請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77922完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林清富 | |
| dc.contributor.author | Tsung-To Tsai | en |
| dc.contributor.author | 蔡宗祐 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:37:28Z | - |
| dc.date.available | 2022-08-30 | |
| dc.date.copyright | 2017-08-30 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-10 | |
| dc.identifier.citation | 參考文獻
[1] T. A. Edison, “Electric lamp”, U.S. Patent 223898, 1880. [2] M. Kazimierczuk and W. Szaraniec, 'Electronic ballast for fluorescent lamps', IEEE Transactions on Power Electronics, vol.8, pp.386-395, 1993. [3] C. Gooch and P. Dupkus, 'Injection Electroluminescent Devices', Physics Today, vol.28, pp.79-80, 1975. [4] S. Fasol, The Blue Laser Diode. The Complete Story, Measurement Science and Technology, vol.12, pp.755-756, 2001. [5] Y. Shimizu, K. Sakano, Y. Noguchi, T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material”, U.S. Patent 5998925, 1996. [6] M. G. Craford, “High Power LEDs for Solid State Lighting”, Light & Visual Environment, vol.32, pp.58-62, 2008. [7] T. Baumgartner, et al, lighting the way: Perspectives on the global lighting .Market, McKinsey & Company, pp.14-22, 2012. [8] S. Pimputkar, J. Speck, S. DenBaars and S. Nakamura, “Prospects for LED .Lighting”, Nature Photonics, vol.3, pp.180-182, 2009. [9] H. Zhu, C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. Liu and X. Chen, 'Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes', Nature Communications, vol.5, pp.4312-4322, 2014. [10] J. Jou, C. Hsieh, J. Tseng, S. Peng, Y. Jou, J. Hong, S. Shen, M. Tang, P. Chen and C. Lin, 'Candle Light-Style Organic Light-Emitting Diodes', Advanced Functional Materials, vol.23, pp.2750-2757, 2012. [11] S. Pauley, “Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue”, Medical Hypotheses, vol. 63, pp.588-596, 2004. [12] S. Ye, F. Xiao, Y. Pan, Y. Ma and Q. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties”, Materials Science and Engineering: R: Reports, vol.71, pp.1- 34, 2010. [13] W. Yang, L. Luo, T. Chen and N. Wang, “Luminescence and Energy Transfer of Eu- and Mn-Coactivated CaAl2Si2O8 as a Potential Phosphor for White-Light UVLED”, Chem. Mater., vol.17, pp.3883-3888, 2005. [14] A. Lakshmanan, Luminescence and display phosphors, New York: Nova Science Publishers, pp.9-15, 2008. [15] W. M. Yen and M. J. Weber, Inorganic Phosphors: Composition, Preparation and Optical Properties, CRC Press, pp.5-8, 2004. [16] R. J. Xie et al., “Nitride Phosphors and Solid-State Lighting”, CRC Press, pp.8-10, 2011. [17] B. M. Krasovitskii et al., Organic Luminescent Materials, Analytica Chimica Acta, vol.233, pp.336-337, 1990. [18] K. M. Lee et al., “Emission characteristics of inorganic/organic hybrid white-light phosphor”, Appl. Phys, vol.80, pp.337-339, 2005. [19] P. Smet, A. Parmentier and D. Poelman, “Selecting Conversion Phosphors for White Light-Emitting Diodes”, J. Electrochem. Soc., vol. 158, p.R37-54, 2011. [20] J. Furman, B. Melot, S. Teat, A. Mikhailovsky and A. Cheetham, “Towards enhanced ligand-centred photoluminescence in inorganic–organic frameworks for solid state lighting”, Phys. Chem. Chem. Phys., vol. 13, pp.7622-7629, 2011. [21] B. Wei, Y. Li, H. Li, J. Yu, B. Ye and T. Liang, 'Rare earth elements in human hair from a mining area of China', Ecotoxicology and Environmental Safety, vol.96, pp.118-123, 2013. [22] J. Paul, & G. Campbell, “Investigating rare earth element mine development in EPA region 8 and potential environmental impacts”, Additional review by Region 8, pp.14-18, 2011. [23] IEA final report on potential health issues on SSL, pp.9-14, 2014. [24] R.Stevens, G. Brainard, D. Blask, S. Lockley, & M. Motta, “Breast cancer and circadian disruption from electric lighting in the modern world”, CA: A Cancer Journal for Clinicians, vol.64, pp.207-218, 2013. [25] X. Fang, M. Roushan, R. Zhang, J. Peng, H. Zeng and J. Li, “Tuning and Enhancing White Light Emission of II–VI Based Inorganic–Organic Hybrid Semiconductors as Single-Phased Phosphors”, Chem. Mater., vol.24, pp.1710-1717, 2012. [26] Z. Yang, J. Xu, P. Wang, X. Zhuang, A. Pan and L. Tong, “On-Nanowire Spatial Band Gap Design for White Light Emission”, Nano Letters, vol.11, pp.5085-5089, 2011. [27] A. Weaver and D. Gamelin, “Photoluminescence Brightening via Electrochemical Trap Passivation in ZnSe and Mn2+ -Doped ZnSe Quantum Dots”, J. Am. Chem. Soc., vol.134, pp.6819-6825, 2012. [28] S. Pauley, “Lighting for the human circadian clock: recent research indicates that 92 lighting has become a public health issue”, Medical Hypotheses, vol.63, pp.588-596, 2004. [29] C. Ballhausen, “Introduction to ligand field theory”, New York: McGraw-Hill, pp.65-72, 1962. [30] A. O'Neill and J. Allen, “A new version of crystal field theory and its application to ZnSe: Co”, Solid State Communications, vol.46, pp.833-836, 1983. [31].S. Hoogland, “The Fuss About Quantum Dots”, 2008. [https:// www. photonics. com /Article.aspx?AID=31908] [32] L. Brus, “A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites”, The Journal of chemical physics, vol.79, pp.5566-5571, 1983. [33] B. Pejova and I, Grozdanov, “Structural and optical properties of chemically deposited thin films of quantum-sized bismuth (III) sulfide. Materials chemistry and physics”, vol.99, pp.39-49, 2006. [34] C. de Mello Donegá, “Synthesis and properties of colloidal heteronanocrystals”, Chemical Society Reviews, vol.40, pp.1512-1546, 2011. [35] O. Witt, 'Das Chrysoïdin und seine Umsetzungen', Berichte der deutschen chemischen Gesellschaft, vol.10, pp.654-662, 1877. [36] T. Laird, Solvents and Solvent Effects in Organic Chemistry, Organic Process Research & Development, vol.15, pp.1213-1213, 2011. [37] ENERGY STAR(r) Program Requirements for Solid State Lighting Luminaires, Eligibility Criteria-Version 1.1, pp.23-25, 2008. [38] H. Xiong, “Photoluminescent ZnO nanoparticles modified by polymers”, Journal of Materials Chemistry, vol.21, pp.4251-4262, 2010. [39] T. Norman, D. Magana, T. Wilson, C. Burns, J. Zhang, D. Cao and F. Bridges, “Optical and Surface Structural Properties of Mn2+-Doped ZnSe Nanoparticles”, The Journal of Physical Chemistry B, vol.107, pp.6309-6317, 2003. [40]量子點LED技術成LED新要角,LEDinside,2015。[http://www.ledinside.com.tw/news/20151124-31822.html] [41] G. Xu, Y. Li, Y. Qin, Z. Liu, J. Han, Y. Han and K. Yao, “Fabrication and enhanced optical properties of ZnSe:Mn quantum dots/poly(LMA-co-EGDMA) composite thin film by alkylthiol modification”, vol.5, pp.1460-1469, 2015. [42] W. Zhou, R. Liu, D. Tang and B. Zou, “The effect of dopant and optical micro-cavity on the photoluminescence of Mn-doped ZnSe nanobelts”, Nanoscale Res Lett, vol.8, pp.314-323, 2013. [43] A. Bahador, M. Molaei and M. Karimipour, “One-pot room temperature synthesizing Cu- and Mn-doped ZnSe nanocrystals by a rapid photochemical method”, Modern Physics Letters B, vol.30, pp.1650227-1650237, 2016. [44] M. Haase, J. Qiu, J. DePuydt and H. Cheng, “Blue-green laser diodes”, Applied Physics Letters, vol.59, pp.1272-1274, 1991. [45] H. Jeon, J. Ding, A. Nurmikko, W. Xie, D. Grillo, M. Kobayashi, R. Gunshor, G. Hua and N. Otsuka, “Blue and green diode lasers in ZnSe-based quantum Wells”, Applied Physics Letters, vol.60, pp.2045-2047, 1992. [46] S. Taniguchi, T. Hino, S. Itoh, K. Nakano, N. Nakayama, A. Ishibashi and M. Ikeda, “100 h II-VI blue-green laser diode”, Electron. Lett., vol.32, pp.552-553, 1996. [47] R. Fiederling et al. 'Injection and detection of a spin-polarized current in a light emitting diode', Nature, vol.402, pp.787-790, 1999. [48] X. Hu, H. Han, L. Hua and Z. Sheng, “Electrogenerated chemiluminescence of blue emitting ZnSe quantum dots and its biosensing for hydrogen peroxide”, Biosensors and Bioelectronics, vol.25, pp.1843-1846, 2010. [49] B. Zhano, Y. Yao, K. Yang, P. Rong, P. Huang, K. Sun, X. An, Z. Li, X. Chen, W. Li, “Mercaptopropionic acid-capped Mn(2+):ZnSe/ZnO quantum dots with both downconversion and upconversion emissions for bioimaging applications”, Nanoscale, vol.6, pp.12345-12349, 2014. [50] C. Xiaoyu, L. Stuart B, J. R. Peter, J. Justin Gooding, “Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications”, vol.43, pp.2680-2700, 2014. [51] A. Panda, S. Acharya and S. Efrima, “Ultranarrow ZnSe Nanorods and Nanowires: Structure, Spectroscopy, and One-Dimensional Properties”, Adv. Mater., vol.17, pp.2471-2474, 2005. [52] Y. Jiang, X. Meng, W. Yiu, J. Liu, J. Ding, C. Lee and S. Lee, “Zinc Selenide Nanoribbons and Nanowires”, J. Phys. Chem. B, vol.108, pp.2784-2787, 2004. [53] N. Pradhan and X. Peng, “Efficient and Color-Tunable Mn-Doped ZnSe Nanocrystal Emitters: Control of Optical Performance via Greener Synthetic Chemistry”, J. Am. Chem. Soc., vol.129, pp.3339-3347, 2007. [54] S. Xu and Z. Wang, “One-dimensional ZnO nanostructures: solution growth and functional properties”, Nano Research, vol.4, pp.1013-1098, 2011. [55] Z. Hu, S. Xu, X. Xu, Z. Wang, Z. Wang, C. Wang and Y. Cui, “Co-doping of Ag into Mn:ZnSe Quantum Dots: Giving Optical Filtering effect with Improved Monochromaticity “, Sci. Rep., vol.5, pp.14817-14828 ,2015. [56] T. C. Leslie and J. W. Allen, ”Thermal Quenching of Photoluminescence in ZnS :Mn and ZnSe:Mn”, phys. stat, vol.66, pp.545-551, 1981. [57] D. Popescu, P. Eliseev, A. Stintz and K. Malloy, “Temperature dependence of the photoluminescence emission from InAs quantum dots in a strained Ga0.85In0.15As quantum well”, Semiconductor Science and Technology, vol.19, pp.33-38, 2003. [58] Y. Zhao, C. Riemersma, F. Pietra, R. Koole, C. de Mello Donegá and A. Meijerink, “High-Temperature Luminescence Quenching of Colloidal Quantum Dots”, ACS Nano, vol.6, pp.9058-9067, 2012. [59] A. Hepp, G. Ulrich, R. Schmechel, H. von Seggern, and R. Ziessel, “Highly efficient energy transfer to a novel organic dye in OLED devices”, Synthetic Metals, vol.146, pp.11-15, 2004. [60] Y. Chang and T. Chow, “Highly efficient red fluorescent dyes for organic light-emitting diodes”, Journal of Materials Chemistry, vol.21, pp.3091-3099, 2011. [61] S. Yang, B. Hong, B. and S. Huang, “Influences of Dye Doping and Hole Blocking Layer Insertion on Sky-Blue OLED Performance”, Journal of The Electrochemical Society, vol.156, pp.J41-J45, 2009. [62] M. Rauf, A. Soliman and M. Khattab, “Solvent effect on the spectral properties of Neutral Red”, Chemistry Central Journal, vol.2, pp.19-23, 2008. [63] M. Pal, “Effects of differently hydrophobic solvents on the aggregation of cationic dyes as measured by quenching of fluorescence and/or metachromasia of the dyes. Histochemie”, vol.5, pp.24-31, 1965. [64] M. S. Zakerhamidi, A. Ghanadzadeh and M. Moghadam, “Solvent Effects on the UV/ Visible Absorption Spectra of Some Aminoazobenzene Dyes”, Chemical Science Transactions, vol.1, pp.1-8, 2012. [65] PVP應用,上海浩茹實業發展縣公司,2013。[http://hrpvp.diytrade.com/] [66].PVP應用領域日益廣泛,中國醫藥報,2006。[http://big5.39kf.com/medicine/pro/pharmacy/2006-11-17-282923.shtml] [67] M. Chang, Y. Han, C. Wang, S. Lin, Y. Tsai, Y. and W. Huang, “High-Color-Purity Organic Light-Emitting Diodes Incorporating a Cyanocoumarin-Derived Red Dopant Material”, Journal of The Electrochemical Society, vol.155, pp.J365-J370, 2008. [68] Z. Wang, S. Naka and H. Okada, “Performance improvement of rubrene-based organic light emitting devices with a mixed single layer”, Applied Physics A, vol.100, pp.1103-1108, 2010. [69] K. Saxena, D. Mehta, V. Rai, R. Srivastava, G. Chauhan, M. Kamalasanan and V. Jain, “Studies on organic light-emitting diodes based on rubrene-doped zinc quinolate”, physica status solidi (a), vol.206, pp.1660-1663, 2009. [70] M. Dae-Gyu, L. Chan-Jae and H. Jeong-In, “Electrical and Optical Characteristics of White OLEDs with a Rubrene doped Layer”, Journal of the Korean Institute of Electrical and Electronic Material Engineers, vol.20, pp.53-56, 2007. [71] Z. Liu, M. Helander, Z. Wang and Z. Lu, “Efficient Single-Layer Organic Light-Emitting Diodes Based on C545T-Alq3System”, The Journal of Physical Chemistry C, vol.114, pp.11931-11935, 2010. [72] S. Ju and J. Yang, “The Luminescent Characteristics of C545T Doped OLED Devices”, Journal of the Korean institute of surface engineering, vol.40, pp.77-81, 2007. [73] M. Tian, J. Luo, J. and X. Liu, “Highly efficient organic light-emitting devices beyond theoretical prediction under high current density”, Optics Express, vol.17, pp.21370-21375, 2009. [74] S. Feng, “Dependence of the dynamics of exciton transport, energy relaxation, and localization on dopant concentration in disordered C545T-doped Alq3 organic semiconductors”, Optical Materials Express, vol.4, pp.798-809, 2014. [75] X. Zheng, W. Zhu, Y. Wu, X. Jiang, R. Sun, Z. Zhang, Z. and S. Xu, “A white OLED based on DPVBi blue light emitting host and DCJTB red dopant”, Displays, vol.24, pp.121-124, 2003. [76] M. Kurban and B. Gündüz, “Physical and optical properties of DCJTB dye for OLED display applications: Experimental and theoretical investigation”, Journal of Molecular Structure, vol.1137, pp.403-411, 2017. [77] M. Kim, J. Lim and G. Yeom, G, “White Organic Light-Emitting Diodes Using DCJTB-Doped 24MeSAlq as a New Hole-Blocking Layer. Korean Journal of Materials Research”, vol.16, pp.231-234, 2006. [78] S. Tao, L. Niu, L, J. Yu, Y. Jiang and X. Zhang, X, “High-performance organic red-light-emitting device based on DCJTB and a new host material”, Journal of Luminescence, vol. 130, pp.70-73, 2010. [79] D. Xu, X. Li, H. Ju, Y. Zhu and Z. Deng, Z, “A novel red organic light-emitting diode with ultrathin DCJTB and Rubrene layers”, Displays, vol.32, pp.92-95, 2011. [80] G. Parslow, “Commentary: Google glass: A head-up display to facilitate teaching and learning”, Biochemistry and Molecular Biology Education, vol.4, pp.91-92, 2013. [81] T. North, M. Wagner, S. Bourquin and L. Kilcher, 'Compact and High-Brightness Helmet-Mounted Head-Up Display System by Retinal Laser Projection', Journal of Display Technology, vol.12, pp.982-985, 2016. [82] L. Pfannmüller, M. Kramer, B. Senner and K. Bengler, 'A Comparison of Display Concepts for a Navigation System in an Automotive Contact Analog Head-up Display', Procedia Manufacturing, vol.3, pp. 2722-2729, 2015. [83] S. Barber, D. Schwab and K. Zimmerman, “Head Up and Eyes Out EnablingEquivalent Visual Operations with the Head Up Display”, SAE International Journal of Aerospace, vol.6, pp.237-246, 2013. [84] V. Vinod Karar, D. Divya Agrawal and S. Smarajit Ghosh, “Intuitive approach towards detection of attention tunneling while using a head-up display”, Chinese Optics Letters, vol.13, pp.081201-81205, 2015. [85] C. Fan and S. He, “Micromirror based virtual image automotive head-up display. Microsystem Technologies”, vol.23, pp.1671-1676, 2016. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77922 | - |
| dc.description.abstract | 現今白光LED之螢光粉多採用稀土元素製作,但稀土元素的提煉及使用對於環境及人類有非常多的隱憂。有鑑於此,在現今綠色環保意識抬頭的世代,使用非稀土元素製作高效率之發光材料,就成為現今許多人研究的目標。
於第一部分,我們提出以不含稀土元素及鎘元素之ZnSe:Mn量子點,搭配藍光LED製作白光照明。為了能配合現今商用藍光LED的激發波長,我們成功克服量子侷限效應將ZnSe:Mn之吸收優化至450 nm以上,並以Mn分裂能階激發出590 nm之橘黃光,搭配藍光LED合成出對於人眼較有益之暖白光。其目前量測出最高量子效率為21%,推估在生物或螢光標記較有應用之機會。 為了製作出應用於照明之高效率螢光粉,我們在第二部分提出新的製程設計,利用現今製作成熟之有機染料C545T、DCJTB及Rubrene,將各種染料溶入各自適當之溶劑後,使染料溶液可在藍光波段有強吸收,且能有效將藍光分別轉換出綠色、黃色、橘色及紅色激發光。我們藉由將高分子聚合物PVP溶入染料溶液中,利用PVP之包覆特性,可有效將染料分子包覆,並使其在乾燥後保留其在溶液態之極性,透過真空加熱後能將染料溶液成粉塊狀,將粉塊研磨後即可得到各種顏色之螢光粉。我們所製作出之綠色、黃色、橘色及紅色螢光粉,可分別在藍光激發下,達到85.4%、89.1%、72.3% 及80.1% 之高轉換效率。將各種粉以適當比例混合後,我們利用綠粉及紅粉合成出非常接近自然白光品質之白光,色溫為5190K及CRI 88,若再加入橘粉可把CRI提升至90以上。 另外,我們將C545T及PVP溶入乙醇後得到之高效率綠光溶液,旋塗成為薄膜態,可在藍光影像激發下顯示明顯綠色的影像,目前之結果可應用在抬頭顯示器薄膜的部分。相對於傳統反射式的顯示薄膜,我們具有高穿透、高亮度及不會有干涉影像,且因傳統式薄膜需要有特定反射角才能看清楚影像之缺點,由於我們薄膜是吸收再放光式,在我們薄膜就不會有視場角問題發生。我們薄膜可吸收藍光轉換為對於人眼較靈敏之綠光,對於顯示基本資訊很有幫助。在實際車上測試後,我們的薄膜確實能得到相對於現今傳統反射式薄膜之效果。 本研究之成果,可有效將藍光轉換為可見光,且能達到高轉換效率,有著極大的潛力取代現今稀土元素之螢光粉,且將我們所製作之螢光溶液製作成薄膜後,應用於抬頭顯示器有著許多優勢。本研究之結果對於現今發光照明及抬頭顯示薄膜都極具開發潛力及實際應用之價值。 | zh_TW |
| dc.description.abstract | Rare-earth mining associated with high messy and polluting business has caused a heavy burden on the environment, so the tremendous harm by using rare-earth elements to produce white LEDs has caught increasing concerns. Therefore, exploring the luminescent material based on non-rare-earth elements has attracted much attention nowadays.
Accordingly, we propose a method based on ZnSe:Mn nanoparticles with non-rare-earth and non-cadmium elements in the first part. In order to act with the commercial blue LED, we successfully enhance the optimal excitation wavelength of the ZnSe:Mn nanoparticles above 450 nm. In addition, by doping Mn2+ in ZnSe nanoparticles, electrons in the ZnSe conduction band can be transferred to the Mn2+ energy level effectively and emit orange light at about 590 nm. In our results, ZnSe:Mn nanoparticles can produces a warm white light for human eyes with the excitation of blue light, but the highest quantum efficiency is only 21 %, which is probably better for applications in biomarkers or fluorescent markers than for display or lighting. In order to improve the quantum efficiency, we propose another avenue based on organic dyes, C545T, DCJTB and Rubrene with aqueous solution process in the second part. We use C545T, DCJTB and Rubrene dissolving in respective suitable solvents to produce bright green, yellow, orange and red light effectively by excited blue light. Moreover, by adding PVP to dissolve above dye solutions can simplify the drying process and maintain the optical characteristics after the solvents evaporate. The highest quantum efficiency of green, green, yellow, orange and red phosphor can reach 85.4%、89.1%、72.3% and 80.1%, respectively. In the third part, we focus on producing white light that possesses high CRI and low color temperature. In our experiments, using appropriate proportion of C545T and DCJTB can make our quality of white light close to natural white light, CCT 5190 K and CRI 88 can be reached, using three kinds of phosphors can enhance CRI to reach above 90. Furthermore, we use solution of C545T and PVP to manufacture films of the head up display films by spin coating. Our films do not belong to traditional reflective films. They are for photoluminescence, so compared to the traditional films, our films exhibit many advantages, high penetration, good brightness to human eyes, without image interference from reflection and full field of view. It is expected that the innovative approaches for white-LED lighting and head up display have considerable potential and application value. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:37:28Z (GMT). No. of bitstreams: 1 ntu-106-R04941064-1.pdf: 6844900 bytes, checksum: 4764ca45baf493d701907e068ad6ce0b (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 目次
致謝 I 摘要 III Abstract V 圖目錄 XI 表目錄 XV 第一章 緒論 1 1.1 照明光源之發展歷史與其未來趨勢 1 1.1.1 熱輻射放光 2 1.1.2 氣體激發輻射放光 2 1.1.3固態場效放光 3 1.2白光發光二極體種類介紹 5 1.2.1 藍光、綠光及紅光LED晶片 (多晶片型) 5 1.2.2 藍光LED晶片搭配黃光螢光粉 (單晶片型) 6 1.2.3 藍光LED晶片搭配黃光(綠光)及紅光螢光粉 (單晶片型) 7 1.2.4 紫外光LED晶片搭配藍光、綠光與紅光螢光粉 (單晶片型) 7 1.3 螢光材料介紹 7 1.3.1 物質發光現象 7 1.3.2螢光粉分類 8 1.3.3 摻雜稀土型陶瓷材料螢光粉之激發與放光原理 11 1.4 稀土元素螢光材料於白光 LED 發展之隱憂 13 1.5 研究動機 14 第二章 實驗原理 16 2.1固態發光材料之放光原理與過程 16 2.2 晶格場理論 (Crystal Field Theory) 17 2.3 量子侷限效應 (Quantum Confinement Effect) 18 2.4 有機發光染料之發光原理 19 2.5 溶劑效應對於有機發光染料之影響 20 2.6 濃度淬滅效應 (Concentration Quenching) 22 2.7 光源之色溫(Color temperature ; K)及演色係數(Color rendering index ; CRI) 22 2.8 量子產率 (Quantum Yield) 計算及量測 25 第三章 ZnSe:Mn 量子點發光材料 28 3.1 研究動機 28 3.2 Brus equation計算ZnSe粒子理論吸收 29 3.3 ZnSe:Mn 奈米粒子原始參數 30 3.3.1實驗步驟 30 3.3.2 原始參數ZnSe:Mn奈米粒子實驗結果與討論 31 3.4 鹼金屬氫氧化物對 ZnSe:Mn 奈米粒子粒徑與吸收波長之影響 32 3.4.1 ZnSe:Mn 奈米粒子加入氫氧化鉀實驗步驟 33 3.4.2改變氫氧化鉀克數之ZnSe:Mn奈米粒子實驗結果與討論 34 3.5 長晶時間對 ZnSe:Mn 奈米粒子粒徑與吸收波長之影響 38 3.5.1 ZnSe:Mn 奈米粒子改變長晶時間實驗步驟 38 3.5.2改變長晶時間之ZnSe:Mn奈米粒子實驗結果與討論 39 3.6 長晶溫度對 ZnSe:Mn 奈米粒子粒徑與吸收波長之影響 42 3.6.1 ZnSe:Mn 奈米粒子改變長晶溫度實驗步驟 42 3.6.2改變長晶溫度之ZnSe:Mn奈米粒子實驗結果與討論 43 3.7 ZnSe:Mn量子效率量測 46 3.8 結論 47 第四章 有機螢光粉開發 48 4.1 研究動機 49 4.2 實驗概念與設計 49 4.2.1 發光染料與溶劑選用 50 4.2.2 聚乙烯吡咯烷酮 (Polyvinylpyrrolidone,PVP) 主體材料介紹 51 4.3 橘色有機螢光粉 52 4.3.1 橘色有機染料 52 4.3.2 Rubrene溶液製作 53 4.3.3 Rubrene溶液量子效率量測 54 4.3.4 Rubrene螢光粉製作 60 4.3.5 Rubrene螢光粉量子效率量測及發光特性 61 4.4 綠色有機螢光粉 64 4.4.1 綠色有機染料 64 4.4.2 C545T溶液製作 64 4.4.3 C545T溶液量子效率量測 65 4.4.4 C545T螢光粉製作 67 4.4.5 C545T螢光粉量子效率量測及發光特性 68 4.5 紅色有機螢光粉 74 4.5.1 紅色有機染料 74 4.5.2 DCJTB溶液製作 75 4.5.3 DCJTB溶液量子效率量測 75 4.5.4 DCJTB螢光粉製作 84 4.5.5 DCJTB螢光粉量子效率量測及發光特性 84 4.6 結論 87 第五章 白光LED及抬頭顯示器薄膜製作 88 5.1白光LED製作 88 5.1.1實驗概念與設計 88 5.1.2 藍光LED搭配C545T黃色螢光粉製作白光 89 5.1.3 藍光LED搭配Rubrene橘色螢光粉製作白光 92 5.1.4 藍光LED搭配C545T綠色及DCJTB紅色螢光粉 93 5.1.5藍光LED搭配C545T綠色、DCJTB紅色及Rubrene橘色螢光粉 95 5.2 抬頭顯示器薄膜製作 96 5.2.1抬頭顯示器背景及動機 96 5.2.2 實驗步驟 98 5.2.3 調控不同轉速旋塗C545T薄膜 99 5.2.4 提升C545T克數及PVP克數旋塗C545T薄膜 100 5.2.5 最佳參數製作之C545T薄膜與商用抬頭顯示器薄膜比較 102 5.3 結論 107 第六章 結論與未來展望 108 6.1 結論 108 6.2 未來展望 109 參考文獻 111 | |
| dc.language.iso | zh-TW | |
| dc.subject | 有機染料 | zh_TW |
| dc.subject | 量子點材料 | zh_TW |
| dc.subject | 抬頭顯示器 | zh_TW |
| dc.subject | 白光LED | zh_TW |
| dc.subject | 無稀土 | zh_TW |
| dc.subject | head up display | en |
| dc.subject | quantum dot material | en |
| dc.subject | non-rare-earth-element | en |
| dc.subject | white LED | en |
| dc.subject | organic dye | en |
| dc.title | 利用無稀土元素製作高效率發光材料及應用 | zh_TW |
| dc.title | Using Non-rare-earth Element for Efficient Luminescent Materials and their Applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林晃巖,蘇國棟,黃定洧 | |
| dc.subject.keyword | 量子點材料,有機染料,無稀土,白光LED,抬頭顯示器, | zh_TW |
| dc.subject.keyword | quantum dot material,organic dye,non-rare-earth-element,white LED,head up display, | en |
| dc.relation.page | 119 | |
| dc.identifier.doi | 10.6342/NTU201702893 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-10 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-R04941064-1.pdf 未授權公開取用 | 6.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
