Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77936Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 盧虎生,劉啟德 | |
| dc.contributor.author | Li-Wen Chiu | en |
| dc.contributor.author | 邱莉文 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:37:47Z | - |
| dc.date.available | 2022-08-08 | |
| dc.date.copyright | 2017-08-08 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-03 | |
| dc.identifier.citation | 卓緯玄、陳治官、賴明信、顏信沐、曾東海、顏宏真。2008。水稻秧苗期耐鹽性之
篩選技術。台灣農業研究57: 193-204。 黃威特。2012。本土固氮菌與光合菌的分離鑑定暨特性研究並評估對作物生長促進 的效果。碩士論文。台北:國立台灣大學農藝學研究所。 潘昶儒、林泰佑、黃佳興。2014。水稻花蓮 21 號優質栽培管理技術介紹。花蓮區 農業專訊87: 2-4。 羅正宗。2010。水稻葉色值於良質米栽培管理之應用。台南區農業專訊72: 12-15。 Ashrafuzzaman, M., Hossen, F. A., Ismail, M. R., Hoque, A., Islam, M. Z., Shahidullah, S., and Meon, S. (2009). Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. African Journal of Biotechnology 8(7). Bal, H. B., Nayak, L., Das, S., and Adhya, T. K. (2013). Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant and soil 366, 93-105. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., and Pevzner, P. A. (2012). SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Computational Biology 19, 455-477. Bartels, D., and Sunkar, R. (2005). Drought and salt tolerance in plants. Critical reviews in plant sciences 24, 23-58. Benizri, E., Baudoin, E., and Guckert, A. (2001). Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol science and technology 11, 557-574. Bhattacharyya, P., and Jha, D. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology 28, 1327-1350. Biswas, J. C., Ladha, J. K., Dazzo, F. B., Yanni, Y. G., and Rolfe, B. G. (2000). Rhizobial inoculation influences seedling vigor and yield of rice. Agronomy Journal 92, 880-886. Browne, P., Barret, M., Morrissey, J. P., and O'Gara, F. (2013). Molecular‐Based Strategies to Exploit the Inorganic Phosphate‐Solubilization Ability of Pseudomonas in Sustainable Agriculture. Molecular Microbial Ecology of the Rhizosphere: Volume 1 & 2, 615-628. Burgin, A. J., and Hamilton, S. K. (2007). Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Frontiers in Ecology and the Environment 5, 89-96. Buss, T. J. (1998). Effects of co-inoculation with Bacillus cereus UW85 and (Brady) Rhizobia on the nodulation, nitrogen fixation and dry matter accumulation of grain legumes. Master thesis. Canada: University of Manitoba, Department of Plant Science. Byrne-Bailey, K. G., and Coates, J. D. (2012). Complete genome sequence of the anaerobic perchlorate-reducing bacterium Azospira suillum strain PS. Journal of bacteriology 194, 2767-2768. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T. L. (2009). BLAST+: architecture and applications. BMC bioinformatics 10, 421. Cánovas, D., Vargas, C., Kneip, S., Morón, M. a.-J., Ventosa, A., Bremer, E., and Nieto, J. n. J. (2000). Genes for the synthesis of the osmoprotectant glycine betaine from choline in the moderately halophilic bacterium Halomonas elongata DSM 3043. Microbiology 146, 455-463. Castro-Sowinski, S., Herschkovitz, Y., Okon, Y., and Jurkevitch, E. (2007). Effects of inoculation with plant growth-promoting rhizobacteria on resident rhizosphere microorganisms. FEMS microbiology letters 276, 1-11. Chen, M.-H., Sheu, S.-Y., James, E. K., Young, C.-C., and Chen, W.-M. (2013). Azoarcusolearius sp. nov., a nitrogen-fixing bacterium isolated from oil-contaminated soil. International journal of systematic and evolutionary microbiology 63, 3755-3761. Cho, S.-T., Chang, H.-H., Egamberdieva, D., Kamilova, F., Lugtenberg, B., and Kuo, C.-H. (2015). Genome analysis of Pseudomonas fluorescens PCL1751: a rhizobacterium that controls root diseases and alleviates salt stress for its plant host. PloS one 10, e0140231. Choudhury, A., and Kennedy, I. (2004). Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Biology and Fertility of Soils 39, 219-227. Coates, J. D., Chakraborty, R., Lack, J. G., O'connor, S. M., Cole, K. A., Bender, K. S., and Achenbach, L. A. (2001). Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature 411, 1039-1043. Compant, S., Clément, C., and Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry 42, 669-678. Duan, J., Jiang, W., Cheng, Z., Heikkila, J. J., and Glick, B. R. (2013). The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4. PloS one 8, e58640. Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research 32, 1792-1797. Faoro, H., Rene Menegazzo, R., Battistoni, F., Gyaneshwar, P., do Amaral, F. P., Taulé, C., Rausch, S., Gonçalves Galvão, P., de los Santos, C., and Mitra, S. (2016). The oil‐contaminated soil diazotroph Azoarcus olearius DQS‐4T is genetically and phenotypically similar to the model grass endophyte Azoarcus sp. BH72. Environmental Microbiology Reports 9(3), 223-238. Fernández, H., Prandoni, N., Fernández-Pascual, M., Fajardo, S., Morcillo, C., Díaz, E., and Carmona, M. (2014). Azoarcus sp. CIB, an anaerobic biodegrader of aromatic compounds shows an endophytic lifestyle. PloS one 9, e110771. Fixen, K. R., Starkenburg, S. R., Hovde, B. T., Johnson, S. L., Deodato, C. R., Daligault, H. E., Davenport, K. W., Harwood, C. S., and Cattolico, R. A. (2016). Genome sequences of eight bacterial species found in coculture with the haptophyte Chrysochromulina tobin. Genome announcements 4, e01162-16. Glick, B. R., Cheng, Z., Czarny, J., and Duan, J. (2007). Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology 119, 329-339. Goujon, M., McWilliam, H., Li, W., Valentin, F., Squizzato, S., Paern, J., and Lopez, R. (2010). A new bioinformatics analysis tools framework at EMBL–EBI. Nucleic acids research 38, W695-W699. Gravois, K. A., and McNew, R. W. (1993). Genetic relationships among and selection for rice yield and yield components. Crop Science 33, 249-252. Gregorio, G., Senadhira, D., Mendoza, R., Manigbas, N., Roxas, J., and Guerta, C. (2002). Progress in breeding for salinity tolerance and associated abiotic stresses in rice. Field Crops Research 76, 91-101. Gupta, A., Gopal, M., Thomas, G. V., Manikandan, V., Gajewski, J., Thomas, G., Seshagiri, S., Schuster, S. C., Rajesh, P., and Gupta, R. (2014). Whole genome sequencing and analysis of plant growth promoting bacteria isolated from the rhizosphere of plantation crops coconut, cocoa and arecanut. PloS one 9, e104259. Gyaneshwar, P., Kumar, G. N., Parekh, L., and Poole, P. (2002). Role of soil microorganisms in improving P nutrition of plants. In Food Security in Nutrient-Stressed Environments: Exploiting Plants’ Genetic Capabilitie, pp. 133-143. Springer. Han, H.-S., and Lee, K. (2006). Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant soil and Environment 52, 130. Hayzer, D., and Leisinger, T. (1980). The gene-enzyme relationships of proline biosynthesis in Escherichia coli. Microbiology 118, 287-293. Howie, W. J., and Echandi, E. (1983). Rhizobacteria: Influence of cultivar and soil type on plant growth and yield of potato. Soil Biology and Biochemistry 15, 127-132. Hurek, T., Handley, L. L., Reinhold-Hurek, B., and Piché, Y. (2002). Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Molecular Plant-Microbe Interactions 15, 233-242. Hyatt, D., Chen, G.-L., LoCascio, P. F., Land, M. L., Larimer, F. W., and Hauser, L. J. (2010). Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC bioinformatics 11, 119. Isawa, T., Yasuda, M., Awazaki, H., Minamisawa, K., Shinozaki, S., and Nakashita, H. (2010). Azospirillum sp. strain B510 enhances rice growth and yield. Microbes and environments 25, 58-61. Itoh, J.-I., Nonomura, K.-I., Ikeda, K., Yamaki, S., Inukai, Y., Yamagishi, H., Kitano, H., and Nagato, Y. (2005). Rice plant development: from zygote to spikelet. Plant and Cell Physiology 46, 23-47. Jiang, K., Sanseverino, J., Chauhan, A., Lucas, S., Copeland, A., Lapidus, A., Del Rio, T. G., Dalin, E., Tice, H., and Bruce, D. (2012). Complete genome sequence of Thauera aminoaromatica strain MZ1T. Standards in genomic sciences 6, 325. Jongkaewwattana, S., and Geng, S. (2002). Non‐Uniformity of Grain Characteristics and Milling Quality of California Rice (Oryza sativa L.) of Different Maturities. Journal of agronomy and crop science 188, 161-167. Ju, X. T., Kou, C. L., Christie, P., Dou, Z., and Zhang, F. (2007). Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain. Environmental Pollution 145, 497-506. Kadioglu, A., Terzi, R., Saruhan, N., and Saglam, A. (2012). Current advances in the investigation of leaf rolling caused by biotic and abiotic stress factors. Plant Science 182, 42-48. Kanehisa, M., Sato, Y., and Morishima, K. (2016). BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. Journal of molecular biology 428, 726-731. Khalid, A., Arshad, M., and Zahir, Z. (2004). Screening plant growth‐promoting rhizobacteria for improving growth and yield of wheat. Journal of Applied Microbiology 96, 473-480. Khan, M. S., Zaidi, A., and Wani, P. A. (2007). Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review. Agronomy for Sustainable Development 27, 29-43. Klemm, P., and Schembri, M. A. (2000). Bacterial adhesins: function and structure. International Journal of Medical Microbiology 290, 27-35. Kloepper, J., Gutierrez-Estrada, A., and McInroy, J. (2007). Photoperiod regulates elicitation of growth promotion but not induced resistance by plant growth-promoting rhizobacteria. Canadian journal of microbiology 53, 159-167. Kloepper, J. W. (2003). A review of mechanisms for plant growth promotion by PGPR. In 6th international PGPR workshop, vol. 10. pp. 5-10. Kloepper, J. W., Schroth, M.N. (1978). Plant growth-promoting rhizobacteria on radishes. In Proceedings of the 4th International Conference on Plant Pathogenic Bacteria, vol. 2. pp. 879-882. Krause, A., Ramakumar, A., Bartels, D., Battistoni, F., Bekel, T., Boch, J., Böhm, M., Friedrich, F., Hurek, T., and Krause, L. (2006). Complete genome of the mutualistic, N2-fixing grass endophyte Azoarcus sp. strain BH72. Nature biotechnology 24. Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S. J., and Marra, M. A. (2009). Circos: an information aesthetic for comparative genomics. Genome research 19, 1639-1645. Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular biology and evolution, msw054. Lagesen, K., Hallin, P., Rødland, E. A., Stærfeldt, H.-H., Rognes, T., and Ussery, D. W. (2007). RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic acids research 35, 3100-3108. Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754-1760. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and Durbin, R. (2009). The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078-2079. Li, L., Stoeckert, C. J., and Roos, D. S. (2003). OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome research 13, 2178-2189. Liu, C.-T., Lin, S.-Y., Hameed, A., Liu, Y.-C., Hsu, Y.-H., Wong, W.-T., Tseng, C.-H., Lur, H.-S., and Young, C.-C. (2016). Oryzomicrobium terrae gen. nov. sp. nov., of the family Rhodocyclaceae isolated from paddy soil. International Journal of Systematic and Evolutionary Microbiology 67(2), 183-189. Liu, T., Li, L., Zhang, Y., Xu, C., Li, X., and Xing, Y. (2011). Comparison of quantitative trait loci for rice yield, panicle length and spikelet density across three connected populations. Journal of genetics 90, 377-382. López-Bucio, J., Cruz-Ramırez, A., and Herrera-Estrella, L. (2003). The role of nutrient availability in regulating root architecture. Current opinion in plant biology 6, 280-287. Lowe, T. M., and Eddy, S. R. (1997). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic acids research 25, 955-964. Ma, C., Yang, G., Zhang, Q., Zhuang, L., and Zhou, S. (2016). Complete genome of Thauera humireducens SgZ-1, a potential bacterium for environmental remediation and wastewater treatment. Journal of biotechnology 225, 59-60. Mantelin, S., and Touraine, B. (2004). Plant growth‐promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. Journal of experimental botany 55, 27-34. Mariano, R. L. R., and Kloepper, J. W. (2000). Me´todo alternativo de biocontrole : Resisteˆnciasisteˆmica induzida por rizobacte´rias. Revisa˜o Anual de Patologia de Plantas 8, 121-37. Marihal, A., and Jagadeesh, K. (2013). Plant–Microbe interaction: a potential tool for enhanced bioremediation. In Plant Microbe Symbiosis: Fundamentals and Advance, pp. 395-410. Springer. Martín-Moldes, Z., Zamarro, M. T., Del Cerro, C., Valencia, A., Gómez, M. J., Arcas, A., Udaondo, Z., García, J. L., Nogales, J., and Carmona, M. (2015). Whole-genome analysis of Azoarcus sp. strain CIB provides genetic insights to its different lifestyles and predicts novel metabolic features. Systematic and applied microbiology 38, 462-471. Mayak, S., Tirosh, T., and Glick, B. R. (2004). Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry 42, 565-572. Munns, R. (2002). Comparative physiology of salt and water stress. Plant, cell & environment 25, 239-250. Munns, R. (2005). Genes and salt tolerance: bringing them together. New phytologist 167, 645-663. Naseri, R., and Mirzaei, A. (2010). Response of yield and yield components of Safflower (Carthamus tinctorius L.) to seed inoculation with Azotobacter and Azospirillum and different nitrogen levels under dry land condition. American-Eurasian J. Agric. & Environ. Sci 9, 445-449. Nautiyal, C. S., Srivastava, S., Chauhan, P. S., Seem, K., Mishra, A., and Sopory, S. K. (2013). Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiology and Biochemistry 66, 1-9. Nishizawa, T., Tago, K., Oshima, K., Hattori, M., Ishii, S., Otsuka, S., and Senoo, K. (2012). Complete genome sequence of the denitrifying and N2O-reducing bacterium Azoarcus sp. strain KH32C. Journal of bacteriology 194, 1255-1255. Oren, A. (2014). The family Rhodocyclaceae. In The Prokaryotes, pp. 975-998. Springer. Oyebanji, O., Nweke, O., Odebunmi, O., Galadima, N., Idris, M., Nnodi, U., Afolabi, A., and Ogbadu, G. (2009). Simple, effective and economical explant-surface sterilization protocol for cowpea, rice and sorghum seeds. African Journal of Biotechnology 8(20). Rahnama, A., James, R. A., Poustini, K., and Munns, R. (2010). Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Functional Plant Biology 37, 255-263. Rhodes, D., and Hanson, A. (1993). Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annual review of plant biology 44, 357-384. Robinson, J. T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E. S., Getz, G., and Mesirov, J. P. (2011). Integrative genomics viewer. Nature biotechnology 29, 24-26. Rodríguez-Salazar, J., Suárez, R., Caballero-Mellado, J., and Iturriaga, G. (2009). Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiology Letters 296, 52-59. Ruíz-Sánchez, M., Armada, E., Muñoz, Y., de Salamone, I. E. G., Aroca, R., Ruíz-Lozano, J. M., and Azcón, R. (2011). Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. Journal of plant physiology 168, 1031-1037. Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Wei, H.-X., Paré, P. W., and Kloepper, J. W. (2003). Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences 100, 4927-4932. Saleem, M., Arshad, M., Hussain, S., and Bhatti, A. S. (2007). Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of industrial microbiology & biotechnology 34, 635-648. Salinero, K. K., Keller, K., Feil, W. S., Feil, H., Trong, S., Di Bartolo, G., and Lapidus, A. (2009). Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation. BMC genomics 10, 351. Seneweera, S. P., and Conroy, J. P. (1997). Growth, grain yield and quality of rice (Oryza sativa L.) in response to elevated CO2 and phosphorus nutrition. Soil Science and Plant Nutrition 43, 1131-1136. Siddikee, M. A., Glick, B. R., Chauhan, P. S., jong Yim, W., and Sa, T. (2011). Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiology and Biochemistry 49, 427-434. Sompong, R., Siebenhandl-Ehn, S., Linsberger-Martin, G., and Berghofer, E. (2011). Physicochemical and antioxidative properties of red and black rice varieties from Thailand, China and Sri Lanka. Food Chemistry 124, 132-140. Song, B., Palleroni, N., and Häggblom, M. (2000). Description of strain 3CB-1, a genomovar of Thauera aromatica, capable of degrading 3-chlorobenzoate coupled to nitrate reduction. International journal of systematic and evolutionary microbiology 50, 551-558. Song, S. (1978). Study of classification of rice grain in Taiwan. (in Chinese with English abstract). Bullet. Taichung Dist. Agric. Res. Ext. Stn. 2, 26-31. Spaepen, S., Vanderleyden, J., and Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS microbiology reviews 31, 425-448. Sui, B., Feng, X., Tian, G., Hu, X., Shen, Q., and Guo, S. (2013). Optimizing nitrogen supply increases rice yield and nitrogen use efficiency by regulating yield formation factors. Field Crops Research 150, 99-107. Sutherland, I. W. (2001). Microbial polysaccharides from Gram-negative bacteria. International Dairy Journal 11, 663-674. Tamura, K., and Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular biology and evolution 10, 512-526. Tilman, D. (1998). The greening of the green revolution. Nature 396, 211-212. Tudela, D., and Tadeo, F. (1993). Respuestas y adaptación de las plantas al estrés. Fisiología y Bioquímica Vegetal, Interamericano, 537-553. Van Dien, S. J., and Keasling, J. (1998). A Dynamic Model of the Escherichia coli Phosphate-Starvation Response. Journal of theoretical biology 190, 37-49. Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and soil 255, 571-586. Vu, B., Chen, M., Crawford, R. J., and Ivanova, E. P. (2009). Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14, 2535-2554. Wanner, B. L. (1996). Phosphorus assimilation and control of the phosphate regulon. Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. ASM Press, Washington, DC 41, 1357-1381. Wong, W.-T., Tseng, C.-H., Hsu, S.-H., Lur, H.-S., Mo, C.-W., Huang, C.-N., Hsu, S.-C., Lee, K.-T., and Liu, C.-T. (2014). Promoting effects of a single Rhodopseudomonas palustris inoculant on plant growth by Brassica rapa chinensis under low fertilizer input. Microbes and Environments 29, 303-313. Wu, G., Wilson, L. T., and McClung, A. M. (1998). Contribution of rice tillers to dry matter accumulation and yield. Agronomy Journal 90, 317-323. Xing, Y., and Zhang, Q. (2010). Genetic and molecular bases of rice yield. Annual review of plant biology 61, 421-442. Xiong, L., and Zhu, J. K. (2002). Molecular and genetic aspects of plant responses to osmotic stress. Plant, Cell & Environment 25, 131-139. Yoshida, S. (1981). In Fundamentals of rice crop science, Int. Rice Res. Inst. Yoshida, S., Forno, D. A., Cock, J. H., and Gomez, K. A. (1976). In Laboratory manual for physical studies of rice, Int. Rice Res. Inst. Yue, H., Mo, W., Li, C., Zheng, Y., and Li, H. (2007). The salt stress relief and growth promotion effect of Rs-5 on cotton. Plant and Soil 297, 139-145. Zahir, Z. A., Arshad, M., and Frankenberger, W. T. (2003). Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Advances in Agronomy 81, 97-168. Zaidi, A., Khan, M. S., and Amil, M. (2003). Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). European Journal of Agronomy 19, 15-21. Zhang, Y.-C., Yu, Y., Wang, C.-Y., Li, Z.-Y., Liu, Q., Xu, J., Liao, J.-Y., Wang, X.-J., Qu, L.-H., and Chen, F. (2013). Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nature biotechnology 31, 848-852. Zúñiga, A., Poupin, M. J., Donoso, R., Ledger, T., Guiliani, N., Gutiérrez, R. A., and González, B. (2013). Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN. Molecular Plant-Microbe Interactions 26, 546-553. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77936 | - |
| dc.description.abstract | Oryzomicrobium terrae strain TPP412 (簡稱TPP412)為一株分離自北台灣水田的新屬新種土壤細菌。本研究藉由次世代定序以及生物資訊技術分析TPP412菌株之全基因體序列,並利用盆栽試驗探討施用該菌株對於水稻生長之影響,亦評估該菌株對於緩和水稻幼苗遭受鹽分逆境的效果。定序結果顯示TPP412的基因體大小為3,526,415 bp,含有3,120條蛋白質編碼基因 (protein-coding gene)。經序列比對與功能註解(annotation)發現,TPP412具有多數與促進植物生長相關的基因,例如生長素(Indole acetic acid, IAA)生合成(ALDH; NIT)、抗菌化合物(4-hydroxybenzoate)生合成(ubiC),以及抗非生物逆境,例如超氧歧化酶 (superoxide dismutase, SOD)、過氧化氫酶(catalase, CAT)等(sodB, katG)基因。在水稻盆栽試驗發現,將TPP412菌肥接種至未滅菌的全量化肥土壤中,其穀粒產量比施用在滅菌土壤組高。在鹽分逆境試驗發現,水稻幼苗若預先處理TPP412菌液,不僅能促進生長,還可緩解濃度100mM的氯化鈉水耕液對作物的傷害。綜合上述結果,TPP412具有促進植物生長、緩解鹽分逆境的功效,也因並具有完整的基因體資訊,將會是一株兼具應用以及研究潛力的土壤根圈益生菌。 | zh_TW |
| dc.description.abstract | Oryzomicrobium terrae strain TPP412 (abbreviated as TPP412) is a novel genus and species of eubacterium that was isolated from paddy field soil in northern Taiwan. The first objective of this study was to analyze the complete genome of TPP412 by Next Generation Sequencing (NGS) and bioinformatics technologies. I elucidated the role of this bacterium in plant growth-promotion by pot experiments with rice plants cultivated under non-sterile and sterile soils. I also evaluated the effects of TPP412 on rice seedling growth under saline condition (100mM NaCl) in hydroponic environment. The results of whole genome sequencing indicated that TPP412 has one circular chromosome that is 3,526,415 bp in size with 3,120 protein-coding genes. Through sequences alignment and functional annotation, I found that many genes related to plant growth-promotion involved in indole acetic acid (IAA) biosynthesis (ALDH; NIT); antimicrobial compound, 4-hydroxybenzoate biosynthesis (ubiC); and antioxidants resist to abiotic stress, such as superoxide dismutase (SOD) (sodB) and catalase (CAT) (katG). The results of pot experiments showed that inoculation with single inoculum TPP412 at full amount of recommended chemical fertilizer in non-sterile soil condition had a more stimulating effect on grain yield in non-sterile soil condition than that in sterile soil condition. I also found that treating the rice seedlings with TPP412 in advance can enhance plant growth and alleviate the damage from salt stress. Taken together, TPP412 is a beneficial bacterium for plant growth promotion and alleviation in salt stress. Furthermore, the complete genomic information of TPP412 will be a potentially powerful tool for studying the mode of action. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:37:47Z (GMT). No. of bitstreams: 1 ntu-106-R04621104-1.pdf: 9501754 bytes, checksum: a7d6910cb3159b9e0642000475884a08 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 致謝……………………………………………………………………………..……………ii
中文摘要……………………………………………………………………………..……...iii Abstract…………………………………………………………………………………..…iv Contents……………………………………………………………………………...........…v Lists of Figures……………………………………………………….....……………….…vii Lists of Tables…………………………………………………………………………...…..ix Introduction……………………………………………………………………….…………1 Materials and methods……………………………….……………………………………..6 Preparation of O. terrae strain TPP412............................6 Genomic DNA extraction………………………………………………………………6 Whole genome sequencing………………………………………………………7 De novo genome assembly……………………………………………………7 Genome annotation……………………………………………………8 Comparative genomics analyses.................................9 Preparation of microbial inoculants……………………………………………9 Evaluation of strain TPP412 on growth promotion of rice plants in pot experiments..10 Measurements of agronomic traits and quality traits...11 Evaluation of strain TPP412 on growth promotion of rice seedlings under salt stress.......................12 Statistical analysis…………………………………………………………………………..14 Results and discussion……………………………………………………………………..15 General genome features...............................15 Utilization of carbon source………………………………………………………16 Utilization of nitrogen source…………………………………………………17 Solubilization of phosphate source………………………………………18 Plant root colonization……………………………………………………………19 Genes involved in IAA biosynthesis and stress responses.........20 Comparative Genomics of O. terrae strain TPP412 and related Rhodocyclaceae members.............................................22 Effects of microbial inoculation on the agronomic traits in rice plants...28 Effects of microbial inoculation on grain quality......40 Microbial inoculation providing protection of rice seedling from salinity stress……45 Conclusion and future prospects……………………………………………………….…51 References………………………………………………………………………………......52 | |
| dc.language.iso | en | |
| dc.subject | 水稻 | zh_TW |
| dc.subject | 次世代定序 | zh_TW |
| dc.subject | 沼澤紅假單胞菌 | zh_TW |
| dc.subject | 鹽分逆境 | zh_TW |
| dc.subject | 促進植物生長之根圈微生物 | zh_TW |
| dc.subject | salt stress | en |
| dc.subject | plant growth promoting rhizobacteria (PGPR) | en |
| dc.subject | Next Generation Sequencing (NGS) | en |
| dc.subject | rice | en |
| dc.subject | Rhodopseudomonas palustris | en |
| dc.title | 水稻根圈細菌 Oryzomicrobium terrae strain TPP412 之全基因體序列分析及其對於水稻生長之影響 | zh_TW |
| dc.title | Genomic Analysis of Oryzomicrobium terrae strain TPP412 and Its Beneficial Effects on Rice Growth | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林詩舜,陳仁治,郭志鴻 | |
| dc.subject.keyword | 促進植物生長之根圈微生物,次世代定序,水稻,沼澤紅假單胞菌,鹽分逆境, | zh_TW |
| dc.subject.keyword | plant growth promoting rhizobacteria (PGPR),Next Generation Sequencing (NGS),rice,Rhodopseudomonas palustris,salt stress, | en |
| dc.relation.page | 65 | |
| dc.identifier.doi | 10.6342/NTU201702570 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-04 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| Appears in Collections: | 農藝學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-106-R04621104-1.pdf Restricted Access | 9.28 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
