Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77917
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張世宗
dc.contributor.authorKuo-Che Hungen
dc.contributor.author洪國哲zh_TW
dc.date.accessioned2021-07-11T14:37:22Z-
dc.date.available2022-08-30
dc.date.copyright2017-08-30
dc.date.issued2017
dc.date.submitted2017-08-10
dc.identifier.citation1. Taubenberger, J. K., and Morens, D. M. (2008) The pathology of influenza virus infections. Annual review of pathology 3, 499-522
2. Potter, C. W. (2001) A history of influenza. J Appl Microbiol 91, 572-579
3. Eversley, D. E. C. (ed) (1965) A History Of Epidemics In Britain, With Additional Material
4. Johnson, N. P., and Mueller, J. (2002) Updating the accounts: global mortality of the 1918-1920 'Spanish' influenza pandemic. Bull Hist Med 76, 105-115
5. Peiris, J. S., de Jong, M. D., and Guan, Y. (2007) Avian influenza virus (H5N1): a threat to human health. Clin Microbiol Rev 20, 243-267
6. Hay, A. J., Gregory, V., Douglas, A. R., and Lin, Y. P. (2001) The evolution of human influenza viruses. Philos Trans R Soc Lond B Biol Sci 356, 1861-1870
7. Wu, Y., Wu, Y., Tefsen, B., Shi, Y., and Gao, G. F. (2014) Bat-derived influenza-like viruses H17N10 and H18N11. Trends Microbiol 22, 183-191
8. WHO. (1980) A revision of the system of nomenclature for influenza viruses: a WHO memorandum. Bull World Health Organ 58, 585-591
9. Hinshaw, V. S., Webster, R. G., and Turner, B. (1980) The perpetuation of orthomyxoviruses and paramyxoviruses in Canadian waterfowl. Can J Microbiol 26, 622-629
10. Li, C., Yu, K., Tian, G., Yu, D., Liu, L., Jing, B., Ping, J., and Chen, H. (2005) Evolution of H9N2 influenza viruses from domestic poultry in Mainland China. Virology 340, 70-83
11. WHO. (2005) Avian influenza: assessing the pandemic threat.
12. Reperant, L. A., Kuiken, T., and Osterhaus, A. D. (2012) Adaptive pathways of zoonotic influenza viruses: from exposure to establishment in humans. Vaccine 30, 4419-4434
13. Peiris, M., Yuen, K. Y., Leung, C. W., Chan, K. H., Ip, P. L., Lai, R. W., Orr, W. K., and Shortridge, K. F. (1999) Human infection with influenza H9N2. Lancet 354, 916-917
14. Tweed, S. A., Skowronski, D. M., David, S. T., Larder, A., Petric, M., Lees, W., Li, Y., Katz, J., Krajden, M., Tellier, R., Halpert, C., Hirst, M., Astell, C., Lawrence, D., and Mak, A. (2004) Human illness from avian influenza H7N3, British Columbia. Emerg Infect Dis 10, 2196-2199
15. Fouchier, R. A., Schneeberger, P. M., Rozendaal, F. W., Broekman, J. M., Kemink, S. A., Munster, V., Kuiken, T., Rimmelzwaan, G. F., Schutten, M., Van Doornum, G. J., Koch, G., Bosman, A., Koopmans, M., and Osterhaus, A. D. (2004) Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A 101, 1356-1361
16. Gao, R., Cao, B., Hu, Y., Feng, Z., Wang, D., Hu, W., Chen, J., Jie, Z., Qiu, H., Xu, K., Xu, X., Lu, H., Zhu, W., Gao, Z., Xiang, N., Shen, Y., He, Z., Gu, Y., Zhang, Z., Yang, Y., Zhao, X., Zhou, L., Li, X., Zou, S., Zhang, Y., Li, X., Yang, L., Guo, J., Dong, J., Li, Q., Dong, L., Zhu, Y., Bai, T., Wang, S., Hao, P., Yang, W., Zhang, Y., Han, J., Yu, H., Li, D., Gao, G. F., Wu, G., Wang, Y., Yuan, Z., and Shu, Y. (2013) Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med 368, 1888-1897
17. Watanabe, T., Kiso, M., Fukuyama, S., Nakajima, N., Imai, M., Yamada, S., Murakami, S., Yamayoshi, S., Iwatsuki-Horimoto, K., Sakoda, Y., Takashita, E., McBride, R., Noda, T., Hatta, M., Imai, H., Zhao, D., Kishida, N., Shirakura, M., de Vries, R. P., Shichinohe, S., Okamatsu, M., Tamura, T., Tomita, Y., Fujimoto, N., Goto, K., Katsura, H., Kawakami, E., Ishikawa, I., Watanabe, S., Ito, M., Sakai-Tagawa, Y., Sugita, Y., Uraki, R., Yamaji, R., Eisfeld, A. J., Zhong, G., Fan, S., Ping, J., Maher, E. A., Hanson, A., Uchida, Y., Saito, T., Ozawa, M., Neumann, G., Kida, H., Odagiri, T., Paulson, J. C., Hasegawa, H., Tashiro, M., and Kawaoka, Y. (2013) Characterization of H7N9 influenza A viruses isolated from humans. Nature 501, 551-555
18. Jernigan, D. B., and Cox, N. J. (2015) H7N9: preparing for the unexpected in influenza. Annu Rev Med 66, 361-371
19. WHO. (2017) Human infection with avian influenza A(H7N9) virus – China.
20. Yiu Lai, K., Wing Yiu Ng, G., Fai Wong, K., Fan Ngai Hung, I., Kam Fai Hong, J., Fan Cheng, F., and Kwok Cheung Chan, J. (2013) Human H7N9 avian influenza virus infection: a review and pandemic risk assessment. Emerg Microbes Infect 2, e48
21. CDC. (2013) Genetic Evolution of H7N9 Virus in China.
22. Liu, D., Shi, W., Shi, Y., Wang, D., Xiao, H., Li, W., Bi, Y., Wu, Y., Li, X., Yan, J., Liu, W., Zhao, G., Yang, W., Wang, Y., Ma, J., Shu, Y., Lei, F., and Gao, G. F. (2013) Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses. Lancet 381, 1926-1932
23. Yang, H., Carney, P. J., Chang, J. C., Villanueva, J. M., and Stevens, J. (2013) Structural analysis of the hemagglutinin from the recent 2013 H7N9 influenza virus. J Virol 87, 12433-12446
24. Belser, J. A., Gustin, K. M., Pearce, M. B., Maines, T. R., Zeng, H., Pappas, C., Sun, X., Carney, P. J., Villanueva, J. M., Stevens, J., Katz, J. M., and Tumpey, T. M. (2013) Pathogenesis and transmission of avian influenza A (H7N9) virus in ferrets and mice. Nature 501, 556-559
25. Matrosovich, M. N., Gambaryan, A. S., Teneberg, S., Piskarev, V. E., Yamnikova, S. S., Lvov, D. K., Robertson, J. S., and Karlsson, K. A. (1997) Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology 233, 224-234
26. Chen, Y., Liang, W., Yang, S., Wu, N., Gao, H., Sheng, J., Yao, H., Wo, J., Fang, Q., Cui, D., Li, Y., Yao, X., Zhang, Y., Wu, H., Zheng, S., Diao, H., Xia, S., Zhang, Y., Chan, K. H., Tsoi, H. W., Teng, J. L., Song, W., Wang, P., Lau, S. Y., Zheng, M., Chan, J. F., To, K. K., Chen, H., Li, L., and Yuen, K. Y. (2013) Human infections with the emerging avian influenza A H7N9 virus from wet market poultry: clinical analysis and characterisation of viral genome. Lancet 381, 1916-1925
27. Chen, W., Calvo, P. A., Malide, D., Gibbs, J., Schubert, U., Bacik, I., Basta, S., O'Neill, R., Schickli, J., Palese, P., Henklein, P., Bennink, J. R., and Yewdell, J. W. (2001) A novel influenza A virus mitochondrial protein that induces cell death. Nature medicine 7, 1306-1312
28. Wise, H. M., Foeglein, A., Sun, J., Dalton, R. M., Patel, S., Howard, W., Anderson, E. C., Barclay, W. S., and Digard, P. (2009) A complicated message: Identification of a novel PB1-related protein translated from influenza A virus segment 2 mRNA. J Virol 83, 8021-8031
29. Chakrabarti, A. K., and Pasricha, G. (2013) An insight into the PB1F2 protein and its multifunctional role in enhancing the pathogenicity of the influenza A viruses. Virology 440, 97-104
30. Bruns, K., Studtrucker, N., Sharma, A., Fossen, T., Mitzner, D., Eissmann, A., Tessmer, U., Roder, R., Henklein, P., Wray, V., and Schubert, U. (2007) Structural characterization and oligomerization of PB1-F2, a proapoptotic influenza A virus protein. J Biol Chem 282, 353-363
31. Chevalier, C., Al Bazzal, A., Vidic, J., Fevrier, V., Bourdieu, C., Bouguyon, E., Le Goffic, R., Vautherot, J. F., Bernard, J., Moudjou, M., Noinville, S., Chich, J. F., Da Costa, B., Rezaei, H., and Delmas, B. (2010) PB1-F2 influenza A virus protein adopts a beta-sheet conformation and forms amyloid fibers in membrane environments. J Biol Chem 285, 13233-13243
32. Vidic, J., Richard, C. A., Pechoux, C., Da Costa, B., Bertho, N., Mazerat, S., Delmas, B., and Chevalier, C. (2016) Amyloid Assemblies of Influenza A Virus PB1-F2 Protein Damage Membrane and Induce Cytotoxicity. J Biol Chem 291, 739-751
33. Lowy, R. J. (2003) Influenza virus induction of apoptosis by intrinsic and extrinsic mechanisms. Int Rev Immunol 22, 425-449
34. Gibbs, J. S., Malide, D., Hornung, F., Bennink, J. R., and Yewdell, J. W. (2003) The influenza A virus PB1-F2 protein targets the inner mitochondrial membrane via a predicted basic amphipathic helix that disrupts mitochondrial function. J Virol 77, 7214-7224
35. Yamada, H., Chounan, R., Higashi, Y., Kurihara, N., and Kido, H. (2004) Mitochondrial targeting sequence of the influenza A virus PB1-F2 protein and its function in mitochondria. FEBS Lett 578, 331-336
36. Yoshizumi, T., Ichinohe, T., Sasaki, O., Otera, H., Kawabata, S., Mihara, K., and Koshiba, T. (2014) Influenza A virus protein PB1-F2 translocates into mitochondria via Tom40 channels and impairs innate immunity. Nat Commun 5, 4713
37. Chanturiya, A. N., Basanez, G., Schubert, U., Henklein, P., Yewdell, J. W., and Zimmerberg, J. (2004) PB1-F2, an influenza A virus-encoded proapoptotic mitochondrial protein, creates variably sized pores in planar lipid membranes. J Virol 78, 6304-6312
38. Henkel, M., Mitzner, D., Henklein, P., Meyer-Almes, F. J., Moroni, A., Difrancesco, M. L., Henkes, L. M., Kreim, M., Kast, S. M., Schubert, U., and Thiel, G. (2010) The proapoptotic influenza A virus protein PB1-F2 forms a nonselective ion channel. PLoS One 5, e11112
39. Zamarin, D., Garcia-Sastre, A., Xiao, X., Wang, R., and Palese, P. (2005) Influenza virus PB1-F2 protein induces cell death through mitochondrial ANT3 and VDAC1. PLoS Pathog 1, e4
40. Varga, Z. T., Grant, A., Manicassamy, B., and Palese, P. (2012) Influenza virus protein PB1-F2 inhibits the induction of type I interferon by binding to MAVS and decreasing mitochondrial membrane potential. J Virol 86, 8359-8366
41. Pinar, A., Dowling, J. K., Bitto, N. J., Robertson, A. A., Latz, E., Stewart, C. R., Drummond, G. R., Cooper, M. A., McAuley, J. L., Tate, M. D., and Mansell, A. (2017) PB1-F2 Peptide Derived from Avian Influenza A Virus H7N9 Induces Inflammation via Activation of the NLRP3 Inflammasome. J Biol Chem 292, 826-836
42. Conenello, G. M., Tisoncik, J. R., Rosenzweig, E., Varga, Z. T., Palese, P., and Katze, M. G. (2011) A single N66S mutation in the PB1-F2 protein of influenza A virus increases virulence by inhibiting the early interferon response in vivo. J Virol 85, 652-662
43. McAuley, J. L., Chipuk, J. E., Boyd, K. L., Van De Velde, N., Green, D. R., and McCullers, J. A. (2010) PB1-F2 proteins from H5N1 and 20 century pandemic influenza viruses cause immunopathology. PLoS Pathog 6, e1001014
44. Mazur, I., Anhlan, D., Mitzner, D., Wixler, L., Schubert, U., and Ludwig, S. (2008) The proapoptotic influenza A virus protein PB1-F2 regulates viral polymerase activity by interaction with the PB1 protein. Cell Microbiol 10, 1140-1152
45. McCullers, J. A. (2006) Insights into the interaction between influenza virus and pneumococcus. Clin Microbiol Rev 19, 571-582
46. McAuley, J. L., Hornung, F., Boyd, K. L., Smith, A. M., McKeon, R., Bennink, J., Yewdell, J. W., and McCullers, J. A. (2007) Expression of the 1918 influenza A virus PB1-F2 enhances the pathogenesis of viral and secondary bacterial pneumonia. Cell Host Microbe 2, 240-249
47. Chen, C. J., Chen, G. W., Wang, C. H., Huang, C. H., Wang, Y. C., and Shih, S. R. (2010) Differential localization and function of PB1-F2 derived from different strains of influenza A virus. J Virol 84, 10051-10062
48. Mitzner, D., Dudek, S. E., Studtrucker, N., Anhlan, D., Mazur, I., Wissing, J., Jansch, L., Wixler, L., Bruns, K., Sharma, A., Wray, V., Henklein, P., Ludwig, S., and Schubert, U. (2009) Phosphorylation of the influenza A virus protein PB1-F2 by PKC is crucial for apoptosis promoting functions in monocytes. Cell Microbiol 11, 1502-1516
49. Kosik, I., Praznovska, M., Kosikova, M., Bobisova, Z., Holly, J., Vareckova, E., Kostolansky, F., and Russ, G. (2015) The ubiquitination of the influenza A virus PB1-F2 protein is crucial for its biological function. PLoS One 10, e0118477
50. Chen, X., Barton, L. F., Chi, Y., Clurman, B. E., and Roberts, J. M. (2007) Ubiquitin-independent degradation of cell-cycle inhibitors by the REGgamma proteasome. Mol Cell 26, 843-852
51. Coulombe, P., Rodier, G., Bonneil, E., Thibault, P., and Meloche, S. (2004) N-Terminal ubiquitination of extracellular signal-regulated kinase 3 and p21 directs their degradation by the proteasome. Mol Cell Biol 24, 6140-6150
52. Tsvetkov, P., Reuven, N., and Shaul, Y. (2009) The nanny model for IDPs. Nature chemical biology 5, 778-781
53. Zwickl, P., Ng, D., Woo, K. M., Klenk, H. P., and Goldberg, A. L. (1999) An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes. J Biol Chem 274, 26008-26014
54. Choo, Y. S., and Zhang, Z. (2009) Detection of protein ubiquitination. J Vis Exp
55. Chou, T. L. (2016) Production of novel influenza A(H7N9) virus recombinant ribonucleoproteins and anti-nucleoprotein monoclonal antibodies
56. Kapust, R. B., and Waugh, D. S. (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 8, 1668-1674
57. Cheng, Y. Y., Yang, S. R., Wang, Y. T., Lin, Y. H., and Chen, C. J. (2017) Amino Acid Residues 68-71 Contribute to Influenza A Virus PB1-F2 Protein Stability and Functions. Front Microbiol 8, 692
58. Sheaff, R. J., Singer, J. D., Swanger, J., Smitherman, M., Roberts, J. M., and Clurman, B. E. (2000) Proteasomal turnover of p21Cip1 does not require p21Cip1 ubiquitination. Mol Cell 5, 403-410
59. Chen, X., Chi, Y., Bloecher, A., Aebersold, R., Clurman, B. E., and Roberts, J. M. (2004) N-acetylation and ubiquitin-independent proteasomal degradation of p21(Cip1). Mol Cell 16, 839-847
60. Reis, A. L., and McCauley, J. W. (2013) The influenza virus protein PB1-F2 interacts with IKKbeta and modulates NF-kappaB signalling. PLoS One 8, e63852
61. Lamark, T., and Johansen, T. (2012) Aggrephagy: selective disposal of protein aggregates by macroautophagy. Int J Cell Biol 2012, 736905
62. Hjerpe, R., Bett, J. S., Keuss, M. J., Solovyova, A., McWilliams, T. G., Johnson, C., Sahu, I., Varghese, J., Wood, N., Wightman, M., Osborne, G., Bates, G. P., Glickman, M. H., Trost, M., Knebel, A., Marchesi, F., and Kurz, T. (2016) UBQLN2 Mediates Autophagy-Independent Protein Aggregate Clearance by the Proteasome. Cell 166, 935-949
63. Kisselev, A. F., Callard, A., and Goldberg, A. L. (2006) Importance of the different proteolytic sites of the proteasome and the efficacy of inhibitors varies with the protein substrate. J Biol Chem 281, 8582-8590
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77917-
dc.description.abstract新型H7N9禽流感病毒的特色為高重症率與高死亡率,而流感病毒蛋白質PB1-F2是造成高重症率的因子之一。PB1-F2為病毒聚合酶PB1基因根據另外一個轉譯閱讀框架而轉譯出的蛋白質。研究指出PB1-F2可增進PB1聚合酶的活性,亦可藉由改變粒線體之膜電位而造成細胞凋亡,或者破壞宿主抵禦病毒入侵的機制,進而造成肺部的二次性細菌感染。本研究發現將新型H7N9流感病毒之PB1-F2基因於HEK293細胞表現時,其表現量可因加入蛋白酶體之抑制劑MG132,而有顯著上升的現象,顯示半衰期短暫的H7N9 PB1-F2蛋白質於細胞內的穩定性可能是由蛋白酶體所調控。進一步將PB1-F2分子上可能會被泛素化的所有離胺酸突皆變為精胺酸時,此PB1-F2的突變株於細胞中仍會被快速的降解,除非同時以MG132來處理細胞,才能偵測到PB1-F2的表現,顯示其降解可能並不需要經過泛素化。本研究亦於大腸桿菌中,成功表現及純化出N端為麥芽糖結合蛋白 (Maltose-binding protein, MBP) 與C端為PB1-F2的融合重組蛋白質 (MBP-F2)。將MBP-F2或MBP分別與20S蛋白酶體進行反應後,實驗結果顯示MBP-F2受到蛋白酶體的降解速率比MBP降解速率為慢,此結果與細胞實驗結果不同,詳細的反應機制尚須進一步探討。zh_TW
dc.description.abstractThe novel avian influenza virus H7N9 is known to have high morbidity and mortality. Influenza protein PB1-F2 is one of the factor that contributes to sever symptoms. PB1-F2 is translated from the alternative open reading frame of the viral PB1 polymerase gene segment. Previous studies showed that PB1-F2 could enhance the activity of PB1 polymerase, and could enter mitochondria intermembrane space to alter the membrane potential which results in cell apoptosis. It could also interact with mitochondrial antiviral signaling protein, damage the immunity of host cells, and cause secondary bacterial lung infection. This study found that the H7N9 PB1-F2 protein expression in HEK293 cell line was elevated by treated with proteasome inhibitor MG132, indicating that the stability of short-lived H7N9 PB1-F2 protein in cells might be regulated by proteasome. Furthermore, the PB1-F2 mutant without containing any potential ubiquitination lysine residues, which were replaced by arginines, was still degraded rapidly unless treated cells with MG132, demonstrating that the degradation of PB1-F2 might be ubiquitination-independent. In addition, the maltose binding protein (MBP) conjugated with a C-terminal PB1-F2 fusion protein (MBP-F2) was successfully expressed and purified by using Escherichia coli expression system. The purified MBP or MBP-F2 was then incubated with 20S proteasome respectively. The data showed that the degradation of MBP-F2 catalyzed by 20S proteasome in vitro was slower than that of MBP, revealing a different result observed in cellular experiments. More detailed investigation about the relationship between PB1-F2 and proteasome need to be further explored.en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:37:22Z (GMT). No. of bitstreams: 1
ntu-106-R04b22002-1.pdf: 2760236 bytes, checksum: 78315901ce88d1541940f333cfdce34e (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents目錄 i
摘要 iii
Abstract iv
縮寫表 v
第一章 緒論 1
1.1. 流感病毒 1
1.1.1. 禽流感病毒 3
1.1.2. 新型H7N9病毒 4
1.2. Polymerase basic protein- frame 2 (PB1-F2) 5
1.2.1. PB1-F2蛋白質的發現 5
1.2.2. PB1-F2蛋白質的結構 6
1.2.3. PB1-F2在細胞凋亡機制上游以及細胞先天免疫功能調節的角色 6
1.2.4. PB1-F2蛋白質可以調控PB1聚合酶的活性 8
1.2.5. PB1-F2蛋白質可以增進細菌二次感染宿主的機會 8
1.2.6. 依賴蛋白酶體的降解機制以及PB1-F2的泛素化 8
1.3. 研究動機 9
第二章 材料與方法 11
2.1. PB1-F2基因來源 11
2.2. 大腸桿菌菌株 11
2.2.1. 大腸桿菌DH5α 11
2.2.2. 大腸桿菌BL21(DE3) 11
2.2.3. 大腸桿菌Rosetta(DE3) 12
2.2.4. 大腸桿菌Origami(DE3) 12
2.2.5. 大腸桿菌Tuner(DE3) 12
2.3. 人類細胞株 12
2.4. PB1-F2重組蛋白質表現質體建立 13
2.4.1. PB1-F2突變株建立 14
2.5. 重組蛋白質表現 14
2.6. 重組蛋白質純化 15
2.7. 細胞轉染 16
2.8. 變性免疫沉澱法 16
2.9. 免疫染色分析 17
2.10. 胞外20S蛋白酶體降解試驗 17
第三章 結果 19
3.1. PB1-F2蛋白質在HEK293細胞中的穩定性 19
3.1.1. HEK 293細胞表現質體建構 19
3.1.2. V5-F2-His和GFP-F2重組蛋白質在HEK293細胞內的穩定度分析 19
3.2. PB1-F2在細胞中的表現與探討其蛋白酶體降解機制 20
3.2.1. 免疫沉澱分析泛素化之GFP-F2重組蛋白質 20
3.2.2. PB1-F2突變株建立 20
3.2.3. PB1-F2野生株與突變株在HEK293細胞當中的表現量 21
3.3. PB1-F2與20S蛋白酶體的胞外試驗 21
3.3.1. 大腸桿菌表現質體建構 21
3.3.2. His-F2-His在不同株大腸桿菌當中的表現情況 22
3.3.3. MBP-F2表現與純化 22
3.3.4. MBP表現與純化 23
3.3.5. 20S蛋白酶體表現與純化 23
3.3.6. PB1-F2與20S蛋白酶體的胞外試驗 23
3.3.7. TEV蛋白酶表現與純化 25
3.3.8. MBP-F2與TEV蛋白酶的反應與F2-His的純化 25
第四章 討論 26
4.1. PB1-F2重組蛋白質在細胞內的穩定度 26
4.2. PB1-F2重組蛋白質的表現與純化 27
4.3. PB1-F2的胞外試驗 28
參考文獻 30
圖與表 36
附錄 54
dc.language.isozh-TW
dc.title新型H7N9流感病毒蛋白質PB1-F2與蛋白酶體之關聯性研究zh_TW
dc.titleStudy of the Relationship between the Novel Avian Influenza A(H7N9) Virus PB1-F2 Protein and Proteasomeen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖憶純,陳慧文,鄭貽生
dc.subject.keyword新型H7N9流感病毒,PB1-F2,蛋白?體,zh_TW
dc.subject.keywordH7N9 influenza virus,PB1-F2,proteasome,en
dc.relation.page60
dc.identifier.doi10.6342/NTU201702950
dc.rights.note有償授權
dc.date.accepted2017-08-10
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-106-R04b22002-1.pdf
  目前未授權公開取用
2.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved