Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77933
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王大銘
dc.contributor.authorChien-Heng Wuen
dc.contributor.author吳建衡zh_TW
dc.date.accessioned2021-07-11T14:37:43Z-
dc.date.available2022-08-31
dc.date.copyright2017-08-31
dc.date.issued2017
dc.date.submitted2017-08-07
dc.identifier.citation1.M. Brininstool, Mineral Commodity Summaries. U.S. Geological Survey, 2017: p.54-55.
2.R.S. Juang and S.W. Wang, Electrolytic recovery of binary metals and EDTA from strong complexed solutions. Water Research, 2000. 34(12): p.3179-3185.
3.E. Gilbert and S.H. Glewe, Ozonation of ethylenediaminetetraacetic acid (edta) in aqueous solution, influence of pH value and metal ions. Water Research, 1990. 24(1): p.39-44.
4.I.H. Cho, N.H. Lee, J.K. Yang and S.M. Lee, Treatment of wastewater containing Cu(II)-EDTA using immobilized TiO2 /solar light. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2007. 42(2): p.165-170.
5.S. Metsärinne, T. Tuhkanen and R. Aksela, Photodegradation of ethylenediaminetetraacetic acid (EDTA) and ethylenediamine disuccinic acid (EDDS) within natural UV radiation range. Chemosphere, 2001. 45(6-7): p.949-955.
6.L. Henneken, B. Nortemann and D.C. Hempel, Influence of physiological conditions on EDTA degradation. Applied Microbiology and Biotechnology, 1995. 44(1-2): p. 190-197.
7.F. Ju and Y. Hu, Removal of EDTA-chelated copper from aqueous solution by interior microelectrolysis. Separation and Purification Technology, 2011. 78: p.33-41.
8.S. Pradhan and S. Mishra, A review on extraction and separation studies of copper with various commercial extractants. Metallurgical Research & Technology, 2015. 112(202): p.1-11.
9.L. Pachuau, S.M. Lee and D. Tiwari, Ferrate(VI) in wastewater treatment contaminated with metal(II)-iminodiacetic acid complexed species. Chemical Engineering Journal, 2013. 230(15): p.141-148.
10.M.R. Yu, T.H. Kim, Y.Y. Chang and J.K. Yang, Application of ferrate in the removal of copper-organic complexes. Sustainable Environment Research, 2010. 20(5): p.269-273.
11.V. Jokl, M. Undeutsch and J. Majer, Separations of inorganic ions by paper electrophoresis in solutions of N-(2-hydroxyethyl)iminodiacetic acid. Journal of Chromatography A, 1967. 26: p.208-214.
12.Dojindo Molecular Technologies Incorporation, Metal Chelates, 2012. p.252-253.
13.陳昱瑋, 以具分散反萃取相支撐式液膜分離回收釹(Nd3+)鏑(Dy3+)離子, in 化學工程學系. 2013, 國立台灣大學.
14.A.S. Kertes and C.J. King, Extraction chemistry of fermentation product carboxylic acids. Biotechnology and Bioengineering, 1986. 28(2): p.269-282.
15.M.J. Hudson, An introduction to some aspects of solvent extraction chemistry in hydrometallurgy. Hydrometallurgy, 1982. 9: p.149-68.
16.L.L. Tavlarides, J.H. Bae, and C.K. Lee, Solvent extraction, membranes, and ion-exchange in hydrometallurgical dilute metals separation. Separation Science and Technology, 1987. 22(2-3): p.581-617.
17.V.S. Kislik, Solvent Extraction: Classical and Novel Approaches, 2012, UK: Elsevier
18.Y.Q. Cao, W. Qin, and Y.Y. Dai, Third-phase behavior in extraction of oxalic acid with trioctylamine. Journal of Chemical Industry and Engineering, 2003. 54(5): p. 585-589.
19.L. Gotfryd and G. Pietek, Contaminants of post-leaching copper solutions and their behavior during extraction with industrial extractants. Physicochemical Problems of Mineral Processing, 2013. 49(1): p.133-143.
20.A.A. Balesini, A. Zakeri, H. Razavizadeh and A. Khani, Nickel solvent extraction from cold purification filter cakes of angouran mine concentrate using LIX984N. International Journal of Minerals, Metallurgy and Materials, 2013. 20(11): p.1029-1034.
21.A.E. Buketova, An IR-spectroscopic examination of copper–Lix984N extractant complexes. Russian Journal of Applied Chemistry, 2009. 82(1): p.23-26.
22.H. Zhao, S.Q. Xia and P.S. Ma, Use of ionic liquids as 'green' solvents for extractions. Journal of Chemical Technology and Biotechnology, 2005. 80: p. 1089-1095.
23.Y.Q. Rousseau, Handbook of separation process technology. 1987, New York: John Wiley & Sons.
24.R. Prasad and K.K. Sirkar, Hollow fiber solvent-extraction of pharmaceutical products-a case study. Journal of Membrane Science, 1989. 47: p. 235-259.
25.P.R. Danesi, Separation of metal species by supported liquid membranes. Separation Science and Technology, 1985. 19: p. 857-894, 1984-85.
26.M. Chakraborty, C. Bhattacharya and S. Datta, Study of the Stability of (w/o)/w-type Emulsion During the Extraction of Nickel (II) via Emulsion Lliquid Membrane. Separation Science and Technology, 2004. 39: p. 1-17.
27.S. Vladimir, Liquid membranes : principles and applications in chemical separations and wastewater treatment. 2010, New York: Elsevie.
28.J. Lyklema, Fundamentals of Interface and Colloid Science, Volume I : Fundamentals. 1991, London: Academic Press.
29.A.J.B. Kemperman, D. Bargeman, Th. Van Den Boomgaard and H. Strathmanne, Stability of Supported Liquid Membranes: State of the Art. Separation Science and Technology, 1996. 31: p. 2733-2762.
30.F.F. Zha, A.G. Fane and C.J.D. Fell, Instability Mechanisms of Supported Liquid Membranes in Phenol transport Process. Journal of Membrane Science, 1995. 107: p. 59-74.
31.P.R. Danesi, L. Reichleyyinger and P.G. Rickert, Lifetime of Supported Liquid Membranes – the Influence of Interfacial Properties, Chemical Composition and Water Transport on the Long-Term Stability of the Membranes. Journal of Membrane Science, 1987. 31: p. 117-145.
32.S. Belfer and S. Binman, Immobilized Extractants – Selective Transport of Magnesium and Calcium from a Mixed Chloride Solution via a Hollow Fiber Module. Journal of Applied Polymer Science, 1990. 40: p. 2073-2085.
33.W.S.W. Ho and Y.K. Poddar, New Membrane Technology for Removal of Chromium from Waste Waters. Environmental Progress, 2001. 20: p. 44-52.
34.G.M. Ritcey and A.W. Ashbrook, Solvenr Extraction - Principles and Applications to Process Metallurgy - part 1. 1984, Amsterdam: Elsevier Science Publishers B.V.
35.F.J. Alguacil and M. Alonso, Recovery of copper from ammoniacal/ammonium sulfate medium by LIX 54. Journal of Chemical Technology and Biotechnology, 1999. 74(12): p.1171-1175.
36.G. Muthuraman and T.T. Teng, Use of Vegetable Oil in supported liquid membrane for the Transport of Rhodamine B. Desalination, 2009. 249: p. 1062-1066.
37.韓佳耘, 以具分散反萃取相支撐式液膜分離回收稀土金屬離子, in 化學工程學系. 2015, 國立台灣大學.
38.T.S. Urbanski, P. Fornari and C. Abbruzzese, The extraction of cerium(III) and lanthanum(III) from chloride solutions with LIX 54. Hydrometallurgy, 1996. 40(1-2): p. 169-179.
39.F.J. Alguacil, C. Caravaca and M.I. Martin, Transport of chromium(VI) through a Cyanex 921-supported liquid membrane from HCl solutions. Journal of Chemical Technology and Biotechnology, 2003. 78(10): p. 1048-1053.
40.P. Navano and F.J. Alguac, Extracción de Mo(VI) de disoluciones en medio nítrico mediante Alamine 336 ó Aliquat 336. Revista de Metalurgia, 1995. 31(6).
41.L. Pei, L. Wang and G. Yu, Separation of Eu(III) with supported dispersion liquid membrane system containing D2EHPA as carrier and HNO3 solution as stripping solution. Journal of Rare Earths, 2011. 29(1): p. 7-14.
42.K. Ochromowicz, M. Jeziorek and K. Wejman, Copper(II) extraction from ammonia leach solution. Physicochemical Problems of Mineral Processing, 2014. 50(1): p.327-355.
43.I. Komasawa, T. Otake and Y. Ogawa, The effect of diluent in the liquid-liquid extraction of cobalt and nickel using acidic organophosphorus compounds. Journal of Chemical Engineering of Japan, 1984. 17(4): p. 410-417.
44.J.O. Ojo and O.O. Ajayi, Mechanism of the extraction of Molybdenum(VI) from diluted HCl and HNO3 solutions with di(2-ethylhexyl)phosphoric acid. International Journal of Biological and Chemical Sciences, 2013. 7(3): p.1370-1378.
45.R. Cierpiszewski, Kinetics of copper extraction from chloride solutions with model and commercial dialkyl pyridine-dicarboxylates. Solvent Extraction and Ion Exchange, 2000. 18(1): p.93-108.
46.田福助(1982)。電化學。台北市:五洲。
47.M.S. Lee and Y.J. Oh, Analysis of ionic equilibria and electrowinning of indium from chloride solutions. Scandinavian Journal of Metallurgy, 2004. 33: p.279-285.
48.B. Panda and S.C. Das, Electrowinning of copper from sulfate electrolyte in presence of sulfurous acid. Hydrometallurgy, 2001. 59: p.55-67.
49.G. Mailhot, S.L. Andrianirinaharivelo and M. Bolte, Photochemical transformation of iminodiacetic acid induced by complexation with copper(II) in aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 1995. 87: p.31-36.
50.Dorota Kołodyńska, Chelating Agents of a New Generation as an Alternative to Conventional Chelators for Heavy Metal Ions Removal from Different Waste Waters, Expanding Issues in Desalination, Prof. R.Y. Ning (Ed.), 2011, InTech.
51.Y. Ku, L.S. Wang and Y.S. Shen, Decomposition of EDTA in aqueous solution by UV/H2O2 process. Journal of Hazardous Materials, 1998. 60: p.41-55.
52.A. Kunz, P.P. Zamora and N. Duran, Hydrogen peroxide assisted photochemical degradation of ethylenediaminetetraacetic acid. Advances in Environmental Research, 2002. 7: p.197-202.
53.S. Lan, Y. Xiong, S. Tian, J. Feng and T. Xie, Enhanced self-catalytic degradation of CuEDTA in the presence of H2O2/UV: Evidence and importance of Cu-peroxide as a photo-active intermediate. Applied Catalysis B: Environmental, 2016. 183: p.371-376.
54.Z. Xu, C. Shan, B. Xie, Y. Liu and B. Pan, Decomplexation of Cu(II)-EDTA by UV/ persulfate and UV/H2O2 Efficiency and mechanism. Applied Catalysis B: Environmental, 2017. 200: p.439-447.
55.L. Pan, J. Tang and F. Wang, Facile synthesis of nanoscaled α-Fe2O3, CuO and CuO/Fe2O3 hybrid oxides and their electrocatalytic and photocatalytic properties. Central European Journal of Chemistry, 2013. 11(5): p.763-773.
56.X. Wei, R.C. Viadero and K.M. Buzby, Recovery of iron and aluminum from acid mine drainage by selective precipitation. Environmental Engineering Science, 2005. 22(6): p.745-755.
57.X. Guan, X. Jiang, J. Qiao and G. Zhou, Decomplexation, Decomplexation and subsequent reductive removal of EDTA-chelated Cu(II) by zero-valent iron coupled with a weak magnetic field: Performances and mechanisms. Journal of Hazardous Materials, 2015. 300: p.688-694.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77933-
dc.description.abstract現今螯合劑的使用非常廣泛,常應用於印刷電路板、造紙業及半導體製程等,經過上述製程後往往會產生許多含螯合劑之金屬廢液,若能將其中具經濟價值之金屬離子進行回收,不但能節省製程成本,更能降低對環境之汙染。因此本研究以Lix984N為萃取劑,使用具分散反萃取相支撐式液膜搭配過氧化氫/UV光法、三價鐵離子置換法,回收及濃縮螯合系統中的銅離子,並於純銅系統中利用電解法將具分散反萃取相支撐式液膜後所得的高濃度銅離子還原成零價金屬銅。
本研究之螯合銅系統選用三種不同的螯合劑,分別為IDA、HIDA及EDTA。IDA與HIDA系統使用具分散反萃取相支撐式液膜單一程序即可回收進料相中之銅離子,前者可於15分鐘的操作下,將進料相溶液中300 mg/L之銅離子完全回收,透過係數達1.3×10-4 (m/min);後者於600分鐘的操作下可移除進料相中270 mg/L之銅離子,透過係數為1.7×10-6 (m/min)。EDTA系統於相同條件下透過係數僅為1.3×10-7 (m/min),因EDTA與銅離子之螯合性遠大於前述兩種螯合劑,因此本研究於具分散反萃取相支撐式液膜前先進行前處理,以提高回收效率。前處理方法分為過氧化氫/UV光法及三價鐵離子置換法兩種。過氧化氫/UV光法於EDTA/Cu2+/H2O2莫爾數比為1:1:100時,可降解進料相溶液中的EDTA,接著使用具分散反萃取相支撐式液膜回收銅離子,透過係數達1.4×10-4 (m/min),回收率達92%。三價鐵離子置換法於EDTA/Cu2+/Fe3+莫爾數比為1:1:3之前處理條件下,鐵離子可與大部分的銅離子進行置換,接續利用具分散反萃取相支撐式液膜進行回收,透過係數達7.8×10-5 (m/min),回收率達95%。
除了回收螯合系統中之銅離子,本研究亦利用具分散反萃取相支撐式液膜回收純銅離子,並接續進行電解程序,將銅離子還原成金屬銅,依序進行四次批次循環實驗後,發現反萃取相經電解後可以再次使用於具分散反萃取相支撐式液膜中,並不會影響銅離子之透過係數。此外因批次實驗將花費較多時間與成本,故本研究將具分散反萃取相支撐式液膜程序與電解程序串聯,同時進行以提高操作效率,結果顯示在具分散反萃取相支撐式液膜操作的同時,反萃取相中的銅離子可藉由電解還原成金屬銅,而經電解後的反萃取相可再回流至具分散反萃取相支撐式液膜中使用。由此可見此串聯程序確實可提操作效率,後續若參數調整得宜,可於實驗室規模下進行連續式操作,同時亦可作為日後製程放大的參考依據。
zh_TW
dc.description.abstractThe wide application of chelating agents in printed circuit board industry, paper-making industry and semiconductor process results in wastewater which contains various metal ions and chelating agents. Recovery and purification of the metal ions, not only can reuse of them, but have great merits for cost reduction and pollution control. The present work reports on the technique of supported liquid membranes with strip dispersion (SLMSD) using Lix984N as extractant, H2O2/UV method, Fe3+ substitution method to recover copper ion from chelating agent systems. Additionally, electrolysis was operated after SLMSD in pure copper system to recover copper at metal state.
The chelating agents in this study were chosen as IDA, HIDA and EDTA. Almost 300 mg/L Cu2+ could be removed from feed phase by SLMSD in Cu-IDA system and Cu-HIDA system. In Cu-IDA system, it took 15 minutes to remove 300 mg/L Cu2+, and the permeability was 1.3×10-4 m/min. In Cu-HIDA system, 270 mg/L Cu2+ was removed in 600 minutes and the permeability was 1.7×10-6 m/min. In Cu-EDTA system, the permeability was 1.3×10-7 m/min at the same condition. Because of high stability constant between Cu2+ and EDTA, there were two pretreatment methods (H2O2/UV method and Fe3+ substitution method) could be chosen before starting SLMSD to enhance copper recovery efficiency. H2O2/UV method could degrade EDTA efficiently at molar ratio EDTA : Cu2+: H2O2 = 1:1:100, and the permeability of Cu2+ was 1.4×10-4 m/min by SLMSD. With Fe3+ substitution method, most chelated copper ion could be substituted by Fe3+at molar ratio EDTA : Cu2+: Fe3+ = 1:1:3. Then recover copper ion by SLMSD after substitution, the permeability was 7.8×10-5 m/min at pH2.
In addition to recover copper ion from chelating agent system, the present work also recovered copper ion from pure copper system by SLMSD, and electrolysis was operated after SLMSD. After four cycles of SLMSD and electrolysis batch experiments, it was found that stripping solution could reuse in SLMSD after electrolysis, and would not affect the permeability of copper ion. Due to long operation time and high cost of batch process, this study also connected SLMSD and electrolysis in series. The result showed that copper ion in stripping solution could be reduced to metal state simultaneously when SLMSD was operating, and stripping solution could return and reuse in SLMSD after electrolysis, too. Thus it can be seen the SLMSD and electrolysis in series process could indeed enhance copper recovery efficiency.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:37:43Z (GMT). No. of bitstreams: 1
ntu-106-R04524007-1.pdf: 2919651 bytes, checksum: c112027ae7cf3e7490e019df7ce7fb8a (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 I
摘要 III
Abstract V
目錄 VII
圖目錄 XIII
表目錄 XIX
第一章 緒論 1
第二章 文獻回顧 5
2-1 螯合劑 5
2-1-1螯合劑種類及應用 5
2-1-2金屬-螯合劑錯合物後續處理方法 5
2-2 液液萃取 7
2-2-1液液的原理 7
2-2-2液液萃取的操作程序 8
2-2-3物理萃取 9
2-2-4化學萃取 9
2-2-4-1萃取劑 10
2-2-4-2稀釋劑 19
2-2-4-3修飾劑 21
2-3 薄膜分離技術 22
2-3-1液膜的輸送機制與原理 23
2-3-1-1簡單擴散傳送 23
2-3-1-2載體輔助傳送 23
2-3-1-3偶聯輔助傳送 24
2-3-2液膜的型式 26
2-3-2-1乳化式液膜 26
2-3-2-2支撐式液膜 27
2-3-3支撐式液膜的不穩定性及改善 29
2-3-3-1膜相的流失 29
2-3-3-2水傳遞現象 30
2-3-3-3第三相生成 31
2-3-3-4不穩定性改善 31
2-3-4影響支撐式液膜效率之參數 32
2-3-4-1水相進料溶液 33
2-3-4-2有機膜相溶液 34
2-3-4-3薄膜結構 35
2-3-4-4溫度 35
2-4 電解技術 36
2-4-1電解技術之原理 36
2-4-1-1阿瑞尼斯解離說 36
2-4-1-2電解還原金屬原理 36
2-4-1-3法拉第電解定律 37
2-4-2影響電解效率之因素 38
2-4-2-1電解液性質 38
2-4-2-2操作因子之影響 39
2-4-2-3電極材料 40
第三章 實驗理論 43
3-1 具分散反萃取相支撐式液膜傳輸理論 43
第四章 實驗方法 49
4-1 設備與儀器 49
4-2 實驗藥品 51
4-3 實驗步驟 53
4-3-1 具分散反萃取相支撐式液膜 53
4-3-2 過氧化氫/UV前處理法 55
4-3-3 電解還原金屬離子 55
4-3-3 樣品濃度量測 56
第五章 結果與討論 59
5-1 具分散反萃取相支撐式液膜參數對純銅離子透過係數之影響 60
5-1-1 進料相氫離子濃度 60
5-1-2 萃取劑濃度 63
5-2螯合劑種類對螯合銅離子透過係數之影響 68
5-2-1 亞氨基二乙酸(iminodiacetic acid, IDA) 68
5-2-2 N-(2-羥乙基)亞氨基二乙酸 (N-(2-Hydroxyethyl)iminodiacetic acid, HIDA) 70
5-2-3 乙二胺四乙酸(ethylenediaminetetraacetic acid, EDTA)72
5-3 前處理方法對銅-EDTA系統透過係數之影響 78
5-3-1 過氧化氫/UV光前處理法 78
5-3-2 三價鐵離子置換法 83
5-4 電解程序參數對氧化還原效率之影響 91
5-4-1 電極板材料 91
5-4-1-1 石墨電極 91
5-4-1-2 白金電極與銅箔電極 95
5-4-2 電流密度對氧化還原效率之影響 96
5-5 具分散反萃取相支撐式液膜與電解程序之批次串聯實驗 101
5-6 具分散反萃取相支撐式液膜與電解程序之串聯實驗 109
第六章 結論與未來研究方向 113
參考文獻 115
dc.language.isozh-TW
dc.subjectLix984Nzh_TW
dc.subject支撐式液膜zh_TW
dc.subject銅zh_TW
dc.subject螯合劑zh_TW
dc.subject電解zh_TW
dc.subjectElectrolysisen
dc.subjectCopperen
dc.subjectChelating Agenten
dc.subjectLix984Nen
dc.subjectSupported liquid membrane with strip dispersionen
dc.title以具分散反萃取相支撐式液膜回收螯合銅離子zh_TW
dc.titleRecovery of Chelated Copper Ion by Supported Liquid Membrane with Strip Dispersionen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.coadvisor謝子陽
dc.contributor.oralexamcommittee李清華,謝學真
dc.subject.keyword支撐式液膜,銅,螯合劑,Lix984N,電解,zh_TW
dc.subject.keywordSupported liquid membrane with strip dispersion,Copper,Chelating Agent,Lix984N,Electrolysis,en
dc.relation.page119
dc.identifier.doi10.6342/NTU201702653
dc.rights.note有償授權
dc.date.accepted2017-08-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-R04524007-1.pdf
  未授權公開取用
2.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved