請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77993完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李秀敏(Hsou-Min Li) | |
| dc.contributor.author | Jie-Ru Wen | en |
| dc.contributor.author | 溫婕如 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:39:10Z | - |
| dc.date.available | 2022-10-03 | |
| dc.date.copyright | 2017-10-03 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-06-12 | |
| dc.identifier.citation | Brink, S., Fischer, K., Klosgen, R.-B., and Flugge, U.-I. (1995). Sorting of nuclear-encoded chloroplast membrane proteins to the envelope and the thylakoid membrane. J Biol Chem 270, 20808-20815.
Chiu, C.-C., and Li, H.-m. (2008). Tic40 is important for reinsertion of proteins from the chloroplast stroma into the inner membrane. Plant J 56, 793-801. Chou, M.L., Fitzpatrick, L.M., Tu, S.L., Budziszewski, G., Potter-Lewis, S., Akita, M., Levin, J.Z., Keegstra, K., and Li, H.-m. (2003). Tic40, a membrane-anchored co-chaperone homologue in the chloroplast protein translocon. EMBO J 22, 2970-2980. Cline, K., and Dabney-Smith, C. (2008). Plastid protein import and sorting: different paths to the same compartments. Curr Opin Plant Biol 11, 585-592. Ferro, M., Salvi, D., Brugiere, S., Miras, S., Kowalski, S., Louwagie, M., Garin, J., Joyard, J., and Rolland, N. (2003). Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol Cell Proteomics 2, 325-345. Froehlich, J.E., and Keegstra, K. (2011). The role of the transmembrane domain in determining the targeting of membrane proteins to either the inner envelope or thylakoid membrane. The Plant Journal 68, 844-856. Knight, J.S., and Gray, J.C. (1995). The N-terminal hydrophobic region of the mature phosphate translocator is sufficient for targeting to the chloroplast inner envelope membrane. Plant Cell 7, 1421-1432. Li, H.m., and Chiu, C.C. (2010). Protein transport into chloroplasts. Annu Rev Plant Biol 61, 157-180. Li, M., and Schnell, D.J. (2006). Reconstitution of protein targeting to the inner envelope membrane of chloroplasts. J Cell Biol 175, 249-259. Meier, S., Neupert, W., and Herrmann, J.M. (2005). Proline residues of transmembrane domains determine the sorting of inner membrane proteins in mitochondria. The Journal of cell biology 170, 881-888. Miras, S., Salvi, D., Ferro, M., Grunwald, D., Garin, J., Joyard, J., and Rolland, N. (2002). Non-canonical transit peptide for import into the chloroplast. J Biol Chem 277, 47770-47778. Nada, A., and Soll, J. (2004). Inner envelope protein 32 is imported into chloroplasts by a novel pathway. J Cell Sci 117, 3975-3982. Neupert, W., and Herrmann, J.M. (2007). Translocation of proteins into mitochondria. Annu. Rev. Biochem. 76, 723-749. Osteryoung, K.W., and Pyke, K.A. (2014). Division and dynamic morphology of plastids. Annual review of plant biology 65, 443-472. Paila, Y.D., Richardson, L.G., and Schnell, D.J. (2015). New insights into the mechanism of chloroplast protein import and its integration with protein quality control, organelle biogenesis and development. J Mol Biol 427, 1038-1060. Schnell, D.J., Blobel, G., Keegstra, K., Kessler, F., Ko, K., and Soll, J. (1997). A consensus nomenclature for the protein-import components of the chloroplast envelope. Trends Cell Biol 7, 303-304. Shi, L.X., and Theg, S.M. (2013). The chloroplast protein import system: From algae to trees. Biochim Biophys Acta 1833, 314-331. Tripp, J., Inoue, K., Keegstra, K., and Froehlich, J.E. (2007). A novel serine/proline-rich domain in combination with a transmembrane domain is required for the insertion of AtTic40 into the inner envelope membrane of chloroplasts. Plant J. 52, 824-838. Viana, A.A., Li, M., and Schnell, D.J. (2010). Determinants for stop-transfer and post-import pathways for protein targeting to the chloroplast inner envelope membrane. Journal of Biological Chemistry 285, 12948-12960. Wang, W., Li, J., Sun, Q., Yu, X., Zhang, W., Jia, N., An, C., Li, Y., Dong, Y., and Han, F. (2017). Structural insights into the coordination of plastid division by the ARC6–PDV2 complex. Nature Plants 3, 17011. Zhang, M., Chen, C., Froehlich, J.E., TerBush, A.D., and Osteryoung, K.W. (2016). Roles of Arabidopsis PARC6 in coordination of the chloroplast division complex and negative regulation of FtsZ assembly. Plant physiology 170, 250-262. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77993 | - |
| dc.description.abstract | 葉綠體在植物中扮演著重要的角色,而葉綠體能否正常運作的關鍵之一在於蛋白質是否能正確地送入至葉綠體內作用。大部分位於葉綠體內的蛋白質都是由細胞核的基因體轉錄,在細胞質轉譯成帶有N端導引訊息的前驅蛋白。在葉綠體的內膜有很多重要的蛋白質,包括代謝產物的轉運蛋白、脂質的生合成酵素、影響葉綠體分裂的組成蛋白及蛋白質運輸機組等,因此這些內膜蛋白質如何正確地插入至葉綠體內膜是重要的研究課題。目前已知有兩種蛋白質插入至葉綠體內膜的路徑: stop-transfer及post-import路徑。使用stop-transfer路徑的蛋白質會先停在葉綠體運輸機組上,之後橫向運輸至內膜。使用post-import路徑的蛋白質會先完全進入至葉綠體基質,形成水溶性的中繼蛋白,再回插至內膜。雖然已知一個內膜蛋白的穿膜區域對於其路徑的選擇有很大的影響,但仍不明瞭是穿膜區域上的什麼特性決定了葉綠體內膜蛋白的路徑選擇。
我們實驗室發現了一個與細菌的運輸機組成員TamB有同源基因關係的葉綠體內膜蛋白質,命名為M4,其功能為連接葉綠體內外膜的運輸機組。本論文首先證實了M4帶有可被切除的導引訊息,我以定點突變實驗估算出M4導引訊息的長度,藉此推算出M4的成熟蛋白大小。之後利用鹼萃取法在豆子及阿拉伯芥葉綠體胞外運輸中,分析M4是走post-import路徑或是stop-transfer路徑插入至內膜。結果證明M4是走stop-transfer路徑插入至葉綠體內膜。之後再將不同葉綠體內膜蛋白的穿膜區域序列做比較,並提出決定葉綠體內膜蛋白插入至內膜使用的路徑的假說。利用在穿膜區域的定點突變,發現走stop-transfer路徑的內膜蛋白的穿膜區域必須夠長才能使蛋白質停在內膜上,而走post-import路徑的內膜蛋白的穿膜區域含有較多側鏈較短的胺基酸。在本篇論文最後,再利用穿透式顯微鏡 (TEM)、螢光顯微鏡及DIC顯微鏡探討若植物M4量降低,會對植物的葉綠體造成什麼影響。結果發現,M4量降低會造成植物細胞中偶爾會有極大的葉綠體出現,而此結果將提供日後研究M4蛋白質在葉綠體中的功能參考依據。 | zh_TW |
| dc.description.abstract | Chloroplasts are essential organelles of plants. Most proteins in chloroplasts are encoded by the nuclear genome and imported from the cytosol. Maintaining chloroplast function is dependent on the correct import and insertion of chloroplast proteins. The inner envelope membrane of chloroplasts contains many important proteins including metabolite transporters, lipid biosynthesis enzymes, components of chloroplast division and protein import machineries. There are two major pathways for proteins insertion into the chloroplast inner membrane: the stop-transfer and the post-import pathways. For proteins that insert through the stop-transfer pathway, their translocation across the inner membrane translocon is halted through their transmembrane domains, which then lateral diffuse into the inner membrane. For proteins that insert through the post-import pathways, they are first fully imported into the stroma to form soluble pathway-intermediates and then reinsert into the inner membrane. Pathway selection is determined by the transmembrane domains but the exact determining features remain unknown. Our lab has newly identified an inner membrane protein we named M4, which is the homolog of the bacterial translocon component TamB. Current data indicate that M4 functions in linking the chloroplast outer and inner membrane translocon complexs. In this thesis, I performed three sets of experiments to characterize M4. I first showed that M4 possesses a cleavable transit peptide and I determined the size of the transit peptide. I then used protein import analyses followed by alkaline extraction, in both pea and an Arabidopsis mutant that retards the reinsertion step of the post-import pathway, to show that M4 uses the stop-transfer pathway for insertion into the inner membrane. I then compared transmembrane domain sequences of inner membrane proteins that are known to insert through one or the other pathway to formulate hypotheses for sequence determinants for pathway selection. The hypotheses were tested using site-directed mutagenesis of the transmembrane domain followed by import assays. The results show that if a chloroplast inner membrane protein is to use the stop-transfer pathway, its transmembrane domain must have a sufficient length to halt the protein at the inner membrane. In the last part of my thesis, I used transmission electron microscope (TEM)、fluorescence microscope and differential interference contrast microscope (DIC) to examine the morphology and size of chloroplasts isolated from two M4 knockdown mutants. My results show that, comparing M4 mutant with the wild type, the general appearance of the chloroplasts and the internal thylakoid membranes are all similar. However extremely large chloroplasts can sometimes be observed in the M4 mutants, suggesting that failure in chloroplast division sometimes occurred in the M4 mutant chloroplasts. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:39:10Z (GMT). No. of bitstreams: 1 ntu-106-R04b43020-1.pdf: 2963406 bytes, checksum: 2f10e0e33bbdb8dc9e21a22f34418164 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員會審書…………………………………………………………………………і
誌謝… …………………………………………………………………………………іі 中文摘要……………………………………………………………………………… ііі ABSTRACT…………………………………………………………………………….іν 目錄……………………………………………………………………………………..νі 前言…………………………………………………………………………...................1 材料方法………………………………………………………………………………...4 1. 植物材料 2. 植物的種植與生長狀況 3. 引子 4. 以小量質體DNA純化試劑組抽取質體DNA 5. 阿拉伯芥葉綠體製備 6. 豌豆葉綠體製備 7. 以中量質體DNA純化試劑組抽取質體DNA 8. 活體外轉錄作用(In vitro transcription) 9. 活體外轉錄合併轉譯(Coupled in vitro transcription and translation) 10. 活體外前驅蛋白質輸入葉綠體(Precursor protein import assay) 11. Import time course assay 12. 蛋白質濃度測定 13. 硫酸十二脂聚丙烯醯胺凝膠的電泳分析(SDS-PAGE: Sodium Dodecylsulfate- Polyacryamide Gel Electrophoresis) 14. 西方墨點法(Western blotting) 15. 強鹼萃取法(alkaline extraction) 16. 嗜熱菌酶(thermolysin)處理 17. 胰蛋白酶(trypsin)處理 18. 植物葉片樣本的固定與包埋 19. 穿透式電子顯微鏡(Transmission Electron Microscopy) 20. 螢光顯微鏡(Fluorescence Microscopes)觀察葉綠體大小 21. 以DIC顯微鏡直接觀察完整細胞中葉綠體的大小 結果………... …………………………………………………………………………18 1. M4蛋白質具有可被切除的transit peptide 2. M4的transit peptide長度 3. 分析M4蛋白質插入至葉綠體內膜使用的路徑 4. 葉綠體蛋白選擇走post-import路徑或stop-transfer路徑的決定因素假說 5. 針對假說,做出三個突變蛋白來驗證假說 6. 以import time course實驗探討M4(I114P)及atTic40(S123I)蛋白質插入至葉綠體內膜的路徑 7. 以trypsin實驗探討M4(I114P)及atTic40(S123I)在上清液中累積的蛋白質在葉綠體的位置 8. 兩種路徑蛋白質TMD的胺基酸組成 9. TEM觀察到M4 knockdown mutant有時會有極大顆的葉綠體 10. 以螢光顯微鏡及DIC顯微鏡對M4 knockdown mutant與wild type的葉綠體大小做定量分析 11. 以DIC顯微鏡直接觀察完整細胞中葉綠體的大小 討論……….....................................................................................................................24 參考文獻.........................................................................................................................27 圖表…………………………………………………………………………………….30 圖一、葉綠體運輸機組示意圖 圖二、在活體外轉錄轉譯的M4 蛋白質可以成功送入葉綠體內,並被切成一個分子量較小的mature protein 圖三、M4的transit peptide長度 圖四、M4蛋白質插入至豌豆及阿拉伯芥的葉綠體內膜使用的路徑 圖五、葉綠體內膜蛋白質TMD的推測二級結構圖 圖六、葉綠體內膜蛋白質TMD定點突變蛋白插入內膜的路徑 圖七、以import time course實驗探討M4(I114P)及atTic40(S123I)蛋白質插入至葉綠體內膜的路徑 圖八、以trypsin實驗探討M4(I114P)及atTic40(S123I)在上清液中累積的蛋白質在葉綠體的位置 圖九、兩種路徑蛋白質TMD的胺基酸組成 圖十、TEM觀察到M4 knockdown mutant相較於wild type有較大顆的葉綠體 圖十一、以螢光顯微鏡及DIC顯微鏡的觀察對M4 knockdown與wild type葉綠體大小做定量 圖十二、以DIC顯微鏡直接觀察完整細胞中葉綠體的大小 附錄…………………………………………………………………………………48 葉綠體蛋白質運送至葉綠體內示意圖 | |
| dc.language.iso | zh-TW | |
| dc.subject | 葉綠體蛋白質 | zh_TW |
| dc.subject | 葉綠體 | zh_TW |
| dc.subject | chloroplast protein | en |
| dc.subject | chloroplast | en |
| dc.title | 葉綠體運輸機組聯結蛋白M4 (Tic236) 的分析 | zh_TW |
| dc.title | Characterizations of chloroplast translocon linker M4 (Tic236) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡宜芳(Yi-Fang Tsay),余天心(Tien-Shin Yu) | |
| dc.subject.keyword | 葉綠體,葉綠體蛋白質, | zh_TW |
| dc.subject.keyword | chloroplast,chloroplast protein, | en |
| dc.relation.page | 48 | |
| dc.identifier.doi | 10.6342/NTU201700931 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-06-12 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-R04b43020-1.pdf 未授權公開取用 | 2.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
