請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77963完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉秀慧(Shiou-Hwei Yeh) | |
| dc.contributor.author | Li-Yang Chang | en |
| dc.contributor.author | 張立揚 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:38:25Z | - |
| dc.date.available | 2025-08-17 | |
| dc.date.copyright | 2020-09-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-17 | |
| dc.identifier.citation | 1. Dane, D.S., C.H. Cameron, and M. Briggs, Virus-like particles in serum of patients with Australia-antigen-associated hepatitis. Lancet, 1970. 1(7649): p. 695-8. 2. Schultz, U., E. Grgacic, and M. Nassal, Duck hepatitis B virus: an invaluable model system for HBV infection. Adv Virus Res, 2004. 63: p. 1-70. 3. Kaplan, P.M., et al., DNA polymerase associated with human hepatitis B antigen. J Virol, 1973. 12(5): p. 995-1005. 4. Summers, J., A. O'Connell, and I. Millman, Genome of hepatitis B virus: restriction enzyme cleavage and structure of DNA extracted from Dane particles. Proc Natl Acad Sci U S A, 1975. 72(11): p. 4597-601. 5. Landers, T.A., H.B. Greenberg, and W.S. Robinson, Structure of hepatitis B Dane particle DNA and nature of the endogenous DNA polymerase reaction. J Virol, 1977. 23(2): p. 368-76. 6. Scaglione, S.J. and A.S. Lok, Effectiveness of hepatitis B treatment in clinical practice. Gastroenterology, 2012. 142(6): p. 1360-1368.e1. 7. Chen, D.S., From hepatitis to hepatoma: lessons from type B viral hepatitis. Science, 1993. 262(5132): p. 369-70. 8. McMahon, B.J., Chronic hepatitis B virus infection. Med Clin North Am, 2014. 98(1): p. 39-54. 9. Tong, S. and P. Revill, Overview of hepatitis B viral replication and genetic variability. J Hepatol, 2016. 64(1 Suppl): p. S4-s16. 10. Yan, H., et al., Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife, 2012. 1: p. e00049. 11. Garcia, P.D., et al., Targeting of the hepatitis B virus precore protein to the endoplasmic reticulum membrane: after signal peptide cleavage translocation can be aborted and the product released into the cytoplasm. J Cell Biol, 1988. 106(4): p. 1093-104. 12. Seeger, C. and W.S. Mason, Molecular biology of hepatitis B virus infection. Virology, 2015. 479-480: p. 672-86. 13. Lucifora, J., et al., Hepatitis B virus X protein is essential to initiate and maintain virus replication after infection. J Hepatol, 2011. 55(5): p. 996-1003. 14. Schmitz, A., et al., Nucleoporin 153 arrests the nuclear import of hepatitis B virus capsids in the nuclear basket. PLoS Pathog, 2010. 6(1): p. e1000741. 15. Nassal, M., HBV cccDNA: viral persistence reservoir and key obstacle for a cure of chronic hepatitis B. Gut, 2015. 64(12): p. 1972-84. 16. Beck, J. and M. Nassal, Hepatitis B virus replication. World J Gastroenterol, 2007. 13(1): p. 48-64. 17. Lambert, C., T. Döring, and R. Prange, Hepatitis B virus maturation is sensitive to functional inhibition of ESCRT-III, Vps4, and gamma 2-adaptin. J Virol, 2007. 81(17): p. 9050-60. 18. Hu, J. and K. Liu, Complete and Incomplete Hepatitis B Virus Particles: Formation, Function, and Application. Viruses, 2017. 9(3). 19. Hu, J., et al., Cell and Animal Models for Studying Hepatitis B Virus Infection and Drug Development. Gastroenterology, 2019. 156(2): p. 338-354. 20. Luckenbaugh, L., et al., Genome-free hepatitis B virion levels in patient sera as a potential marker to monitor response to antiviral therapy. J Viral Hepat, 2015. 22(6): p. 561-70. 21. Zlotnick, A., et al., Core protein: A pleiotropic keystone in the HBV lifecycle. Antiviral Res, 2015. 121: p. 82-93. 22. Mak, L.Y., et al., Hepatitis B core protein as a therapeutic target. Expert Opin Ther Targets, 2017. 21(12): p. 1153-1159. 23. Liu, C., et al., Allosteric conformational changes of human HBV core protein transform its assembly. Sci Rep, 2017. 7(1): p. 1404. 24. Gallina, A., et al., A recombinant hepatitis B core antigen polypeptide with the protamine-like domain deleted self-assembles into capsid particles but fails to bind nucleic acids. J Virol, 1989. 63(11): p. 4645-52. 25. Sun, X., et al., A dimorphism shift of hepatitis B virus capsids in response to ionic conditions. Nanoscale, 2018. 10(36): p. 16984-16989. 26. Birnbaum, F. and M. Nassal, Hepatitis B virus nucleocapsid assembly: primary structure requirements in the core protein. J Virol, 1990. 64(7): p. 3319-30. 27. Steven, A.C., et al., Structure, assembly, and antigenicity of hepatitis B virus capsid proteins. Adv Virus Res, 2005. 64: p. 125-64. 28. Hatton, T., S. Zhou, and D.N. Standring, RNA- and DNA-binding activities in hepatitis B virus capsid protein: a model for their roles in viral replication. J Virol, 1992. 66(9): p. 5232-41. 29. Liu, K., et al., Multiple roles of core protein linker in hepatitis B virus replication. PLoS Pathog, 2018. 14(5): p. e1007085. 30. Roossinck, M.J. and A. Siddiqui, In vivo phosphorylation and protein analysis of hepatitis B virus core antigen. J Virol, 1987. 61(4): p. 955-61. 31. Liao, W. and J.H. Ou, Phosphorylation and nuclear localization of the hepatitis B virus core protein: significance of serine in the three repeated SPRRR motifs. J Virol, 1995. 69(2): p. 1025-9. 32. Lan, Y.T., et al., Roles of the three major phosphorylation sites of hepatitis B virus core protein in viral replication. Virology, 1999. 259(2): p. 342-8. 33. Gazina, E.V., et al., Core protein phosphorylation modulates pregenomic RNA encapsidation to different extents in human and duck hepatitis B viruses. J Virol, 2000. 74(10): p. 4721-8. 34. Lewellyn, E.B. and D.D. Loeb, Serine phosphoacceptor sites within the core protein of hepatitis B virus contribute to genome replication pleiotropically. PLoS One, 2011. 6(2): p. e17202. 35. Jung, J., et al., Phosphoacceptors threonine 162 and serines 170 and 178 within the carboxyl-terminal RRRS/T motif of the hepatitis B virus core protein make multiple contributions to hepatitis B virus replication. J Virol, 2014. 88(16): p. 8754-67. 36. Zhao, Q., et al., Hepatitis B Virus Core Protein Dephosphorylation Occurs during Pregenomic RNA Encapsidation. J Virol, 2018. 92(13). 37. Liu, K. and J. Hu, Host-regulated Hepatitis B Virus Capsid Assembly in a Mammalian Cell-free System. Bio Protoc, 2018. 8(8). 38. Hu, J., et al., Requirement of heat shock protein 90 for human hepatitis B virus reverse transcriptase function. J Virol, 2004. 78(23): p. 13122-31. 39. Luo, J., et al., Role of Hepatitis B virus capsid phosphorylation in nucleocapsid disassembly and covalently closed circular DNA formation. PLoS Pathog, 2020. 16(3): p. e1008459. 40. Kenney, J.M., et al., Evolutionary conservation in the hepatitis B virus core structure: comparison of human and duck cores. Structure, 1995. 3(10): p. 1009-19. 41. Wingfield, P.T., et al., Hepatitis core antigen produced in Escherichia coli: subunit composition, conformational analysis, and in vitro capsid assembly. Biochemistry, 1995. 34(15): p. 4919-32. 42. Zlotnick, A., et al., Dimorphism of hepatitis B virus capsids is strongly influenced by the C-terminus of the capsid protein. Biochemistry, 1996. 35(23): p. 7412-21. 43. Zlotnick, A., et al., A theoretical model successfully identifies features of hepatitis B virus capsid assembly. Biochemistry, 1999. 38(44): p. 14644-52. 44. Bartenschlager, R. and H. Schaller, Hepadnaviral assembly is initiated by polymerase binding to the encapsidation signal in the viral RNA genome. Embo j, 1992. 11(9): p. 3413-20. 45. Bourne, C.R., et al., A mutant hepatitis B virus core protein mimics inhibitors of icosahedral capsid self-assembly. Biochemistry, 2009. 48(8): p. 1736-42. 46. Alexander, C.G., et al., Thermodynamic origins of protein folding, allostery, and capsid formation in the human hepatitis B virus core protein. Proc Natl Acad Sci U S A, 2013. 110(30): p. E2782-91. 47. Tan, Z., et al., Genetically altering the thermodynamics and kinetics of hepatitis B virus capsid assembly has profound effects on virus replication in cell culture. J Virol, 2013. 87(6): p. 3208-16. 48. Selzer, L., S.P. Katen, and A. Zlotnick, The hepatitis B virus core protein intradimer interface modulates capsid assembly and stability. Biochemistry, 2014. 53(34): p. 5496-504. 49. Schlicht, H.J., G. Radziwill, and H. Schaller, Synthesis and encapsidation of duck hepatitis B virus reverse transcriptase do not require formation of core-polymerase fusion proteins. Cell, 1989. 56(1): p. 85-92. 50. Wang, J.C., et al., Encapsidated hepatitis B virus reverse transcriptase is poised on an ordered RNA lattice. Proc Natl Acad Sci U S A, 2014. 111(31): p. 11329-34. 51. Lanford, R.E., et al., Expression and characterization of hepatitis B virus surface antigen polypeptides in insect cells with a baculovirus expression system. J Virol, 1989. 63(4): p. 1549-57. 52. Albin, C. and W.S. Robinson, Protein kinase activity in hepatitis B virus. J Virol, 1980. 34(1): p. 297-302. 53. Kann, M. and W.H. Gerlich, Effect of core protein phosphorylation by protein kinase C on encapsidation of RNA within core particles of hepatitis B virus. J Virol, 1994. 68(12): p. 7993-8000. 54. Duclos-Vallée, J.C., et al., Phosphorylation of the hepatitis B virus core protein by glyceraldehyde-3-phosphate dehydrogenase protein kinase activity. J Gen Virol, 1998. 79 ( Pt 7): p. 1665-70. 55. Kau, J.H. and L.P. Ting, Phosphorylation of the core protein of hepatitis B virus by a 46-kilodalton serine kinase. J Virol, 1998. 72(5): p. 3796-803. 56. Daub, H., et al., Identification of SRPK1 and SRPK2 as the major cellular protein kinases phosphorylating hepatitis B virus core protein. J Virol, 2002. 76(16): p. 8124-37. 57. Ludgate, L., et al., Cyclin-dependent kinase 2 phosphorylates s/t-p sites in the hepadnavirus core protein C-terminal domain and is incorporated into viral capsids. J Virol, 2012. 86(22): p. 12237-50. 58. Diab, A., et al., Polo-like-kinase 1 is a proviral host factor for hepatitis B virus replication. Hepatology, 2017. 66(6): p. 1750-1765. 59. Suzuki, T., et al., Detection and mapping of spliced RNA from a human hepatoma cell line transfected with the hepatitis B virus genome. Proc Natl Acad Sci U S A, 1989. 86(21): p. 8422-6. 60. Chen, J., et al., Hepatitis B virus spliced variants are associated with an impaired response to interferon therapy. Sci Rep, 2015. 5: p. 16459. 61. Terré, S., M.A. Petit, and C. Bréchot, Defective hepatitis B virus particles are generated by packaging and reverse transcription of spliced viral RNAs in vivo. J Virol, 1991. 65(10): p. 5539-43. 62. Rosmorduc, O., et al., In vivo and in vitro expression of defective hepatitis B virus particles generated by spliced hepatitis B virus RNA. Hepatology, 1995. 22(1): p. 10-9. 63. Günther, S., et al., Heterogeneity and common features of defective hepatitis B virus genomes derived from spliced pregenomic RNA. Virology, 1997. 238(2): p. 363-71. 64. Redelsperger, F., et al., Production of hepatitis B defective particles is dependent on liver status. Virology, 2012. 431(1-2): p. 21-8. 65. Su, T.S., et al., Hepatitis B virus transcript produced by RNA splicing. J Virol, 1989. 63(9): p. 4011-8. 66. Chen, P.J., et al., Identification of a doubly spliced viral transcript joining the separated domains for putative protease and reverse transcriptase of hepatitis B virus. J Virol, 1989. 63(10): p. 4165-71. 67. Wu, H.L., et al., Characterization and genetic analysis of alternatively spliced transcripts of hepatitis B virus in infected human liver tissues and transfected HepG2 cells. J Virol, 1991. 65(4): p. 1680-6. 68. Soussan, P., et al., In vivo expression of a new hepatitis B virus protein encoded by a spliced RNA. J Clin Invest, 2000. 105(1): p. 55-60. 69. Soussan, P., et al., The expression of hepatitis B spliced protein (HBSP) encoded by a spliced hepatitis B virus RNA is associated with viral replication and liver fibrosis. J Hepatol, 2003. 38(3): p. 343-8. 70. Wang, Y.L., et al., The inhibitory effect of the hepatitis B virus singly-spliced RNA-encoded p21.5 protein on HBV nucleocapsid formation. PLoS One, 2015. 10(3): p. e0119625. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77963 | - |
| dc.description.abstract | 構成B型肝炎病毒(Hepatitis B virus;HBV)核殼(nucleocapsid)的核殼蛋白(HBV core protein;HBc)為一磷酸化蛋白質,透過其C端上Ser 155、Ser 162、Ser 170三個主要磷酸化位點調控HBV pregenomic RNA (pgRNA) encapsidation和DNA synthesis。近年研究指出HBc C端磷酸化在HBV生活史中呈現動態調控,HBc在進行pgRNA encapsidation前呈現高度磷酸化,而完成pgRNA encapsidation後則呈現低度磷酸化。然而對於HBc-S170如何透過磷酸化修飾調控pgRNA encapsidation及中間磷酸化轉變去磷酸化的分子機制仍不清楚。 本研究針對Ser 170磷酸化位點,探討其功能如何調控pgRNA encapsidation。利用專一辨認Ser 170位點去磷酸化之抗體C-S170,我們發現HBc-S170磷酸化位點在HBV 生活史中同樣呈現動態調控,在pgRNA encapsidation前後分別出現高度和低度磷酸化。透過回補的方式,顯示Ser170位點透過polymerase調控pgRNA encapsidation。除此之外,亦發現HBc和HBc-Cys蛋白上之Ser 170磷酸化位點均扮演調控pgRNA encapsidation進行之重要角色。本論文研究結果因此指出HBc和HBc-Cys蛋白上之Ser 170 為點之磷酸化有可能會藉由改變其蛋白質C端胺基酸序列之結構而影響其與polymerase蛋白之結合而增加pgRNA encapsidation之假說,值得未來進一步探討。 | zh_TW |
| dc.description.abstract | HBV core protein (HBc), the base subunit of Hepatitis B virus (HBV) nucleocapsid, is a phosphorylated protein regulating HBV pregenomic RNA (pgRNA) encapsidation and DNA synthesis through three major phosphorylation sites at Ser155, Ser162, Ser170 on its C-terminal domain (CTD). Recent studies have demonstrated that HBc C-terminal undergoes dynamic phosphorylation during HBV life cycle. HBc is hyperphosphorylated before pgRNA encapsidation and hypophosphorylated after pgRNA encapsidation. Nevertheless, the molecular mechanisms for the phosphorylation of HBc-Ser170 in regulating pgRNA encapsidation and the specific events occurring from phosphorylation to dephosphorylation are still unclear. This study focused on HBc-Ser170 (S170) phosphorylation site for investigating its function in regulating the RNA encapsidation process, in the replicon transfected cells. Using the dephosphorylated specific C-S170 Ab, we found a dynamic phosphorylation pattern of HBc-S170 in different replication stages, highly phosphorylated before RNA encapsidation but de-phosphorylated afterwards. By complementation assay, we demonstrated that HBV pgRNA encapsidation could be mediated through the recruited polymerase. Moreover, we found the phosphorylation of S170 is essential for both HBc and HBc-Cys proteins to proceed the RNA encapsidation process. The possibility that phosphorylation of S170 in HBc and HBc-Cys protein could be critical for recruitment of polymerase via inducing a conformational change of their C-terminal domain structure is worthy to be tested in future studies. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:38:25Z (GMT). No. of bitstreams: 1 U0001-1608202001054900.pdf: 2441770 bytes, checksum: 2c4ccea7a289e0872cb4ada143766cc5 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 碩士論文口試委員審定書 i 誌謝 ii 摘要 iii Abstract iv 目錄 - 1 - 圖表目錄 - 3 - 第一章 序論 - 4 - 1.1 Hepatitis B virus (HBV)簡介 - 4 - 1.2 HBV基因體結構 - 4 - 1.3 HBV生活史 - 5 - 1.4 HBV核殼蛋白之結構與功能 - 6 - 1.5 核殼蛋白的磷酸化位點在HBV複製中扮演角色 - 7 - 1.6 HBc 自dimer 進行組裝經 intermediate 至 virion 之過程 - 8 - 1.7 HBc 與HBV RNA polymerase作用對pgRNA encapsidation之影響 - 9 - 1.8 調控HBc磷酸化之候選kinase及phosphatase - 10 - 1.9 HBV SP1剪接RNA (splicing RNA) 之簡介 - 11 - 第二章 研究假說與策略 - 13 - 第三章 實驗材料與方法 - 14 - 3.1 質體(Plasmids) - 14 - 3.2 點突變(Site-direct mutagenesis) - 16 - 3.3 細胞培養(Cell culture) - 17 - 3.4 細胞轉染(Transfection) - 17 - 3.5 蛋白質萃取(Protein extraction) - 18 - 3.6 去磷酸化反應(Alkaline Phosphatase reaction) - 18 - 3.7.1 免疫共沉澱(Co-immunoprecipitation-Anti-Flag M2 magnetic beads) - 18 - 3.7.2免疫沉澱(Immunoprecipitation-G beads) - 19 - 3.8 西方墨點法(Western blot-SDS PAGE) - 20 - 3.9 HBV nucleocapsid偵測(Native agarose gel electrophoresis) - 20 - 3.10 HBV nucleocapsid內DNA偵測(Particle gel assay) - 20 - 3.11 萃取HBV nucleocapsid內RNA (RNA extraction) - 21 - 3.12 北方墨點法(Northern blot) - 22 - 3.13蔗糖密度梯度離心(Sucrose gradient centrifugation) - 22 - 3.14抗體(Antibodies) - 23 - 第四章 實驗結果 - 24 - 4.1 HBV在各個replication stage中HBc-S170位點之磷酸化程度 - 24 - 4.2 HBV 透過polymerase 參與RNA encapsidation 及HBc-S170位點去磷酸化 - 25 - 4.3 HBc-S170磷酸化位點透過polymerase蛋白調控去磷酸化之RNA encapsidation - 26 - 4.4 HBc-Cys與HBc之S170磷酸化位點對於polymerase蛋白調控DNA synthesis功能同等重要 - 27 - 4.5 HBc-S170透過CTD協助pol調控去磷酸化之RNA encapsidation - 28 - 4.6 HBc-S170可能透過改變CTD構型協助RNA encapsidation之進行 - 28 - 第五章 討論 - 31 - 參考文獻 - 34 - 圖表 - 41 - | |
| dc.language.iso | zh-TW | |
| dc.subject | 聚合酶 | zh_TW |
| dc.subject | B型肝炎病毒 | zh_TW |
| dc.subject | 核殼蛋白 | zh_TW |
| dc.subject | 磷酸化 | zh_TW |
| dc.subject | 包裹核酸 | zh_TW |
| dc.subject | pgRNA encapsidation | en |
| dc.subject | hepatitis B virus | en |
| dc.subject | Polymerase | en |
| dc.subject | core protein | en |
| dc.title | 探討B型肝炎病毒核殼蛋白 Serine 170 位點磷酸化調控病毒複製之影響 | zh_TW |
| dc.title | The phosphorylation of HBV core protein at Serine-170 in regulating viral RNA encapsidation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳培哲(Pei-Jer Chen),鄧述諄(Shu-Chun Teng),王聖涵(Sheng-Han Wang) | |
| dc.subject.keyword | B型肝炎病毒,核殼蛋白,磷酸化,包裹核酸,聚合酶, | zh_TW |
| dc.subject.keyword | hepatitis B virus,core protein,pgRNA encapsidation,Polymerase, | en |
| dc.relation.page | 47 | |
| dc.identifier.doi | 10.6342/NTU202003554 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-18 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 微生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-17 | - |
| 顯示於系所單位: | 微生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1608202001054900.pdf 未授權公開取用 | 2.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
