請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77974完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱雪萍(Hsueh-Ping Chu) | |
| dc.contributor.author | Aik-Poh Ang | en |
| dc.contributor.author | 洪鎰保 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:38:41Z | - |
| dc.date.available | 2025-08-21 | |
| dc.date.copyright | 2020-08-24 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-17 | |
| dc.identifier.citation | 1. Denchi, E.L. and T. de Lange, Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature, 2007. 448(7157): p. 1068-71.
2. Palm, W., et al., Functional dissection of human and mouse POT1 proteins. Mol Cell Biol, 2009. 29(2): p. 471-82. 3. Takai, K.K., et al., Telomere protection by TPP1/POT1 requires tethering to TIN2. Mol Cell, 2011. 44(4): p. 647-59. 4. Benarroch-Popivker, D., et al., TRF2-Mediated Control of Telomere DNA Topology as a Mechanism for Chromosome-End Protection. Mol Cell, 2016. 61(2): p. 274-86. 5. Kibe, T., M. Zimmermann, and T. de Lange, TPP1 Blocks an ATR-Mediated Resection Mechanism at Telomeres. Mol Cell, 2016. 61(2): p. 236-46. 6. Lototska, L., et al., Human RAP1 specifically protects telomeres of senescent cells from DNA damage. EMBO Rep, 2020: p. e49076. 7. Levy, M.Z., et al., Telomere end-replication problem and cell aging. J Mol Biol, 1992. 225(4): p. 951-60. 8. Chen, C.H. and R.J. Chen, Prevalence of telomerase activity in human cancer. J Formos Med Assoc, 2011. 110(5): p. 275-89. 9. Bryan, T.M., et al., Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med, 1997. 3(11): p. 1271-4. 10. Henson, J.D., et al., A robust assay for alternative lengthening of telomeres in tumors shows the significance of alternative lengthening of telomeres in sarcomas and astrocytomas. Clin Cancer Res, 2005. 11(1): p. 217-25. 11. Heaphy, C.M., et al., Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes. Am J Pathol, 2011. 179(4): p. 1608-15. 12. Omori, Y., et al., Alternative lengthening of telomeres frequently occurs in mismatch repair system-deficient gastric carcinoma. Cancer Sci, 2009. 100(3): p. 413-8. 13. Dunham, M.A., et al., Telomere maintenance by recombination in human cells. Nat Genet, 2000. 26(4): p. 447-50. 14. Azzalin, C.M., et al., Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science, 2007. 318(5851): p. 798-801. 15. Nergadze, S.G., et al., CpG-island promoters drive transcription of human telomeres. RNA, 2009. 15(12): p. 2186-94. 16. Chu, H.P., et al., TERRA RNA Antagonizes ATRX and Protects Telomeres. Cell, 2017. 170(1): p. 86-101 e16. 17. Montero, J.J., et al., TERRA recruitment of polycomb to telomeres is essential for histone trymethylation marks at telomeric heterochromatin. Nat Commun, 2018. 9(1): p. 1548. 18. Arora, R., et al., RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nat Commun, 2014. 5: p. 5220. 19. Episkopou, H., et al., Alternative Lengthening of Telomeres is characterized by reduced compaction of telomeric chromatin. Nucleic Acids Res, 2014. 42(7): p. 4391-405. 20. Stewart, J.A., et al., Human CST promotes telomere duplex replication and general replication restart after fork stalling. EMBO J, 2012. 31(17): p. 3537-49. 21. Casteel, D.E., et al., A DNA polymerase-{alpha}{middle dot}primase cofactor with homology to replication protein A-32 regulates DNA replication in mammalian cells. J Biol Chem, 2009. 284(9): p. 5807-18. 22. Miyake, Y., et al., RPA-like mammalian Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway. Mol Cell, 2009. 36(2): p. 193-206. 23. Chen, L.Y., S. Redon, and J. Lingner, The human CST complex is a terminator of telomerase activity. Nature, 2012. 488(7412): p. 540-4. 24. Feng, X., et al., CTC1-mediated C-strand fill-in is an essential step in telomere length maintenance. Nucleic Acids Res, 2017. 45(8): p. 4281-4293. 25. Huang, C., et al., The human CTC1/STN1/TEN1 complex regulates telomere maintenance in ALT cancer cells. Exp Cell Res, 2017. 355(2): p. 95-104. 26. Gu, P., et al., CTC1 deletion results in defective telomere replication, leading to catastrophic telomere loss and stem cell exhaustion. EMBO J, 2012. 31(10): p. 2309-21. 27. Anderson, B.H., et al., Mutations in CTC1, encoding conserved telomere maintenance component 1, cause Coats plus. Nat Genet, 2012. 44(3): p. 338-42. 28. Armanios, M. and E.H. Blackburn, The telomere syndromes. Nat Rev Genet, 2012. 13(10): p. 693-704. 29. Chen, L.Y., J. Majerska, and J. Lingner, Molecular basis of telomere syndrome caused by CTC1 mutations. Genes Dev, 2013. 27(19): p. 2099-108. 30. Weber, S.C. and C.P. Brangwynne, Getting RNA and protein in phase. Cell, 2012. 149(6): p. 1188-91. 31. Anderson, P. and N. Kedersha, RNA granules. J Cell Biol, 2006. 172(6): p. 803-8. 32. Nover, L., K.D. Scharf, and D. Neumann, Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs. Mol Cell Biol, 1989. 9(3): p. 1298-308. 33. Sheth, U. and R. Parker, Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science, 2003. 300(5620): p. 805-8. 34. Moeller, B.J., et al., Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell, 2004. 5(5): p. 429-41. 35. Cougot, N., S. Babajko, and B. Seraphin, Cytoplasmic foci are sites of mRNA decay in human cells. J Cell Biol, 2004. 165(1): p. 31-40. 36. Thery, C., et al., Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol, 2006. Chapter 3: p. Unit 3 22. 37. Pietras, Z., et al., Dedicated surveillance mechanism controls G-quadruplex forming non-coding RNAs in human mitochondria. Nat Commun, 2018. 9(1): p. 2558. 38. Wang, Z., et al., Telomeric repeat-containing RNA (TERRA) constitutes a nucleoprotein component of extracellular inflammatory exosomes. Proc Natl Acad Sci U S A, 2015. 112(46): p. E6293-300. 39. Wang, Z. and P.M. Lieberman, The crosstalk of telomere dysfunction and inflammation through cell-free TERRA containing exosomes. RNA Biol, 2016. 13(8): p. 690-5. 40. Yeager, T.R., et al., Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res, 1999. 59(17): p. 4175-9. 41. Draskovic, I., et al., Probing PML body function in ALT cells reveals spatiotemporal requirements for telomere recombination. Proc Natl Acad Sci U S A, 2009. 106(37): p. 15726-31. 42. Hensen, F., et al., Mitochondrial RNA granules are critically dependent on mtDNA replication factors Twinkle and mtSSB. Nucleic Acids Res, 2019. 47(7): p. 3680-3698. 43. Jourdain, A.A., et al., GRSF1 regulates RNA processing in mitochondrial RNA granules. Cell Metab, 2013. 17(3): p. 399-410. 44. Chen, Y.A., et al., Extrachromosomal telomere repeat DNA is linked to ALT development via cGAS-STING DNA sensing pathway. Nat Struct Mol Biol, 2017. 24(12): p. 1124-1131. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77974 | - |
| dc.description.abstract | 有一部分的癌細胞利用ALT機制來延長其端粒長度。雖然ALT機制内的分子機轉尚待充分闡明,但目前可知其主要是通過同源重組來延長端粒長度。端粒RNA(TERRA)為一長鏈非編碼RNA,其在ALT細胞中高度表達。根據iDRIP實驗結果指出,在ALT cell内,CTC1 為其中之一會與TERRA相互作用的蛋白質。
CTC1可以與STN1和TEN1結合形成CST複合物,該複合物會與DNA聚合酶α-引物酶相互作用,促進端粒的有效複製,有助於端粒的維持。當CTC1基因發生突變時會導致Coats Plus, 先天性角化不全(DC)和相關的骨髓衰竭綜合症。 在這項研究中,我利用人類骨肉瘤上皮細胞(U2-OS) 來探討TEERA 與CTC1 之間的相互作用。我發現當CTC1表現量降低的時候,並不會影響APB的形成但增加了細胞質中的TERRA顆粒。推測是CTC1表現量不足所導致的結果,因為當STN1表現量降低 ,並不會增加細胞質中TERRA 顆粒。我也發現,一些TERRA顆粒會與GRSF1和mtSSB 的位置重疊,這可能表明某些TERRA顆粒會被傳送至線粒體。除此之外,我也發現抑制CTC1表現後,導致TERRA表達水平略微增加,並分泌更多的含cfTERRA的胞外體至細胞外。此外CST複合體的缺陷也會刺激免疫反應的增加,使TNF-alpha, IL-6, INF-beta 的表現量增加。 總結來說,我發現CTC1在會調節細胞質中的TERRA顆粒生成,但是這個功能似乎與CST複合體功能沒有直接關係,值得一提的是CST複合體的缺陷卻可以引起cfTERRA的增加,引發免疫反應。此外,TERRA顆粒所代表的生物意義則需進一步地探討。 | zh_TW |
| dc.description.abstract | Some cancer cells and immortal cells can employ alternative lengthening of telomeres (ALT) mechanism to elongate their telomeres. Although the molecular details of ALT mechanism remain to be fully elucidated, it is acceptable that ALT pathway utilizes homologous recombination to extend telomeres. TERRA is a long non-coding RNA and is highly expressed in ALT cells. According to the result of TERRA-iDIRP mass spectrometry, CTC1 is a TERRA interacting protein in ALT cells.
CTC1 can associate with STN1 and TEN1 to form CST complex, which is associated with DNA polymeraseα-primase, promoting efficient telomere replication and contributing to telomere maintenance. Mutations in CTC1 gene cause Coats Plus, dyskeratosis congenita (DC), and related bone marrow failure syndromes. In this study, I used U2-OS cells to investigate the interplay between CTC1 and TERRA. I found that CTC1 depletion doesn’t affect APB formation but leads to an increase of TERRA granules in the cytoplasm. The increased cytoplasmic TERRA granules were only observed in CTC1 deficient cells but not in STN1 deficient cells. Some of the TERRA granules are colocalized with GRSF, mtSSB and Tom20, suggesting that TERRA granules can localize to mitochondria. And also, CST complex deficiency slightly increases TERRA expression level, secretes more cfTERRA-containing exosomes, and induces immune responses. Altogether, I discovered CTC1 plays an important role in regulating TERRA granules in the cytoplasm, however, this function is independent of CST complex activity. It is likely that cfTERRA secretion caused by CST complex dysfunction does not have a strong link with cytosolic TERRA granules accumulation. The biological function of cytosolic TERRA granules is needed to be further investigated. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:38:41Z (GMT). No. of bitstreams: 1 U0001-1608202000193800.pdf: 19018284 bytes, checksum: 368eaeea8ffe11c4f2dbbdbc71880920 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | Contents 口試委員會審定書 i 誌謝 ii 中文摘要 iii Abstract iv Contents vi Figure list ix Table list xi Chapter 1 Introduction 1 1.1 Telomere 1 1.2 Alternative lengthening of telomere (ALT) pathway 1 1.3 Telomeric repeat-containing RNA (TERRA) 2 1.4 Conserved telomere maintenance component 1 (CTC1) and CST complex 2 1.5 RNA granules 3 Chapter 2 Materials and Methods 4 2.1 Cell culture 4 2.2 Reverse transfection 4 2.3 Western blotting 4 2.4 Real-time RT-PCR 5 2.5 Immuno-RNA Fluorescence In Situ Hybridization (FISH) 6 2.6 Exosome Isolation 7 2.7 Northern blot 8 2.8 Northern blot for Small RNA 8 2.9 Cytoplasmic and nuclear RNA isolation 9 2.10 Quantification and Statistical Analysis 10 Chapter 3 Results 11 3.1 CTC1 depletion increases cytoplasmic TERRA granules but doesn’t affect APB formation and TERRA-associated APBs. 11 3.2 TERRA expression level was slightly increased in CTC1 depleted cells.12 3.3 The increase of cytoplasmic TERRA granules caused by siCTC1-3’UTR transfection could be mitigated by putting back wildtype but not mutant CTC1. 13 3.4 STN1 depletion does not induce the formation of cytoplasmic TERRA granules. 15 3.5 Some of the cytoplasmic TERRA granules are located in mitochondria and interact with GRSF1 and mtSSB. 16 3.6 The exosomal TERRA is increased in CST deficient cells. 17 3.7 The presence of small-sized TERRA in the cytoplasm. 18 3.8 CST deficiency slightly induces immune response. 19 Chapter 4 Discussion 49 Chapter 5 Supplementary data 55 Chapter 6 References 66 Abbreviations 72 | |
| dc.language.iso | en | |
| dc.subject | 端粒顆粒 | zh_TW |
| dc.subject | cfTERRA | zh_TW |
| dc.subject | 綫粒體 | zh_TW |
| dc.subject | 端粒RNA | zh_TW |
| dc.subject | 胞外體 | zh_TW |
| dc.subject | 免疫反應 | zh_TW |
| dc.subject | CTC1 | zh_TW |
| dc.subject | MtSSB | zh_TW |
| dc.subject | GRSF1 | zh_TW |
| dc.subject | 端粒功能喪失 | zh_TW |
| dc.subject | CST complex | zh_TW |
| dc.subject | immune response | en |
| dc.subject | TERRA | en |
| dc.subject | CTC1 | en |
| dc.subject | TERRA granules | en |
| dc.subject | CST complex | en |
| dc.subject | GRSF1 | en |
| dc.subject | MtSSB | en |
| dc.subject | mitochondria | en |
| dc.subject | telomere dysfunction | en |
| dc.subject | cfTERRA | en |
| dc.subject | exosome | en |
| dc.title | CTC1調控細胞質内端粒核糖核酸顆粒 | zh_TW |
| dc.title | CTC1 regulates TERRA RNA granules in the cytoplasm | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林敬哲(Jing-Jer Lin),陳律佑(Liuh-Yow Chen) | |
| dc.subject.keyword | 端粒RNA,CTC1,端粒顆粒,CST complex,GRSF1,MtSSB,綫粒體,端粒功能喪失,cfTERRA,胞外體,免疫反應, | zh_TW |
| dc.subject.keyword | TERRA,CTC1,TERRA granules,CST complex,GRSF1,MtSSB,mitochondria,telomere dysfunction,cfTERRA,exosome,immune response, | en |
| dc.relation.page | 74 | |
| dc.identifier.doi | 10.6342/NTU202003551 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-19 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-21 | - |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1608202000193800.pdf 未授權公開取用 | 18.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
