Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77959
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝學真(Hsyue-Jen Hsieh)
dc.contributor.authorHsuan-Yu Tungen
dc.contributor.author童宣瑜zh_TW
dc.date.accessioned2021-07-11T14:38:19Z-
dc.date.available2022-09-03
dc.date.copyright2017-09-03
dc.date.issued2016
dc.date.submitted2017-07-26
dc.identifier.citation[1] Sionkowska A, 'Current research on the blends of natural and synthetic polymers as new biomaterials: Review,' Progress in Polymer Science, vol. 36, pp. 1254-1276, 2011.
[2] Lieff J, 'Extra Cellular Matrix Is Critical to Neuroplasticity, ' 2013
http://jonlieffmd.com/blog/extra-cellular-matrix-is-critical-to-neuroplasticity
[3] Horbett TA, 'The role of adsorbed proteins in animal cell adhesion,' Colloids and Surfaces B: Biointerfaces, vol. 2, pp. 225-240, 1994.
[4] Stern MM, Myers RL, Hammam N, Stern KA, Eberli D, Kritchevsky SB, Soker S and Van Dyke M, 'The influence of extracellular matrix derived from skeletal muscle tissue on the proliferation and differentiation of myogenic progenitor cells ex vivo,' Biomaterials, vol. 30, pp. 2393-2399, 2009.
[5] Ho MH, Kuo PY, Hsieh HJ, Hsien TY, Hou LT, Lai JY and Wang DM, 'Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods,' Biomaterials, vol. 25, pp. 129-138, 2004.
[6] Formhals A, Process and apparatuss for preparing artificial threads, US patent, 1934.
[7] Taylor G, Electrically driven jets, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, pp 453-475,1969
[8] Doshi J, and Reneker DH, 'Electrospinning Process and Applications of Electrospun Fibers,' Journal of Electrostatics, vol. 2, pp. 151-160, 1995.
[9] Reneker DH, and Chun I, 'Nanometre diameter fibres of polymer, produced by electrospinning,' Nanotechnology, vol. 7, pp. 216, 1996.
[10] Ziabari M, Mottaghitalab V, and Haghi A, 'Application of direct tracking method for measuring electrospun nanofiber diameter,' Brazilian Journal of Chemical Engineering, vol. 26, pp. 53-62, 2009.
[11] Baji A, Mai YW, Wong SC, Abtahi M and Chen P, 'Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties,' Composites Science and Technology, vol. 70, pp. 703-718, 2010.
[12] Moghe AK and Gupta BS, 'Co‐axial Electrospinning for Nanofiber Structures: Preparation and Applications,' Polymer Reviews, vol. 48, pp. 353-377, 2008.
[13] Li F, Core-Shell Nanofibers Nano Channel and Capluse by Coaxial Electrospinning, INTECH Open Access Publisher, 2010.
[14] Subianto S, Donnadio A, Cavaliere S, Pica M, Casciola M, Jones D and Rozière J, 'Reactive coaxial electrospinning of ZrP/ZrO 2 nanofibres,' Journal of Materials Chemistry A, vol. 2, pp. 13359-13365, 2014.
[15] Fong H, Chun I and Reneker D, 'Beaded nanofibers formed during electrospinning,' Polymer, vol. 40, pp. 4585-4592, 1999.
[16] Haghi A and Akbari M, 'Trends in electrospinning of natural nanofibers,' Physica Status Solidi (a), vol. 204, pp. 1830-1834, 2007.
[17] Moghe A and Gupta B, 'Co‐axial electrospinning for nanofiber structures: preparation and applications,' Polymer Reviews, vol. 48, pp. 353-377, 2008.
[18] Sun B, Duan B and Yuan X, 'Preparation of core/shell PVP/PLA ultrafine fibers by coaxial electrospinning,' Journal of Applied Polymer Science, vol. 102, pp. 39-45, 2006.
[19] Yu JH, Fridrikh SV and Rutledge GC, 'Production of submicrometer diameter fibers by two‐fluid electrospinning,' Advanced Materials, vol. 16, pp. 1562-1566, 2004.
[20] Pakravan M, Heuzey MC and Ajji A, 'Core–shell structured PEO-chitosan nanofibers by coaxial electrospinning,' Biomacromolecules, vol. 13, pp. 412-421, 2012.
[21] Zong X, Kim K, Fang D, Ran S, Hsiao B. S and Chu B, 'Structure and process relationship of electrospun bioabsorbable nanofiber membranes,' Polymer, vol. 43, pp. 4403-4412, 2002.
[22] Fong H, Chun I and Reneker D, 'Beaded nanofibers formed during electrospinning,' Polymer, vol. 40, pp. 4585-4592, 1999.
[23] Xia DL, 'Direct fabrication of composite and ceramic hollow nanofibers by electrospinning.'
[24] Hohman MM, Shin M, Rutledge G and Brenner MP, 'Electrospinning and electrically forced jets. I. Stability theory,' Physics of Fluids (1994-present), vol. 13, pp. 2201-2220, 2001.
[25] Liu H and Hsieh YL, 'Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate,' Journal of Polymer Science Part B: Polymer Physics, vol. 40, pp. 2119-2129, 2002.
[26] Deitzel JM, Kleinmeyer J, Harris D and Tan NB, 'The effect of processing variables on the morphology of electrospun nanofibers and textiles,' Polymer, vol. 42, pp. 261-272, 2001.
[27] Yuan X, Zhang Y, Dong C and Sheng J, 'Morphology of ultrafine polysulfone fibers prepared by electrospinning,' Polymer International, vol. 53, pp. 1704-1710, 2004.
[28] Ki CS, Baek DH, Gang KD, Lee KH, Um IC and Park YH, 'Characterization of gelatin nanofiber prepared from gelatin–formic acid solution,' Polymer, vol. 46, pp. 5094-5102, 2005.
[29] Juan Esteban Díaz AB, Márquez M and Ignacio G. Loscertales, Controlled Encapsulation of Hydrophobic Liquids in Hydrophilic Polymer Nanofibers by Co-electrospinning.
[30] Buchko CJ, Chen LC, Shen Y and Martin DC, 'Processing and microstructural characterization of porous biocompatible protein polymer thin films,' Polymer, vol. 40, pp. 7397-7407, 1999.
[31] Mit‐uppatham C, Nithitanakul M and Supaphol P, ' Effects of Solution Concentration, Emitting Electrode Polarity, Solvent Type, and Salt Addition on Electrospun Polyamide‐6 Fibers: A Preliminary Report,' Macromolecular Symposia, vol. 216, pp. 293-300, 2004
[32] Medeiros ES, Mattoso LH, Offeman RD, Wood DF and Orts WJ, 'Effect of relative humidity on the morphology of electrospun polymer fibers,' Canadian Journal of Chemistry, vol. 86, pp. 590-599, 2008.
[33] Pelipenko J, Kristl J, Janković B, Baumgartner S and Kocbek P, 'The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers,' International Journal of Pharmaceutics, vol. 456, pp. 125-134, 2013.
[34] De Vrieze S, Van Camp T, Nelvig A, Hagström B, Westbroek P and De Clerck K, 'The effect of temperature and humidity on electrospinning,' Journal of Materials Science, vol. 44, pp. 1357-1362, 2009.
[35] Su Y, Su Q, Liu W, Lim M, Venugopal JR, Mo X, Ramakrishna S, Al-Deyab SS and El-Newehy M, 'Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core–shell PLLACL–collagen fibers for use in bone tissue engineering,' Acta biomaterialia, vol. 8, pp. 763-771, 2012.
[36] Li D, and Xia Y, 'Direct fabrication of composite and ceramic hollow nanofibers by electrospinning,' Nano letters, vol. 4, pp. 933-938, 2004.
[37] Jiang H, Wang L, and Zhu K, 'Coaxial electrospinning for encapsulation and controlled release of fragile water-soluble bioactive agents,' Journal of Controlled Release, vol. 193, pp. 296-303, 2014.
[38] Wang C, Yan KW, Lin YD and Hsieh PC, 'Biodegradable core/shell fibers by coaxial electrospinning: processing, fiber characterization, and its application in sustained drug release.' Macromolecules, vol. 43, pp.6389-6397, 2010.
[39] Sohrabi A, Shaibani P, Etayash H, Kaur K and Thundat T, 'Sustained drug release and antibacterial activity of ampicillin incorporated poly (methyl methacrylate)–nylon6 core/shell nanofibers,' Polymer, vol. 54, pp. 2699-2705, 2013.
[40] Kiatyongchai T, Wongsasulak S and Yoovidhya T, 'Coaxial electrospinning and release characteristics of cellulose acetate–gelatin blend encapsulating a model drug,' Journal of Applied Polymer Science, vol. 131, pp. 2014.
[41] He M, Xue J, Geng H, Gu H, Chen D, Shi R and Zhang L, 'Fibrous guided tissue regeneration membrane loaded with anti-inflammatory agent prepared by coaxial electrospinning for the purpose of controlled release,' Applied Surface Science, vol. 335, pp. 121-129, 2015.
[42] Apicella A, Cappello B, Del Nobile M, La Rotonda M, Mensitieri G and Nicolais L, 'Poly (ethylene oxide)(PEO) and different molecular weight PEO blends monolithic devices for drug release,' Biomaterials, vol. 14, pp. 83-90, 1993.
[43] Li H, Hardy RJ and Gu X, 'Effect of drug solubility on polymer hydration and drug dissolution from polyethylene oxide (PEO) matrix tablets,' AAPS PharmSciTech, vol. 9, pp. 437-443, 2008.
[44] Zhang F, Meng F, Lubach J, Koleng J and Watson N, 'Properties and Mechanisms of Drug Release from Matrix Tablets Containing Poly (ethylene oxide) and Poly (acrylic acid) as Release Retardants,' European Journal of Pharmaceutics and Biopharmaceutics, vol. pp. 2016.
[45] Son WK, Youk JH, Lee TS, and Park WH, 'The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly (ethylene oxide) fibers,' Polymer, vol. 45, pp. 2959-2966, 2004.
[46] Yang Y, Jia Z, Li Q and Guan Z, 'Experimental investigation of the governing parameters in the electrospinning of polyethylene oxide solution,' IEEE Transactions on Dielectrics and Electrical insulation, vol. 13, pp. 580-585, 2006.
[47] Pakravan M, Heuzey MC and Ajji A, 'A fundamental study of chitosan/PEO electrospinning,' Polymer, vol. 52, pp. 4813-4824, 2011.
[48] Kohsari I, Shariatinia Z and Pourmortazavi SM, 'Antibacterial electrospun chitosan–polyethylene oxide nanocomposite mats containing bioactive silver nanoparticles,' Carbohydrate polymers, vol. 140, pp. 287-298, 2016.
[49] AKTÜRK Ö and Keskin D, 'Collagen/PEO/gold nanofibrous matrices for skin tissue engineering,' Turkish Journal of Biology, vol. 40, pp. 380-398, 2016.
[50] Geng X, Kwon OH and Jang J, 'Electrospinning of chitosan dissolved in concentrated acetic acid solution,' Biomaterials, vol. 26, pp. 5427-5432, 2005.
[51] Chen JP, Chang GY and Chen JK, 'Electrospun collagen/chitosan nanofibrous membrane as wound dressing,' Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 313–314, pp. 183-188, 2008.
[52] Francis Suh JK and Matthew HWT, 'Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review,' Biomaterials, vol. 21, pp. 2589-2598, 2000.
[53] Jia YT, Gong J, Gu XH, Kim HY, Dong J and Shen XY, 'Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method,' Carbohydrate Polymers, vol. 67, pp. 403-409, 2007.
[54] Kriegel C, Kit KM, McClements DJ and Weiss J, 'Electrospinning of chitosan–poly(ethylene oxide) blend nanofibers in the presence of micellar surfactant solutions,' Polymer, vol. 50, pp. 189-200, 2009.
[55] Sangsanoh P and Supaphol P, 'Stability Improvement of Electrospun Chitosan Nanofibrous Membranes in Neutral or Weak Basic Aqueous Solutions,' Biomacromolecules, vol. 7, pp. 2710-2714, 2006.
[56] Zhao LM, Shi LE, Zhang ZL, Chen JM, Shi DD, Yang J and Tang ZX, 'Preparation and application of chitosan nanoparticles and nanofibers,' Brazilian Journal of Chemical Engineering, vol. 28, pp. 353-362, 2011.
[57] Asghar A and Henrickson RL, 'Chemical, Biochemical, Functional, and Nutritional Characteristics of Collagen in Food Systems,' Advances in food research, vol. 28, pp. 231-372, 1982
[58] Le Trong I, Nelson TC, Stayton KE and Stenkamp RE, 'Structural characterization and comparison of RGD cell-adhesion recognition sites engineered into streptavidin,' Acta Crystallographica Section D-Biological Crystallography, vol. 59, pp. 828-834, 2003
[59] Chang WH, Chang Y, Lai PH and Sung HW, 'A genipin-crosslinked gelatin membrane as wound-dressing material: in vitro and in vivo studies,' Journal of Biomaterials Science, Polymer Edition, vol. 14, pp. 481-495, 2003.
[60] Gu SY, Wang ZM, Ren J and Zhang CY, 'Electrospinning of gelatin and gelatin/poly (l-lactide) blend and its characteristics for wound dressing,' Materials Science and Engineering: C, vol. 29, pp. 1822-1828, 2009.
[61] Panzavolta S, Gioffre M, Focarete ML, Gualandi C, Foroni L and Bigi A, 'Electrospun gelatin nanofibers: optimization of genipin cross-linking to preserve fiber morphology after exposure to water,' Acta Biomater, vol. 7, pp. 1702-1709, 2011.
[62] Zhang YZ, Venugopal J, Huang ZM, Lim CT and Ramakrishna S, 'Crosslinking of the electrospun gelatin nanofibers,' Polymer, vol. 47, pp. 2911-2917, 2006.
[63] Zhang Y, Ouyang H, Lim CT, Ramakrishna S and Huang ZM, 'Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds,' Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 72, pp. 156-65, 2005.
[64] Kai D, Prabhakaran MP, Stahl B, Eblenkamp M, Wintermantel E and Ramakrishna S, 'Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications,' Nanotechnology, vol. 23, p. 095705, 2012.
[65] Liu Y, Liu X and Wang X, 'Biomimetic Synthesis of Gelatin Polypeptide-Assisted Noble-Metal Nanoparticles and Their Interaction Study,' Nanoscale Research Letters, vol. 6, pp. 1-11, 2010.
[66] 蔡睿逸,以幾丁聚醣為主的多成分複合電紡纖維之製備及其特性探討與骨分化之應用. 國立台灣大學化學工程研究所博士論文,2014
[67] Tsai RY, Kuo TY, Hung SC, Lin CM, Hsien TY, Wang DM and Hsieh HJ, 'Use of gum arabic to improve the fabrication of chitosan–gelatin-based nanofibers for tissue engineering,' Carbohydrate polymers, vol. 115, pp. 525-532, 2015.
[68] Vandelli MA, Rivasi F, Guerra P, Forni F and Arletti R, 'Gelatin microspheres crosslinked with D,L-glyceraldehyde asa potential drug delivery system: preparation,characterisation, in vitro and in vivo studies,' International Journal of Pharmaceutics, vol. 215, pp. 175-184, 2001.
[69] Akin H and Hasircl N, 'Preparation and Characterization of Crosslinked gelatin microspheres,' Journal of Applied Polymer Science, vol. 58, pp. 95-100, 1995.
[70] Lai JY, Li YT and Wang TP, 'In vitro response of retinal pigment epithelial cells exposed to chitosan materials prepared with different cross-linkers,' International Journal of Molecular Sciences, vol. 11, pp. 5256-5272, 2010.
[71] Schiffman JD and Schauer CL, 'Cross-linking chitosan nanofibers,' Biomacromolecules, vol. 8, pp. 594-601, 2007.
[72] Knaul JZ, Hudson SM and Creber KA, 'Crosslinking of chitosan fibers with dialdehydes: Proposal of a new reaction mechanism,' Journal of Polymer Science Part B: Polymer Physics, vol. 37, pp. 1079-1094, 1999.
[73] Street C and Anderson D, 'Refinement of structures previously proposed for gum arabic and other Acacia gum exudates,' Talanta, vol. 30, pp. 887-893, 1983.
[74] Akin H and Hasirci N, 'Preparation and characterization of crosslinked gelatin microspheres,' Journal of Applied Polymer Science, vol. 58, pp. 95-100, 1995.
[75] 周芳伃,以靜電紡絲法製備聚己內酯/動物明膠同軸奈米纖維及其應用,國立台灣大學化學工程研究所博士論文,2015.
[76] Rinaudo M, Pavlov G and Desbrieres J, 'Influence of acetic acid concentration on the solubilization of chitosan,' Polymer, vol. 40, pp. 7029-7032, 1999.
[77] Wohlfarth C, Surface tension of acetic acid. In Supplement to IV/16, pp. 55-55, 2008
[78] Ho DL, Hammouda B, Kline SR and Chen WR, 'Unusual phase behavior in mixtures of poly (ethylene oxide) and ethyl alcohol,' Journal of Polymer Science Part B: Polymer Physics, vol. 44, pp. 557-564, 2006.
[79] Torres M, Müller A and Saez AE, 'Effect of ethanol addition on the elongational flow behavior of aqueous solutions of poly (ethylene oxide),' Polymer Bulletin, vol. 47, pp. 475-483, 2002.
[80] 丁展嘉,電紡成形條件對紡絲之形貌與直徑之影響. 國立交通大學機械工程研究所碩士論文,2010.
[81] Bigi A, Cojazzi G, Panzavolta S, Rubini K and Roveri N, 'Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking,' Biomaterials, vol. 22, pp. 763-768, 2001.
[82] Beppu M, Vieira R, Aimoli C and Santana C, 'Crosslinking of chitosan membranes using glutaraldehyde: Effect on ion permeability and water absorption,' Journal of Membrane Science, vol. 301, pp. 126-130, 2007.
[83] Asada M, Takahashi H, Okamoto H, Tanino H and Danjo K, 'Theophylline particle design using chitosan by the spray drying,' International Journal of Pharmaceutics, vol. 270, pp. 167-174, 2004.
[84] 陳品彣,多成分幾丁聚醣複合敷料之製作及特性測試,國立台灣大學化學工程研究所碩士論文,2012
[85] Zhao X, Lui YS, Toh PWJ and Loo SCJ, 'Sustained release of hydrophilic l-ascorbic acid 2-phosphate magnesium from electrospun polycaprolactone scaffold—a study across blend, coaxial, and emulsion electrospinning techniques,' Materials, vol. 7, pp. 7398-7408, 2014.
[86] 張翠芳,以電紡絲法製備幾丁聚醣/聚乙烯醇同軸奈米纖維及其應用,國立台灣大學化學工程研究所碩士論文,2013.
[87] Mura P, Maestrelli F, González-Rodríguez ML, Michelacci I, Ghelardini C and Rabasco AM, 'Development, characterization and in vivo evaluation of benzocaine-loaded liposomes,' European Journal of Pharmaceutics and Biopharmaceutics, vol. 67, pp. 86-95, 2007.
[88] Moraes CM, de Matos AP, de Paula E, Rosa AH and Fraceto LF, 'Benzocaine loaded biodegradable poly-(d,l-lactide-co-glycolide) nanocapsules: factorial design and characterization,' Materials Science and Engineering: B, vol. 165, pp. 243-246, 2009.
[89] Yu D, Wang X, Li X, Chian W, Li Y and Liao Y, 'Electrospun biphasic drug release polyvinylpyrrolidone/ethyl cellulose core/sheath nanofibers,' Acta biomaterialia, vol. 9, pp. 5665-5672, 2013.
[90] Yu DG, Shen XX, Branford-White C, White K, Zhu LM and Bligh SA, 'Oral fast-dissolving drug delivery membranes prepared from electrospun polyvinylpyrrolidone ultrafine fibers,' Nanotechnology, vol. 20, pp. 055104, 2009.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77959-
dc.description.abstract本研究使用同軸靜電紡絲法製備具有核/殼層結構之奈米纖維,在材料的選擇上,以合成高分子聚氧化乙烯(PEO)作為核層材料,以提供整體膜材的機械強度,並利用其易於電紡的性質帶出殼層溶液,形成同軸纖維;殼層材料則選用天然高分子幾丁聚糖(chitosan)和動物明膠(gelatin),以提高膜材的生物相容性及抗菌性,並形成質傳阻力,延緩核層中的藥物釋放速率,以期作為可攜帶藥物的生醫材料。
在同軸纖維的製備上,本研究配製了不同高分子濃度和不同溶劑組成之核/殼層溶液,搭配不同電壓及流量比進行同軸電紡,藉由溶液性質分析及SEM觀察電紡纖維型態,來探討溶液性質和製程參數對於電紡結果的影響。在殼層溶液方面,提高溶劑(醋酸水溶液)中的醋酸含量可以有效降低溶液的表面張力和導電度,是能否電紡出纖維的關鍵,溶質的濃度則主要影響了溶液的黏度,也須控制在一定範圍內,實驗結果顯示當溶劑中醋酸濃度為50 wt%,溶質幾丁聚醣和動物明膠的濃度皆為8 wt%時,能夠製備出最均勻的纖維。在核層溶液的搭配上,溶質PEO的濃度會大幅影響溶液黏度,而溶劑的選擇則會影響到電紡時針尖的穩定性和濕度耐受性,以純水作為溶劑針尖溶液的噴出容易不穩定,溶劑改為醋酸水溶液可以穩定針尖的噴出,但對於濕度耐受度不佳,而溶劑選用乙醇水溶液則可以穩定地電紡,同時具有較高的濕度耐受力。實驗結果顯示以6 wt% 的PEO溶解於50 wt%乙醇水溶液作為核層溶液,搭配上述殼層溶液,並在施加電壓為25 kV、收集距離為24公分下能夠最穩定地電紡,並形成均勻的同軸奈米纖維。
確定溶液組成和操作參數後,以TEM進行結構確認,證實纖維確實具有同軸結構,且核/殼層流量比為0.30 : 0.30 mL/h時可以得到最佳同軸型態,而由SEM圖則可以計算出在此流量比狀況下纖維之直徑約為809.93 ± 220.88 nm;紅外線吸收光譜的測試結果也證明核/殼層材料同時存在於膜材中。之後,將纖維膜以戊二醛(glutaraldehyde)進行不同時間的交聯反應,再測定其抗拉強度,結果顯示交聯反應可以提高膜材的抗拉強度至1.78 ± 0.07 MPa,且本系統最佳的交聯時間為1小時。最後將膜材作為藥物載體,分別將親水性小分子 — 茶鹼,和疏水性小分子 — 苯左卡因置於核層再進行藥物釋放測定,結果顯示同軸纖維膜雖仍有藥物快速大量釋放的現象,但與純PEO纖維膜相比已改善許多。總結來說,本實驗製備之同軸奈米纖維膜材不但具有較高的抗拉強度和良好的細胞相容性,更具有延緩藥物釋放的功能,是非常具有潛力之生醫材料。
zh_TW
dc.description.abstractIn this research, coaxial nanofibers with core/shell structures were fabricated by coaxial electrospinning. Polyethylene oxide (PEO) was chosen as core material to provide proper mechanical strength and to assist the electrospinnability of shell materials, namely, chitosan and gelatin. Both of biopolymer were chosen to enhance the biocompatibility of nanofibers and to provide the antibacterial effect. The shell layer could yield mass transfer resistance and thus slowed down the drug release from the core layer. The nanofiber mats could act as drug-carrying biomaterials.
Various core/shell solutions with different concentrations and compositions of solutes and solvents were prepared and electrospun into coaxial nanofibers using different electrospinning conditions such as applied voltages, flow rates and collecting distances. The effects of solution properties and electrospinning conditions on the morphology of coaxial nanofibers were investigated. The concentration of acetic acid in the shell solution was crucial. As the concentration of acetic acid increased, the surface tension and conductivity of solution decreased, thus causing the morphology of nanofibers to become more uniform. The concentration of natural polymer in the shell solution, which would affect the viscosity of the solution, should be also in a proper range. Results revealed that the use of 50 wt% acetic acid aqueous solution as the solvent, 8 wt% chitosan and 8 wt% gelatin as solutes could result in the most uniform nanofibers. As for core solution, its viscosity was significantly affected by the concentration of the solute PEO, while the composition of solvent affected the stability of electrospinning jet and electrospinnability at a higher humidity. When the solvent was pure water, electrospinning jet was unstable. When the solvent was aqueous acetic acid solution, the jet was stable but the electrospinnability at a higher humidity was poor. When the solvent was aqueous ethanol solution, the jet was stable and the electrospinnability at a higher humidity was satisfactory. Hence the most promising core solution contained 6 wt% PEO as the solute and 50 wt% ethanol aqueous solution as the solvent. We also found that the optimum coaxial electrospinning should be carried out under 25 kV applied voltage and 24 cm collecting distance for the best result.
The core/shell structure was then confirmed by TEM images, and it was found that when the solution flow rate ratio was 0.30:0.30 mL/h (core:shell), the coaxial structure was the best. SEM images indicated that the nanofiber diameters were in the range of 809.93 ± 220.88 nm when the flow rate is 0.30:0.30 mL/h (core:shell). The results of FT-IR analysis confirmed that both core and shell materials were present in the coaxial nanofibers. To enhance the tensile strength, the coaxial nanofibers mats were crosslinked by glutaradehyde for different times. The tensile strength of coaxial nanofiber mats was enhanced to 1.78 ± 0.07 MPa with a crosslinking time of 1 hour. Finally, the coaxial nanofiber mat was utilized as a drug carrier. Theophylline (a hydrophilic drug) and benzocaine (a hydrophobic drug) were added to the core solution. The drug release curves indicated that the core/shell structure could significantly reduce the initial burst of drug release. It is believed that the prepared coaxial nanofiber mat, which has good tensile strength and improved drug release characteristics, is a promising biomaterial.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:38:19Z (GMT). No. of bitstreams: 1
ntu-105-R03524012-1.pdf: 4080174 bytes, checksum: 9d55c8a3ecdd9797ba21f53fbf0bd3ff (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌 謝 i
摘 要 iii
ABSTRACT v
目 錄 vii
圖目錄 ix
表目錄 xv
縮寫與符號說明 xvii
中英對照表 xix
第 1 章 緒論 1
1.1 研究背景與動機 1
1.2 研究架構與流程 3
第 2 章 文獻回顧 5
2.1 生醫材料 5
2.2 同軸奈米纖維 7
2.2.1 靜電紡絲法發展及原理 7
2.2.2 同軸靜電紡絲法原理及特性 9
2.2.3 影響同軸靜電紡絲法的參數 10
2.2.4 同軸靜電紡絲法的應用 17
2.3 聚氧化乙烯 19
2.4 幾丁聚醣 20
2.5 動物明膠 21
2.6 阿拉伯膠 22
2.7 交聯劑 23
第 3 章 實驗材料、儀器與方法 25
3.1 實驗材料 25
3.2 實驗儀器 26
3.3 實驗方法 28
3.3.1 溶液配製 28
3.3.2 溶液性質分析 33
3.3.3 同軸電紡法 34
3.3.4 奈米纖維交聯方法 36
3.3.5 奈米纖維之分析 37
3.3.6 藥物釋放應用 40
第 4 章 結果與討論 43
4.1 溶液性質分析 43
4.1.1 殼層溶液性質分析 43
4.1.2 核層溶液性質分析 51
4.2 製程參數對同軸奈米纖維型態的影響 54
4.2.1 殼層為低濃度醋酸溶液的電紡纖維型態 54
4.2.2 殼層溶液醋酸含量對同軸電紡的影響 68
4.2.3 殼層為高濃度醋酸溶液之同軸電紡 75
4.3 同軸奈米纖維性質探討 82
4.3.1 同軸結構探討 82
4.3.2 同軸奈米纖維成份測定 84
4.3.3 機械強度測試 85
4.4 藥物釋放應用 87
4.4.1 茶鹼 87
4.4.2 苯左卡因 90
第 5 章 結論與未來研究方向 93
5.1 結論 93
5.2 未來研究方向 95
參考文獻 97
dc.language.isozh-TW
dc.title以天然高分子包覆聚氧化乙烯之同軸電紡奈米纖維製備與特性探討zh_TW
dc.titleFabrication and Characterization of Natural Polymer-Wrapped Polyethylene Oxide Coaxial Nanofibers by Electrospinningen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee何明樺(Ming-Hua Ho),謝子陽
dc.subject.keyword電紡絲,同軸奈米纖維,聚氧化乙烯,幾丁聚醣,動物明膠,藥物釋放,zh_TW
dc.subject.keywordElectrospinning,Coaxial nanofibers,Chitosan,Gelatin,Polyehtylene oxide,drug release,en
dc.relation.page107
dc.identifier.doi10.6342/NTU201601855
dc.rights.note有償授權
dc.date.accepted2017-07-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-R03524012-1.pdf
  目前未授權公開取用
3.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved