Luyten, F. P. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44, 1928-1942, doi:10.1002/1529-0131(200108)44:8<1928::AID-ART331>3.0.CO;2-P (2001).
65 Sakaguchi, Y., Sekiya, I., Yagishita, K. & Muneta, T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 52, 2521-2529, doi:10.1002/art.21212 (2005).
66 Morito, T. et al. Synovial fluid-derived mesenchymal stem cells increase after intra-articular ligament injury in humans. Rheumatology (Oxford) 47, 1137-1143, doi:10.1093/rheumatology/ken114 (2008).
67 Ullah, I., Subbarao, R. B. & Rho, G. J. Human mesenchymal stem cells - current trends and future prospective. Biosci Rep 35, doi:10.1042/BSR20150025 (2015).
68 Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315-317, doi:10.1080/14653240600855905 (2006).
69 Squillaro, T., Peluso, G. & Galderisi, U. Clinical Trials With Mesenchymal Stem Cells: An Update. Cell Transplant 25, 829-848, doi:10.3727/096368915X689622 (2016).
70 Wei, X. et al. Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin 34, 747-754, doi:10.1038/aps.2013.50 (2013).
71 Ratcliffe, E., Glen, K. E., Naing, M. W. & Williams, D. J. Current status and perspectives on stem cell-based therapies undergoing clinical trials for regenerative medicine: case studies. Br Med Bull 108, 73-94, doi:10.1093/bmb/ldt034 (2013).
72 Singh, A., Singh, A. & Sen, D. Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010-2015). Stem Cell Res Ther 7, 82, doi:10.1186/s13287-016-0341-0 (2016).
73 Bianco, P. et al. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat Med 19, 35-42, doi:10.1038/nm.3028 (2013).
74 Uccelli, A., Moretta, L. & Pistoia, V. Mesenchymal stem cells in health and disease. Nat Rev Immunol 8, 726-736, doi:10.1038/nri2395 (2008).
75 Chen, X. et al. Efficacy of Mesenchymal Stem Cell Therapy for Steroid-Refractory Acute Graft-Versus-Host Disease following Allogeneic Hematopoietic Stem Cell Transplantation: A Systematic Review and Meta-Analysis. PLoS One 10, e0136991, doi:10.1371/journal.pone.0136991 (2015).
76 Amorin, B. et al. Mesenchymal stem cell therapy and acute graft-versus-host disease: a review. Hum Cell 27, 137-150, doi:10.1007/s13577-014-0095-x (2014).
77 Gallina, C., Turinetto, V. & Giachino, C. A New Paradigm in Cardiac Regeneration: The Mesenchymal Stem Cell Secretome. Stem Cells Int 2015, 765846, doi:10.1155/2015/765846 (2015).
78 Chen, S. L. et al. Improvement of cardiac function after transplantation of autologous bone marrow mesenchymal stem cells in patients with acute myocardial infarction. Chin Med J (Engl) 117, 1443-1448 (2004).
79 Katritsis, D. G. et al. Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheter Cardiovasc Interv 65, 321-329, doi:10.1002/ccd.20406 (2005).
80 Drela, K., Siedlecka, P., Sarnowska, A. & Domanska-Janik, K. Human mesenchymal stem cells in the treatment of neurological diseases. Acta Neurobiol Exp (Wars) 73, 38-56 (2013).
81 Uccelli, A., Benvenuto, F., Laroni, A. & Giunti, D. Neuroprotective features of mesenchymal stem cells. Best Pract Res Clin Haematol 24, 59-64, doi:10.1016/j.beha.2011.01.004 (2011).
82 Horwitz, E. M. et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci U S A 99, 8932-8937, doi:10.1073/pnas.132252399 (2002).
83 Horwitz, E. M. et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5, 309-313, doi:10.1038/6529 (1999).
84 Horwitz, E. M. et al. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 97, 1227-1231 (2001).
85 Liu, Y., Wu, J., Zhu, Y. & Han, J. Therapeutic application of mesenchymal stem cells in bone and joint diseases. Clin Exp Med 14, 13-24, doi:10.1007/s10238-012-0218-1 (2014).
86 Monsel, A. et al. Cell-based therapy for acute organ injury: preclinical evidence and ongoing clinical trials using mesenchymal stem cells. Anesthesiology 121, 1099-1121, doi:10.1097/ALN.0000000000000446 (2014).
87 Shi, M. et al. Human mesenchymal stem cell transfusion is safe and improves liver function in acute-on-chronic liver failure patients. Stem Cells Transl Med 1, 725-731, doi:10.5966/sctm.2012-0034 (2012).
88 Togel, F. E. & Westenfelder, C. Kidney protection and regeneration following acute injury: progress through stem cell therapy. Am J Kidney Dis 60, 1012-1022, doi:10.1053/j.ajkd.2012.08.034 (2012).
89 Zhang, Z. et al. Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients. J Gastroenterol Hepatol 27 Suppl 2, 112-120, doi:10.1111/j.1440-1746.2011.07024.x (2012).
90 Chao, K. C., Chao, K. F., Fu, Y. S. & Liu, S. H. Islet-like clusters derived from mesenchymal stem cells in Wharton's Jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS One 3, e1451, doi:10.1371/journal.pone.0001451 (2008).
91 Figliuzzi, M., Bonandrini, B., Silvani, S. & Remuzzi, A. Mesenchymal stem cells help pancreatic islet transplantation to control type 1 diabetes. World J Stem Cells 6, 163-172, doi:10.4252/wjsc.v6.i2.163 (2014).
92 Dalal, J., Gandy, K. & Domen, J. Role of mesenchymal stem cell therapy in Crohn's disease. Pediatr Res 71, 445-451, doi:10.1038/pr.2011.56 (2012).
93 de Girolamo, L. Mesenchymal stem/stromal cells: a new “cells as drugs” paradigm. Efficacy and critical aspects in cell therapy. Curr Pharm Des 19, 2459-2473 (2013).
94 Hass, R., Kasper, C., Bohm, S. & Jacobs, R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 9, 12, doi:10.1186/1478-811X-9-12 (2011).
95 D'Ippolito, G., Schiller, P. C., Ricordi, C., Roos, B. A. & Howard, G. A. Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res 14, 1115-1122, doi:10.1359/jbmr.1999.14.7.1115 (1999).
96 Stenderup, K., Justesen, J., Clausen, C. & Kassem, M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33, 919-926 (2003).
97 Choudhery, M. S., Badowski, M., Muise, A., Pierce, J. & Harris, D. T. Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. J Transl Med 12, 8, doi:10.1186/1479-5876-12-8 (2014).
98 Alt, E. U. et al. Aging alters tissue resident mesenchymal stem cell properties. Stem Cell Res 8, 215-225, doi:10.1016/j.scr.2011.11.002 (2012).
99 Mareschi, K. et al. Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow. J Cell Biochem 97, 744-754, doi:10.1002/jcb.20681 (2006).
100 Vangipuram, M., Ting, D., Kim, S., Diaz, R. & Schule, B. Skin punch biopsy explant culture for derivation of primary human fibroblasts. J Vis Exp, e3779, doi:10.3791/3779 (2013).
101 Hao, Q. Study of Bone Marrow and Embryonic Stem Cell-Derived Human Mesenchymal Stem Cells for Treatment of Escherichia coli Endotoxin-Induced Acute Lung Injury in Mice. Stem Cells Transl Med 4, 832-840 (2015).
102 Kim, E. S. Intratracheal transplantation of human umbilical cord blood-derived mesenchymal stem cells attenuates Escherichia coli-induced acute lung injury in mice. Respir Res 12, 108 (2011).
103 Rojas, M. et al. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol 33, 145-152, doi:10.1165/rcmb.2004-0330OC (2005).
104 McIntyre, L. A. et al. Efficacy of Mesenchymal Stromal Cell Therapy for Acute Lung Injury in Preclinical Animal Models: A Systematic Review. PLoS One 11, e0147170, doi:10.1371/journal.pone.0147170 (2016).
105 Ono, N., Ono, W., Nagasawa, T. & Kronenberg, H. M. A subset of chondrogenic cells provides early mesenchymal progenitors in growing bones. Nat Cell Biol 16, 1157-1167, doi:10.1038/ncb3067 (2014).
106 Franken, N. A., Rodermond, H. M., Stap, J., Haveman, J. & van Bree, C. Clonogenic assay of cells in vitro. Nat Protoc 1, 2315-2319, doi:10.1038/nprot.2006.339 (2006).
107 Morikawa, S. et al. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med 206, 2483-2496, doi:10.1084/jem.20091046 (2009).
108 Gang, E. J., Bosnakovski, D., Figueiredo, C. A., Visser, J. W. & Perlingeiro, R. C. SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood 109, 1743-1751 (2007).
109 Lee, R. H. The CD34-like protein PODXL and alpha6-integrin (CD49f) identify early progenitor MSCs with increased clonogenicity and migration to infarcted heart in mice. Blood 113, 816-826 (2009).
110 Mihaila, S. M. The osteogenic differentiation of SSEA-4 sub-population of human adipose derived stem cells using silicate nanoplatelets. Biomaterials 35, 9087-9099 (2014).
111 Alt, E. Fibroblasts share mesenchymal phenotypes with stem cells, but lack their differentiation and colony-forming potential. Biology Of The Cell/Under The Auspices Of The European Cell Biology Organization 103, 197-208 (2011).
112 Stingl, J. et al. Purification and unique properties of mammary epithelial stem cells. Nature 439, 993-997, doi:10.1038/nature04496 (2006).
113 Friedenstein, A. J., Gorskaja, J. F. & Kulagina, N. N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4, 267-274 (1976).
114 Friedenstein, A. J. et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 2, 83-92 (1974).
115 Li, W. et al. Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells 27, 2992-3000, doi:10.1002/stem.240 (2009).
116 Wu, Y. et al. CHIR99021 promotes self-renewal of mouse embryonic stem cells by modulation of protein-encoding gene and long intergenic non-coding RNA expression. Exp Cell Res 319, 2684-2699, doi:10.1016/j.yexcr.2013.08.027 (2013).
117 Ye, S. et al. Pleiotropy of glycogen synthase kinase-3 inhibition by CHIR99021 promotes self-renewal of embryonic stem cells from refractory mouse strains. PLoS One 7, e35892, doi:10.1371/journal.pone.0035892 (2012).
118 Li, Y. et al. Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Res 21, 196-204, doi:10.1038/cr.2010.142 (2011).
119 Meng, X. et al. Rapid and efficient reprogramming of human fetal and adult blood CD34+ cells into mesenchymal stem cells with a single factor. Cell Res 23, 658-672, doi:10.1038/cr.2013.40 (2013).
120 Zhu, S. et al. Small molecules enable OCT4-mediated direct reprogramming into expandable human neural stem cells. Cell Res 24, 126-129, doi:10.1038/cr.2013.156 (2014).
121 Piccinato, C. A., Sertie, A. L., Torres, N., Ferretti, M. & Antonioli, E. High OCT4 and Low p16(INK4A) Expressions Determine In Vitro Lifespan of Mesenchymal Stem Cells. Stem Cells Int 2015, 369828 (2015).
122 Tsai, C. C., Su, P. F., Huang, Y. F., Yew, T. L. & Hung, S. C. Oct4 and Nanog directly regulate Dnmt1 to maintain self-renewal and undifferentiated state in mesenchymal stem cells. Mol Cell 47, 169-182 (2012).
123 Baranek, M. et al. Effect of small molecules on cell reprogramming. Mol Biosyst 13, 277-313, doi:10.1039/c6mb00595k (2017).
124 Biswas, D. & Jiang, P. Chemically Induced Reprogramming of Somatic Cells to Pluripotent Stem Cells and Neural Cells. Int J Mol Sci 17, 226, doi:10.3390/ijms17020226 (2016).
125 Lin, T. & Wu, S. Reprogramming with Small Molecules instead of Exogenous Transcription Factors. Stem Cells Int 2015, 794632, doi:10.1155/2015/794632 (2015).
126 Liu, M. L. et al. Small molecules enable neurogenin 2 to efficiently convert human fibroblasts into cholinergic neurons. Nat Commun 4, 2183, doi:10.1038/ncomms3183 (2013).
127 Fritz, A. L., Adil, M. M., Mao, S. R. & Schaffer, D. V. cAMP and EPAC Signaling Functionally Replace OCT4 During Induced Pluripotent Stem Cell Reprogramming. Mol Ther 23, 952-963, doi:10.1038/mt.2015.28 (2015).
128 Ye, J. et al. Pluripotent stem cells induced from mouse neural stem cells and small intestinal epithelial cells by small molecule compounds. Cell Res 26, 34-45, doi:10.1038/cr.2015.142 (2016).
129 Fernandez, D. et al. Release of podocalyxin into the extracellular space. Role of metalloproteinases. Biochim Biophys Acta 1813, 1504-1510, doi:10.1016/j.bbamcr.2011.05.009 (2011).
130 Gschwendt, M. et al. Inhibition of protein kinase C mu by various inhibitors. Differentiation from protein kinase c isoenzymes. FEBS Lett 392, 77-80 (1996).
131 Dutta, D. et al. Self-renewal versus lineage commitment of embryonic stem cells: protein kinase C signaling shifts the balance. Stem Cells 29, 618-628, doi:10.1002/stem.605 (2011).
132 Gafni, O. et al. Derivation of novel human ground state naive pluripotent stem cells. Nature 504, 282-286, doi:10.1038/nature12745 (2013).
133 Krattinger, N., Applegate, L. A., Biver, E., Pioletti, D. P. & Caverzasio, J. Regulation of proliferation and differentiation of human fetal bone cells. Eur Cell Mater 21, 46-58 (2011).
134 Kumar, P., Thirkill, T. L., Ji, J., Monte, L. H. & Douglas, G. C. Differential Effects of Sodium Butyrate and Lithium Chloride on Rhesus Monkey Trophoblast Differentiation. PLoS One 10, e0135089, doi:10.1371/journal.pone.0135089 (2015).
135 Lee, R. H., Yoon, N., Reneau, J. C. & Prockop, D. J. Preactivation of human MSCs with TNF-alpha enhances tumor-suppressive activity. Cell Stem Cell 11, 825-835, doi:10.1016/j.stem.2012.10.001 (2012).
136 Kwon, Y. W. et al. Tumor necrosis factor-alpha-activated mesenchymal stem cells promote endothelial progenitor cell homing and angiogenesis. Biochim Biophys Acta 1832, 2136-2144, doi:10.1016/j.bbadis.2013.08.002 (2013).
137 Chen, H. et al. Pre-activation of mesenchymal stem cells with TNF-alpha, IL-1beta and nitric oxide enhances its paracrine effects on radiation-induced intestinal injury. Sci Rep 5, 8718, doi:10.1038/srep08718 (2015).
138 Wang, L. et al. IFN-gamma and TNF-alpha synergistically induce mesenchymal stem cell impairment and tumorigenesis via NFkappaB signaling. Stem Cells 31, 1383-1395, doi:10.1002/stem.1388 (2013).
139 Zhu, Z. et al. Lithium stimulates human bone marrow derived mesenchymal stem cell proliferation through GSK-3beta-dependent beta-catenin/Wnt pathway activation. FEBS J 281, 5371-5389, doi:10.1111/febs.13081 (2014).
140 Satija, N. K., Sharma, D., Afrin, F., Tripathi, R. P. & Gangenahalli, G. High throughput transcriptome profiling of lithium stimulated human mesenchymal stem cells reveals priming towards osteoblastic lineage. PLoS One 8, e55769, doi:10.1371/journal.pone.0055769 (2013).
141 Song, H., Chang, W., Song, B. W. & Hwang, K. C. Specific differentiation of mesenchymal stem cells by small molecules. Am J Stem Cells 1, 22-30 (2012).
142 Tominaga, S., Yamaguchi, T., Takahashi, S., Hirose, F. & Osumi, T. Negative regulation of adipogenesis from human mesenchymal stem cells by Jun N-terminal kinase. Biochem Biophys Res Commun 326, 499-504 (2005).
143 Kilian, K. A., Bugarija, B., Lahn, B. T. & Mrksich, M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci Usa 107, 4872-4877 (2010).
144 Zhu, F., Sweetwyne, M. T. & Hankenson, K. D. PKCdelta is required for Jagged-1 induction of human mesenchymal stem cell osteogenic differentiation. Stem Cells 31, 1181-1192 (2013).
145 Nakamura, K., Yoshimura, A., Kaneko, T., Sato, K. & Hara, Y. ROCK inhibitor Y-27632 maintains the proliferation of confluent human mesenchymal stem cells. J Periodontal Res 49, 363-370 (2014).
146 Maharam, E. et al. Rho/Rock signal transduction pathway is required for MSC tenogenic differentiation. Bone Res 3, 15015 (2015).
147 Gharibi, B., Ghuman, M. S. & Hughes, F. J. Akt- and Erk-mediated regulation of proliferation and differentiation during PDGFRbeta-induced MSC self-renewal. J Cell Mol Med 16, 2789-2801 (2012).
148 Mei, Y. et al. miR-21 modulates the ERK-MAPK signaling pathway by regulating SPRY2 expression during human mesenchymal stem cell differentiation. J Cell Biochem 114, 1374-1384, doi:10.1002/jcb.24479 (2013).
149 Fu, L. et al. Stimulation of osteogenic differentiation and inhibition of adipogenic differentiation in bone marrow stromal cells by alendronate via ERK and JNK activation. Bone 43, 40-47, doi:10.1016/j.bone.2008.03.008 (2008).
150 Ying, Q. L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519-523, doi:10.1038/nature06968 (2008).
151 Takahashi, K. & Yamanaka, S. A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol 17, 183-193, doi:10.1038/nrm.2016.8 (2016).
152 Hsieh, J., Nakashima, K., Kuwabara, T., Mejia, E. & Gage, F. H. Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci U S A 101, 16659-16664, doi:10.1073/pnas.0407643101 (2004).
153 Jung, G. A. et al. Valproic acid induces differentiation and inhibition of proliferation in neural progenitor cells via the beta-catenin-Ras-ERK-p21Cip/WAF1 pathway. BMC Cell Biol 9, 66, doi:10.1186/1471-2121-9-66 (2008).
154 Bug, G. et al. Valproic acid stimulates proliferation and self-renewal of hematopoietic stem cells. Cancer Res 65, 2537-2541, doi:10.1158/0008-5472.CAN-04-3011 (2005).
155 Cho, H. H. et al. Induction of osteogenic differentiation of human mesenchymal stem cells by histone deacetylase inhibitors. J Cell Biochem 96, 533-542, doi:10.1002/jcb.20544 (2005).
156 De Felice, L. et al. Histone deacetylase inhibitor valproic acid enhances the cytokine-induced expansion of human hematopoietic stem cells. Cancer Res 65, 1505-1513, doi:10.1158/0008-5472.CAN-04-3063 (2005).
157 Huangfu, D. et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26, 1269-1275, doi:10.1038/nbt.1502 (2008).
158 Wang, Y. & Adjaye, J. A cyclic AMP analog, 8-Br-cAMP, enhances the induction of pluripotency in human fibroblast cells. Stem Cell Rev 7, 331-341, doi:10.1007/s12015-010-9209-3 (2011).
159 Wattanapanitch, M. et al. Dual small-molecule targeting of SMAD signaling stimulates human induced pluripotent stem cells toward neural lineages. PLoS One 9, e106952, doi:10.1371/journal.pone.0106952 (2014).
160 Shi, G., Gao, F. & Jin, Y. The regulatory role of histone deacetylase inhibitors in Fgf4 expression is dependent on the differentiation state of pluripotent stem cells. J Cell Physiol 226, 3190-3196, doi:10.1002/jcp.22679 (2011).
161 Zhai, Y. et al. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress. Exp Cell Res 337, 61-67, doi:10.1016/j.yexcr.2015.06.003 (2015).
162 Morizane, A., Doi, D., Kikuchi, T., Nishimura, K. & Takahashi, J. Small-molecule inhibitors of bone morphogenic protein and activin/nodal signals promote highly efficient neural induction from human pluripotent stem cells. J Neurosci Res 89, 117-126, doi:10.1002/jnr.22547 (2011).
163 Zhou, J. et al. High-efficiency induction of neural conversion in human ESCs and human induced pluripotent stem cells with a single chemical inhibitor of transforming growth factor beta superfamily receptors. Stem Cells 28, 1741-1750
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77999-
dc.description.abstract透過細胞再編程將人類體細胞誘導為幹細胞,使得探討細胞命運決定的方式得以獲得革新性的進步,並迎來個人化再生醫療的嶄新紀元。其中,以人類間質幹細胞於臨床細胞再生療法的應用潛力最具前瞻性。然而,成人體內的間質幹細胞不僅難以萃取、含量也相當低,成了相關自體細胞療法的一大瓶頸。為此,本團隊日前首創以複合六個小分子雞尾酒試劑,於六天內便將人體皮膚纖維母細胞化學誘導為大量間質幹細胞。此誘導式間質幹細胞更符合了所有傳統國際規範之間質幹細胞定義。該初步成果遂已於近期發表在國際期刊《科學報導》。於此,本研究首先量化誘導間質幹細胞之數個幹細胞標準能力。並藉由提升轉換效率,優化前作之雞尾酒試劑。先探討其中各單一藥物的地位,鑑定出其中的必需因子Go6983後,大量試驗120種以上的組合以尋找新試劑,結果發現四到八種藥物組成新試劑表現最佳。不但將產率由38% 提高至78%,更可省略細胞純化的步驟,而產生具骨化能力之轉分化細胞,暗示了優化試劑提高老化人體間質幹細胞分化能力的潛力。因此,本研究未來首重以優化試劑處理老化癥狀之人體間質幹細胞,測試其細胞回春之效益。總而言之,本研究可謂開拓了小分子化合物轉分化產生誘導式間質幹細胞的新篇章,指日可待其貢獻於幹細胞研究與再生醫學療法。zh_TW
dc.description.abstractThe induction of stem cells from human somatic cells through cellular reprogramming has revolutionized the way we study cell-fate decision and is heralding a new era of patient-specific regenerative medicine. Within several types of stem cells, human mesenchymal stromal/stem cells (hMSCs) hold great promises for regenerative medicine and perspectives in cell therapies. In terms of their multipotency, immuno-modularity, and without oncogenicity, hMSCs meet with high-class safety standard and have been attempted or ongoing to treat dozens of diseases through hundreds of clinical trials. However, hMSCs remain rare in adult bodies and require invasive treatment to isolate them, which is the main obstacle for autologous hMSC-based therapies. We recently demonstrated the first method to convert human dermal fibroblasts directly into functional MSC-like cells (induced MSCs, iMSCs) by a footprint-free method that avoiding DNA insertional mutagenesis. The method is based on a cocktail of six chemicals and the conversion time is within 6 days. iMSCs fulfill all the criteria of traditional hMSCs as determined by the Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy (ISCT), including cell adhesion, marker expression and multipotency (ability to differentiate into osteoblasts, adipocytes, and chondrocytes) in a degree comparable to primary human bone marrow MSCs (BMMSCs). The preliminary data proved its significance and contribution to stem cell biology and regenerative medicine, and the results were published in Scientific Reports recently. Herein, in this thesis, I firstly identified the role of single factor included in the 6C cocktail (SB202190, SP600125, Go6983, Y27632, PD0325901, and CHIR99021) and found G06983 is the essential factor for reprogramming. After testing 120 different combinations, I then boosted the conversion rate from 38% to 78% based on a concise cocktail including the essential factor. Of note, the optimized cocktails including 4C (Go6983, CHIR99021, valproic acid (VPA), and dorsomorphin), 7C (6C plus VPA), 8C cocktail (7C plus dorsomorphin) show a promising performance of improving the functions of hMSCs. Accordingly, I will treat the senescent or aging primary hMSCs with the cocktails to test if the cocktails could improve the differentiation function of aging hMSCs in the future. Overall, my findings reveal a plastic strategy to enrich functional iMSCs with high efficiency from different sources by small molecule optimization, implying the potentials for cell fate remodeling and rejuvenation research. Thus, we expand the repertoire of applying small molecules to generate iMSCs from accessible cell types and ameliorate senescent/aging hMSCs, which have major implications for broader contribution in stem cell research and cell therapy of regenerative medicine.en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:39:18Z (GMT). No. of bitstreams: 1
ntu-106-R04b43027-1.pdf: 4061882 bytes, checksum: fb09fcff1cc3b31211c110681982d90d (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 i
中文摘要 iii
Abstract iv
Table of Contents vii
List of Figures and Tables ix
1. Introduction 1
1-1. Overview of induced stem cell biology 1
1-1-1. Reprogramming autologous stem cells from somatic cells 1
1-1-2. Chemical induction of stem cells 2
1-2. Overview of human mesenchymal stem cells (hMSCs) 3
1-2-1. Function of hMSCs 3
1-2-2. Clinical application of hMSCs 4
1-2-3. Generation of chemical induced MSCs (iMSCs) 6
2. Materials and methods 7
2-1. Reagents. 7
2-2. Cell culture 7
2-3. Flow cytometry and fluorescence-activated cell sorting (FACS) 8
2-4. Adipogenic differentiation. 9
2-5. Oil Red O staining. 9
2-6. Chemical induction 10
2-7. CFU-F assay. 10
2-8. Osteogenic differentiation. 11
2-9. Alkaline phosphatase activity assay. 11
2-10. Alizarin Red S staining 12
2-11. Statistical analysis. 12
3. Results 14
3-1. Functional characteristics of MSCs 14
3-1-1. SSEA-4 and PODXL act as functional markers to divide the population of BMMSCs with different adipogenesis ability. 14
3-1-2. iMSCs, like BMMSCs, has high clonogenicity. 14
3-2. Optimization the 6C cocktails 15
3-2-1. Go6983 acts as the essential factor in the conversion of iMSCs from human dermal fibroblasts. 15
3-2-2. Single factor in 6C cocktail can partially improve OCT4 expression and clonogenicity 16
3-2-3. Histone deacetylase (HDAC) inhibitor significantly improves the conversion rate of iMSCs as a promoting factor 17
3-2-4. Pairing Go6983 and VPA as the concise cocktail to find Dorsomorphin as the new factors able to efficiently support the conversion 19
3-2-5. Optimized chemical cocktails reach the conversion rate up to 70%. 20
3-2-6. Induced cells present osteogenesis ability without sorting in the optimized protocol. 20
4. Discussion 22
5. Conclusion and future work 33
6. Reference 35
7. Appendix 83
dc.language.isoen
dc.title以藥物優化再編程人類體細胞成為誘導間質幹細胞之製程zh_TW
dc.titleOptimize the Methods of Reprogramming Chemically Induced Mesenchymal Stem Cells from Human Somatic Cellsen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.coadvisor呂仁(Jean Lu)
dc.contributor.oralexamcommittee林劭品(Shau-Ping Lin),陳佑宗(You-Tzung Chen),蔡素宜(Su-Yi Tsai)
dc.subject.keyword小分子化合物,再編程,回春作用,人類間質幹細胞,再生醫學,細胞療法,zh_TW
dc.subject.keywordSmall molecules,Reprogramming,Rejuvenation,Human mesenchymal stem/stromal cell,Regenerative medicine,Cell therapy,en
dc.relation.page84
dc.identifier.doi10.6342/NTU201700753
dc.rights.note有償授權
dc.date.accepted2017-04-14
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-R04b43027-1.pdf
  目前未授權公開取用
3.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved