Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77913
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅筱鳳(Hsiao-Feng Lo)
dc.contributor.authorChih-Yu Linen
dc.contributor.author林芷宇zh_TW
dc.date.accessioned2021-07-11T14:37:17Z-
dc.date.available2022-08-31
dc.date.copyright2017-08-31
dc.date.issued2017
dc.date.submitted2017-08-11
dc.identifier.citation1. 王貴彥、使秀捧、張建桓、梁衛理. 2000. TDR法、中子法、重量法測定土壤含水量的比較研究. 河北農業大學學報. 23:23-26.
2. 李涵茵. 2015. 花壇植物耐旱指標篩選及水分管理之研究. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北. 臺灣.
3. 周國隆. 2008. 毛豆外銷生力軍-高雄9號 綠晶. 高雄區農技報導. 行政院農業委員會高雄區農業改良場. 93:1-16.
4. 周國隆. 2014. 芋香毛豆「高雄11號-香蜜」茶豆. 高雄區農技報導. 行政院農業委員會高雄區農業改良場.
5. 邱奕璇. 2012. 菊花耐淹水指標與水分生理. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北. 臺灣.
6. 徐邦達. 2001. 來自植物的葉綠素螢光:原理及測量. 國立臺灣大學園藝暨景觀學系光合作用研討會. 臺北.1-9.
7. 區少梅. 2002. 吃GABA降血壓. 元氣齋出版社. 新北. 台灣.
8. 曹辛之、羅筱鳳. 2014. 蔬菜(Ⅱ). 復文書局. 臺南市.
9. 連大進、吳昭慧. 2006. 台灣農家要覽:農作篇(二). 行政院農業委員會. 台北市.
10. 廖宜倫、林雲康、陳鐶斌、吳昭慧. 2013. 活化休耕地-毛豆. 臺中區農業專訊. 台中. 80:23-26.
11. 羅正宗、呂奇峰、陳榮坤、陳演書、劉啟東. 2014c. 耐旱節水水稻新品系之研發. 因應氣候變遷及糧食安全之農業創新研討會論文集.63-70.
12. Abdou, A.M., S. Higashiguchi, K. Horie, M. Kim, H. Hatta, and H. Yokogoshi. 2006. Relaxation and immunity enhancement effects of γ-aminobutyric acid (GABA) administration in humans. BioFactors 26:201-208.
13. Ackerson, R.C. 1985. Invertase activity and abscisic acid in relation to carbohydrate status in developing soybean reproductive structures. Crop Sci. 25:615-618.
14. Aghdam, M.S., R. Naderi, A. Jannatizadeh, M. Babalar, M.A.A. Sarcheshmeh, and M.Z. Faradonbe. 2016. Impact of exogenous GABA treatments on endogenous GABA metabolism in anthurium cut flowers in response to postharvest chilling temperature. Plant Physiol. and Biochem. 106:11-15.
15. Ali, Z.I. and S.D. Golombek. 2016. Effect of drought and nitrogen availability on osmotic adjustment of five pearl millet cultivars in the vegetative growth stage. J. Agro. Crop Sci. 202:433-444.
16. Ansari, M.I., R.H. Lee, and G.c. SC. 2005. A novel senescence-associated gene encoding gamma-aminobutyric acid (GABA) : pyruvate transaminase is upregulated during rice leaf senescence. Physiol. Plant 123:1-8.
17. Aparicio-Tejo, P.M. and J.S. Boyer. 1983. Significance of accelerated leaf senescence at low water potentials for water loss and grain yield in maize. Crop Sci. 23:1198-1201.
18. Apel, K. and H. Hirt. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann. Rev. Plant Biol. 55:373-399.
19. Bahrun, A., C.R. Jensen, F. Asch, and V.O. Mongensen. 2002. Drought induced changes in xylem pH, ionic composition, and ABA concentration act as early signals in field-grown maize (Zea mays L.). J. Exp. Bot. 53:251-263.
20. Bai, Q.Y., M.Q. Chai, Z.X. Gu, X.H. Cao, Y. Li, and K.L. Liu. 2009. Effect of components in culture medium on glutamate decarboxylase activity and gamma-aminobutyric acid accumulation in foxtail millet (Setaria italica L.) during germination. Food Chem. 116:152-157.
21. Ball, P. 2011. Biophysics: More than a bystander. Nature 478:467-468.
22. Bartels, D. and R. Sunkar. 2005. Drought and salt tolerance in plants. Crit. Rev. Plant Sci. 24:23-58.
23. Bartlett, M.K., C. Scoffoni, and L. Sack. 2012. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecology Letters 15:393-405.
24. Batistič, O. and J. Kudla. 2012. Analysis of calcium signaling pathways in plants. Biochimica et Biophysica Acta (BBA) - General Subjects 1820:1283-1293.
25. Bhatnager, P., B.M. Glasheen, S.K. Bains, L.S. L., R. Minocha, C. Walter, and S.C. Minocha. 2001. Transgenic manipulation of the metabolism of polyamines in poplar cells. Plant physiol. 125:2139-2153.
26. Blum, A. 2017. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant, Cell & Environ. 40:4-10.
27. Board, J.E. and O. Tan. 1995. Assimilatory capacity effects on soybean yield components and pod number. Crop Sci. 35:846-851.
28. Bor, M., B. Seckin, R. Ozgur, O. Yılmaz, F. Ozdemir, and I. Turkan. 2009. Comparative effects of drought, salt, heavy metal and heat stresses on gamma-aminobutryric acid levels of sesame (Sesamum indicum L.). Acta Physiol. Plant. 31:655-659.
29. Bouché, N. and H. Fromm. 2004. GABA in plants: just a metabolite? Plant Sci. 9:110-115.
30. Bown, A.W. and B.J. Shelp. 1997. The metabolism and functions of γ-aminobutyric acid Plant physiol. 115:1-5.
31. Brevedan, R.E. and D.B. Egli. 2003. Short periods of water stress during seed filling, leaf senescence, and yield of soybean. Crop Sci. 43:2083-2088.
32. Bullock, D.G. and D.S. Anderson. 1998. Evaluation of the Minolta SPAD-502 chlorophyllmeter for nitrogen management in corn. J. Plant Nutr. 21:741-755.
33. Burnett, S.E. and M.W.v. Iersel. 2008. Morphology and irrigation efficiency of Gaura lindheimeri grown with capacitance sensor-controlled irrigation. HortScience 43:1555-1560.
34. Chaves, M.M., J.S. Pereira, J. Maroco, M.L. Rodrigues, C.P.P. Ricardo, M.L. OSÓRIO, I. Carvalho, T. Faria, and C. Pinheiro. 2002. How plants cope with stress in the field : photosynthesis and growth. Ann. Bot. 89:907-916.
35. Chen, D., S. Wang, B. Cao, D. Cao, G. Leng, H. Li, L. Yin, L. Shan, and X. Deng. 2016. Genotypic variation in growth and physiological response to drought stress and re-watering reveals the critical role of recovery in drought adaptation in maize seedlings. Front Plant Sci. 6:1-15.
36. Chen, J., R.J. Henny, D.B. McConnell, and T.A. Nell. 2001. Cultivar differences in interior performances of acclimatized foliage plants. Acta Hort. 543:135-140.
37. Choi, D.-H., H.-Y. Ban, B.-S. Seo, K.-J. Lee, and B.-W. Lee. 2016. Phenology and seed yield performance of determinate soybean cultivars grown at elevated temperatures in a temperate region. Plos One 11:1-18.
38. Christensen, H.N., Greene AA, Kakuda DK, and M. CL. 1994. Special transport and neurological significance of two amino acids in a configuration conventionally designated as D. J. Exp. Biol. 196:297-305.
39. Crusciol, C.A.C., A.L. Pulz, L.B. Lemos, R.P. Soratto, and G.P.P. Lima. 2009. Effects of silicon and drought stress on tuber yield and leaf biochemical characteristics in potato. Crop Sci. 49:949-954.
40. Das, R., A. Pandey, and G.K. Pandey. 2014. Role of Calcium/Calmodulin in Plant Stress Response and Signaling, p. 53-84. In: R. K. Gaur and P. Sharma (eds.). Approaches to Plant Stress and their Management. Springer India, New Delhi.
41. de Souza, P.I., D.B. Egli, and W.P. Bruening. 1997. Water stress during seed filling and leaf senescence in soybean. Agron. J. 89:807-812.
42. Dembinska, O., S. Lalonde, and H.S. Saini. 1992. Evidence against the regulation of grain set by spikelet abscisic acid levels in water-stressed wheat. Plant physiol. 100:1599-1602.
43. Dodd, I.C., J. He, C.G.N. Turnbull, S.K. Lee, and C. Critchley. 2000. The influence of supra-optimal root-zone temperature on growth and stomatal conductance in Capsicum annuum L. J. Exp. Bot. 51:239-248.
44. Dornbos, D.L., R.E. Mullen, and R.M. Shibles. 1989. Drought stress effects during seed fill on soybean seed germination and vigor. Crop Sci. 29:476-480.
45. Dybing, C.D., H. Ghiasi, and C. Peach. 1986. Biochemical characterization of soybean ovary growth from anthesis to abscission of aborting ovaries. Plant Physiol. 81:1069-1074.
46. Egli, D.B. 1998. Seed biology and the yield of grain crops. CAB International, Wallingford, UK.
47. Egli, D.B. and W.P. Bruening. 2004. Water stress, photosynthesis, seed sucrose levels and seed growth in soybean. J. Agricultural Sci. 142:1-8.
48. Egli, D.B., R.D. Guffy, L.W. Meckel, and J.E. Leggett. 1985. The effect of source-sink alterations on soybean seed growth. Ann. Bot. 55:395-402.
49. Gao, X., C. Zou, L. Wang, and F. Zhang. 2006. Silicon decreases transpiration rate and conductance from stomata of maize plants. J. Plant Nutr. 29:1637-1647.
50. Ghobadi, M., M. Bakhshandeh, G. Fathi, M.H. Gharineh, K. Alami-Said, A. Naderi, and M.E. Ghobadi. 2006. Short and long periods of water stress during different growth stages of canola (Brassica napus L.): Effect on yield, yield components, seed oil and protein contents. J. Agron. 5:336-341.
51. Ghobadi, M., S. Taherabadi, M.E. Ghobadi, G.R. Mohammadi, and S. Jalai-Honarmand. 2013. Antioxidant capacity, photosynthetic characteristics and water relations of sunflower (Helianthus annuus L.) cultivars in response to drought stress. Industrial Crops and Products 50:29-38.
52. Gong, H., X. Zhu, K. Chen, S. Wang, and C. Zhang. 2005. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci. 169:313-321.
53. Gong, W.Z., C.D. Jiang, Y.S. Wu, H.H. Chen, W.Y. Liu, and W.Y. Yang. 2015. Tolerance vs. avoidance: two strategies of soybean (Glycine max) seedlings in response to shade in intercropping. Photosynthetica 53:259-268.
54. Greer, L. and J.M. Dole. 2003. Aluminum foil, aluminum-painted, plastic, and degradable mulches increase yields and decrease insect vectored viral diseases of vegetables. HortTechnology 13:276-284.
55. Grzesiak, S., M. Iigima, Y. Kono, and A. Yamauchi. 1997a. Differences in drought tolerance between cultivars of field bean and field pea. Morphological characteristics, germination and seedling growth. Acta physiol. Plant 19:339-348.
56. Guergel, M., O. Baccouri, D. Boujnah, W. Chaibi, and M. Zarrouk. 2009. Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Sci. Hortic. 119:257-263.
57. Gunes, A., D.J. Pilbeam, A. Inal, and S. Coban. 2008. Influence of silicon on sunflower cultivars under drought stress. Ⅰ: Growth, antioxidant mechanisms, and peroxidation and lipid peroxidation. Commun. Soil Sci. Plant Analysis 39:1885-1903.
58. Hall, A.E. 2001. Crop response to enivironment CRC Press. New York.
59. Hatfield, J. L., K.J. Boote, B.A. Kimball, L.H. Ziska, R.C. Izaurralde, and D. Ort. 2011. Climate impacts on agriculture : Implications for crop production. Agron. J. 103:351-370.
60. Hattori, T., S. Inanaga, H. Araki, A. Ping, S. Morita, M. Luxová, and A. Lux. 2005. Application of silicon enhanced drought tolerance in Sorghum bicolor. Plant Physiol. 123:459-466.
61. Henson, D.Y., S.E. Newman, and D.E. Hartley. 2006. Performance of selected herbaceous annual ornamentals grown at decreasing levels of irrigation. HortScience 41:1481-1486.
62. Henzler-Wildman, K., M. Lei, V. Thai, S. Kerns, M. Karplus, and D. Kern. 2007. A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450:913-916.
63. Hou, H. and K. Chang. 2004. Storage conditions affect soybean color, chemical composition and tofu qualities. J. Food Processing Preservation 28:473-488.
64. Hou, H.J. and K.C. Chang. 2003. Yield and textural properties of tofu as affected by the changes of phytate content during soybean storage. J. Food Sci. 68:1185-1191.
65. Jabs, T., M. Tschope, C. Colling, K. Hahlbrock, and D. Scheel. 1997. Elicitor-stimulated ion fluxes and O2- from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc. Natl. Acad. Sci. 94:4800-4805.
66. Kasirajan, S. and M. Ngouajio. 2012. Polyethylene and biodegradable mulches for agricultural applications : A review. Agron. Sustainable Dev. 32:501-529.
67. Khan, H.R., J.G. Paull, K.H.M. Siddique, and F.L. Stoddard. 2010. Faba bean breading for drought - affected environments : A physiological and agronomic perspective. Field Crops Res. 115:279-286.
68. Khan, T.A., Q. Fariduddin, and M. Yusuf. 2015. Lycopersicon esculentum under temperature stress: and approach toward enhanced antioxidants and yield. Environ. Sci. Pollut. Res. 22:14178-14188.
69. Kim, J.-Y., A. Mahé, J. Brangeon, and J.-L. Prioul. 2000. A maize vacuolar invertase, IVR2, is induced by water stress. Organ/tissue specificity and diurnal modulation of expression. Plant Physiol. 124:71-84.
70. King, C.A. and L.C. Purcell. 2006. Genotypic variation for shoot N concentration and response to water deficits in soybean. Crop Sci. 46:2396-2402.
71. Kinnersley, A.M. and F.J. Turano. 2000. Gamma aminobutyric acid (GABA) and plant responses to stress. Critical Reviews in Plant Sciences 19:479-509.
72. Korte, L.L., J.E. Specht, W.J. H., and R.C. Sorensen. 1983. Irrigation of soybean genotypes during reproductive ontogeny. Ⅱ. Yield component responses. Crop Sci. 23:528-533.
73. Krishnan, P., R. Singh, A.P.S. Verma, D.K. Joshi, and S. Singh. 2014. Changes in seed water status as characterized by NMR in developing soybean seed grown under moisture stress conditions. Biochemical and Biophysical Research Communications 444:485-490.
74. Krishnan, S., K. Laskowski, V. Shukla, and E.B. Merewitz. 2013. Mitigation of drought stress damage by exogenous application of a non-protein amino acid γ– aminobutyric acid on perennial ryegrass. J. Amer. Soc. Hort. Sci. 138:358–366.
75. Kron, A.P., G.M. Souza, and R.V. Ribeiro. 2008. Water deficiency at different developmental stages of Glycine max can improve drought tolerance. Bragantia 67:43-49.
76. Kubatsch, A., H. Grüneberg, and C. Ulrichs. 2006. Acclimatization of Ficus benjamina and Schefflera arboricola to indoor temperatures and low light intensities. Acta Hort. 711:133-138.
77. Leffel, R.C., P.B. Cregan, A.P. Bolgiano, and D.J. Thibeau. 1992. Nitrogen metabolism of normal and high-seed-protein soybean. Crop Sci. 32:747-750.
78. Leopold, A.C. and M.E. Musgrave. 1979. Respiratory changes with chilling injury of soybean. Plant Physiol. 64:702-705.
79. Li, Q., M. Deng, J. Chen, and R.J. Henny. 2009. Effects of light intensity and paclobutrazol on growth and interior performance of Pachira aquatica Aubl. HortScience 44:1291-1295.
80. Li, Y., Q. Bai, X. Jin, H. Wen, and Z. Gu. 2010. Effects of cultivar and culture conditions on γ-aminobutyric acid accumulation in germinated fava beans (Vicia faba L.). J. Sci. Food Agr. 90:52-57.
81. Liakatas, A., J.A. Clark, and J.L. Monteith. 1986. Measurements of the heat balance under plastic mulches. Agr. For. Meteorol. 36:227-239.
82. Lichtenthaler, H.K. 1996. Vegetation stress : an introduction to the stress concept in plants. J. Plant Physiol. 148:4-14.
83. Liu, F., M.N. Andersen, S.-E. Jacobsen, and C.R. Jensen. 2005. Stomatal control and water use efficiency of soybean (Glycine max L. Merr.) during progressive soil drying. Environ. Expt. Bot. 54:33-40.
84. Liu, F., M.N. Andersen, and C.R. Jensen. 2003a. Loss of pod set caused by drought stress is associated with water status and ABA content of reproductive structures in soybean. Functional Plant Biology 30:271-280.
85. Liu, F., M.N. Andersen, and C.R. Jensen. 2004a. Root signal controls pod growth in drought-stressed soybean during the critical, abortion-sensitive phase of pod development. Field Crops Research 85:159-166.
86. Liu, F., C.R. Jensen, and M.N. Andersen. 2003b. Hydraulic and chemical signals in the control of leaf expansion and stomatal conductance in soybean exposed to drought stress. Funct. Plant Biol. 30:65-73.
87. Liu, F., C.R. Jensen, and M.N. Andersen. 2004b. Drought stress effect on carbohydrate concentration in soybean leaves and pods during early reproductive development: its implication in altering pod set. Field Crops Research 86:1-13.
88. Liu, X., T. Ranman, C. Song, B. Su, F. Yang, T. Youg, Y. Wu, C. Zhang, and W. Yang. 2017. Changes in light environment, morphology, growth and yield of soybean in maize-soybean intercropping systems. Field Crops Res. 200:38-46.
89. Lu, C. and J. Zhang. 1998. Thermostability of photosystem II is increased in salt-stressed sorghum. J. Plant Physiol. 25:317-324.
90. Ma, J.F. and N. Yamaji. 2006. Silicaon uptake and accumulation in higher plants. Trends Plant Sci. 11:342-397.
91. Ma, Y., L. Qu, W. Wang, X. Yang, and T. Lei. 2016. Measuring soil water content through volume/mass replacement using a constant volume container. Geoderma 271:42-49.
92. Makbul, S., N. GÜLER, N. DURMUŞ, and S. GÜVEN. 2011. Change in anatomical and physiological parameters of soybean under drought stress. Turk. J. Bot. 35:369-377.
93. Marquez-Garcia, B., D. Shaw, J.W. Cooper, B. Karpinska, M.D. Quain, E.M. Makgopa, K. Kunert, and C.H. Foyer. 2015. Redox markers for drought-induced nodule senescence, a process occurring after drought-induced secescence of the lowest leaves in soybean (Glycine max). Ann. Bot. 116:497-510.
94. Mastrodomenico, A.T., L.C. Purcell, and C.A. King. 2013. The response and recovery of nitrogen fixation activity in soybean to water deficit at different reproductive developmental stages. Environ. Expt. Bot. 85:16-21.
95. Meckel, L.W., D.B. Egli, R.E. Phillips, D. Radcliffe, and J.E. Leggett. 1984. Effect of moisture stress on seed growth in soybeans Agron. J. 75:1027-1031.
96. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Plant Sci. 7:405-410.
97. Munz, S., S. Graeff-Hönninger, J.I. Lizaso, Q. Chen, and W. Claupein. 2014. Modeling light availability for a subordinate crop within a strip–intercropping system. Field Crops Research 155:77-89.
98. Neto, A.J.e.S., D.C. Lopes, F.A.C. Pinto, and S.e. Zolnier. 2017. Vis/NIR spectroscopy and chemometrics for non-destructive estimation of water and chlorophyll status in sunflower leaves. Biosystems Eng. 155:124-133.
99. Pandey, S., J. Singh, and I.B. Maurya. 2015. Effect of black polythene mulch on growth and yield of Winter Dawn strawberry (Fragaria x ananassa) by improving root zone temperature. Indian J. Agr. Sci. 85:1219-1222.
100. Panković, D., Z. Sakač, S. Kevrešan, and M. Plesničar. 1999. Acclimation to long-term water deficit in the leaves of two sunflower hybrids: photosynthesis, electron transport and carbon metabolism. J. Exp. Bot. 50:127-138.
101. Pelleschi, P., J.P. Rocher, and J.L. Prioul. 1997. Effect of water restriction on carbohydrate metabolism and photosynthesis in mature maize leaves. Plant Cell Environ. 20:493-503.
102. Pietrzak, L.N., J. Frégeau-Reid, B. Chatson, and B. Blackwell. 2002. Observations on water distribution in soybean seed during hydration processes using nuclear magnetic resonance imaging. Can. J. Plant Sci. 82:513-519.
103. Pitman, W.D., C. Holte, B.E. Conrad, and E.C. Bashaw. 1983. Histological differences in moisture stressed and non-stressed kleingrass forage. Crop Sci. 23:793-795.
104. Prasad, P.V.V., K.J. Boote, L.H. Allen, and J.M.G. Thomas. 2003. Super-optimal temperatures are detrimental to peanut (Arachis hypogaea L.) reproductive processes and yield at both ambient and elevated carbon dioxide. Global Change Biol. 9:1775-1787.
105. Ramalan, A.A. and C.U. Nwokeocha. 2000. Effects of furrow irrigation methods, mulching and soil water suction on the growth, yield and water use efficiency of tomato in the Nigerian Savanna. Agr. Water Mgt. 45:317-330.
106. Robinson, D.A., C.S. Campbell, J.W. Hopmans, B.K. Hornbuckle, S.B. Jones, R. Knight, F. Ogden, J. Selker, and O. Wendroth. 2008. Soil moisture measurement for ecological and hydrological moistureshed-scale observatories : a review. Vadose Zone J. 7:358-389.
107. Rohacek, K. and M. Bartak. 1999. Technique of the modukated chlorophyll fluorescence : basic concepts, useful parameters, and some applications. Pholosynthetica 37:339-363.
108. Roskruge, C.L. and M.T. Smith. 1997. Peroxidative changes associated with chilling injury in soybean seeds during imbibition. J. Plant Physiol. 151:620-626.
109. Rotundo, J.L. and M.E. Westgate. 2010. Rate and duration of seed component accumulation in water-stressed soybean. Crop Sci. 50:1-9.
110. Ruppenthal, V., T. Zoz, F. Steiner, M.d.C. Lana, and D.D. Castagnara. 2016. Silicon does not alleviate the adverse effects of drought stress in soybean plants. Ciências Agrárias 37:3941-3954.
111. Scarascia-Muggnozza, G., E. Schettini, and G. Vox. 2004. Effects of solar radiation on the radiometric propertics of biodegradable films for agricultural applications Biosystems Eng. 87:479-487.
112. Seki, M., T. Umezawa, K. Urano, and K. Shinozaki. 2007. Regulatory metabolic networks in drought stress responses. Curr. Opin. Plant Biol. 10:296-302.
113. Serraj, R., B.J. Shelp, and T.R. Sinclair. 1998. Accumulation of γ-aminobutyric acid in nodulated soybean in response to drought stress. Physiol. Plant. 102:79-86.
114. Setter, T.L. and B.A. Flannigan. 2001. Water deficit inhibits cell division and expression of transcripts involved in cell proliferation and endoreduplication in maize endosperm. J. Exp. Bot. 52:1401-1408.
115. Shao, H., L. Chu, C. Jaleel, and C. Zhao. 2008. Water deficit stress-induced anatomical changes in higher plants. CR Biol. 331:215-225.
116. Shelp, B.J., A.W. Bown, and M.D. McLean. 1999. Metabolism and functions of gamma-aminobutyric acid. Plant Sci. 4:446-452.
117. Sionit, N. and P.J. Kramer. 1977. Effect of water stress during different stages of growth of soybeans. Agron. J. 69:274-278.
118. Skierucha, W. 2000. Accuracy of soil moisture measurement by TDR technique. Int. Agrophysics 14:417-426.
119. Snyder, K., A. Grant, C. Murray, and B. Wolff. 2015. The effects of plastic mulch systems on soil temperature and moisture in Central Ontario. HortTechnology 25:162-170.
120. Souza, G.M. and V.J.e.M. Cardoso. 2003. Toward a hierarchical concept of plant stress. J. plant Sci. 51:29-37.
121. Stoddart, J.L. and H. Thomas. 1982. Leaf senescence. Encyclopedia plant physiol. 14:592-636.
122. Szymańska, R., I. Ślesak, A. Orzechowska, and J. Kruk. 2017. Physiological and biochemical responses to high light and temperature stress in plants. Environ. Expt. Bot. 139:165-177.
123. Tarara, J.M. 2000. Microclimate modification with plastic mulch. HortScience 35:169-180.
124. Thomas, H. and J.L. Stoddart. 1980. Leaf senescence. Annu. Rev. Plant Physiol. 31:83-111.
125. Tindall, J.A., H.A. Mills, and D.E. Radcliffe. 1990. The effect of root-zone temperature on nutrient uptake of tomato J. Plant Nutr. 13:939-956.
126. Valente, M., J. Faria, J. Soares-Ramos, P. Reis, G. Pinheiro, N. Piovesan, A. Morais, C. Menezes, M. Cano, L. Fietto, M. Loureiro, F. Aragão, and E. Fontes. 2009. The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco. J. Exp. Bot. 60:533-546.
127. Vidal-Valverde, C., J. Frias, I. Sierra, I. Blazquez, F. Lambein, and Y.H. Kuo. 2002. New functional legume foods by germination : effect on the nutritive value of beans, lentils and peas. Eur. Food Res. Technol. 215:472-477.
128. Vieira, R.D., D.M. TeKrony, and D.B. Egli. 1991. Effect of drought stress on soybean seed germination and vigor. J. Seed Technol. 15:12-21.
129. Wang, L., T. Zhang, and S. Ding. 2006. Effect of drought and rewatering on photosynthetic physioecological characteristics of soybean. Acta Ecol. Sinica 26:2073-2078.
130. Wang, Z., V.R. Reddy, and B. Quebedeaux. 1997. Growth and photosynthetic responses of soybean to short-term cold temperature. Environ. Expt. Bot. 37:13-24.
131. Westgate, M.E. and C.M. Peterson. 1993. Flower and pod development in water-deficient soybeans (Glycine max L. Merr.). J. Exp. Bot. 44:109-117.
132. Whitfield, D.M., D.J. Conner, and A.J. Hall. 1989. Carbon dioxide balance of sunflower (Helianthus annuus L.) subjected to water stress during grain filling. Field Crops Res. 20:65-80.
133. Xing, S.G., Y.B. Jun, Z.W. Hau, and L.Y. Liang. 2007. Higher accumulation of γ-aminobutyric acid induced by salt stress through stimulating the activity of diamine oxidases in Glycine max (L.) Merr. roots. Plant Physiol. Biochem. 45:560-566.
134. Yamaguchi, N., H. Yamazaki, S. Ohnishi, C. Suzuki, S. Hagihara, and T. Miyoshi. 2014. Method for selection of soybeans tolerant to seed cracking under chilling temperatures. Breeding Sci. 64:103-108.
135. Yang, A., S. Cao, Z. Yang, Y. Cai, and Y. Zheng. 2011. γ-Aminobutyric acid treatment reduces chilling injury and activates the defence response of peach fruit. Food Chem.:1619-1622.
136. Yang, F., S. Huang, R.C. Gao, W.G. Liu, T.W. Young, X.C. Wang, X.L. Wu, and W.Y. Yang. 2014. Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red:far-red ratio. Field Crops Res. 155:245-253.
137. Yang, P.H., G.Q. Li, L. Guo, and S.J. Wu. 2003a. Effect of drought stress on plasma mambrane permeality of soybean varieties during flowering-poding stage. Agri. Res. Arid Areas 21:127-130.
138. Yang, R., L. Feng, S. Wang, N. Yu, and Z. Gu. 2016. Accumulation of γ-aminobutyric acid in soybean by hypoxia germination and freeze–thawing incubation. j. Sci. Food Agr. 96:2090-2096.
139. Yang, R., Q. Guo, and Z. Gu. 2013. GABA shunt and polyamine degradation pathway on gamma-aminobutyric acid accumulation in germinating fava bean (Vicia faba L.) under hypoxia. Food Chem. 136:152-9.
140. Yang, R., S. Wang, Y. Yin, and Z. Gu. 2015. Hypoxia treatment on germinating faba bean (Vicia faba L.) seeds enhances GABA-related protection against salt stress. Chilean J. Agr. Res. 75:184-191.
141. Yousif, A.M. 2014. Soybean grain storage adversely affects grain testa color, texture and cooking quality. J. Food Quality 37:18-28.
142. Yousif, A.M., J. Kato, and H.C. Deeth. 2003. Effect of storage time and conditions on the seed coat colour of Australian adzuki beans. Food Austral. 55:479-484.
143. Yu, J.Q., Y. Sun, Y. Zhang, J. Ding, X.J. Xia, C.L. Xiao, K. Shi, and Y.H. Zhou. 2009. Selective trans-cinnamic acid uptake impairs [Ca2+]cyt homeostasis and growth in Cucumis sativus L. J. Chem. Ecol. 35:1471-1477.
144. Zhang, C. and S. Tian. 2009. Crucial contribution of membrane lipids unsaturation to acquistion of chilling-tolerance in peach fruit stored at 0oC. Food Chem. 115:411-415.
145. Zhang, X.D., R.P. Wang, F.J. Zhang, F.Q. Tao, and W.Q. Li. 2013. Lipid profiling and tolerance to low-temperature stress in Thellungiella salsuginea in comparison with Aracidopsis thaliana. Biol. Plant 57:149-153.
146. Zhao, X., S.-H. Zheng, Fatichin, A. Suzuki, and S. Arima. 2014. Varietal difference in nitrogen redistribution from leaves and its contribution to seed yield in soybean. Plant Prod. Sci. 17:103―108
147. Zushi, K. and N. Matsuzoe. 2007. Salt stress-enhanced γ-aminobutyric acid (GABA) in tomato fruit. Acta Hortic. 761:431-435.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77913-
dc.description.abstract毛豆(Glycine max L. Merr)富含植物性蛋白質、油脂及礦物質,營養價值高。毛豆生育期間對水分需求高,若於生殖生長期遭遇乾旱逆境會導致生理變化及產量下降,但乾旱逆境可促使大豆葉片、根部及根瘤中γ-胺基丁酸(γ-aminobutyric acid, GABA)累積。本試驗於溫室栽培毛豆‘高雄9號’及‘高雄11號’,探討採收前乾旱處理及復水、以及儲藏溫度對產量與莢殼、豆仁GABA含量之影響,期能提升毛豆之機能性物質含量。
春作與秋作毛豆‘高雄9號’與‘高雄11號’,於生殖生長達R6種子發育階段且80%以上豆莢可銷售時,以土壤持續斷水方式分別乾旱17及10天,期間測定介質體積含水量(volumetric water content, VWC)。春秋作兩品種於採收前進行乾旱處理,乾旱延長時,介質VWC顯著下降,且其與葉片氣孔導度及葉綠素計讀值之間皆呈顯著正相關,R2分別高於0.90 和0.76。秋作介質VWC與兩品種葉片Fv/Fm之間亦呈顯著正相關,R2高於0.73,但春作‘高雄11號’則二者間不具相關性。春秋作兩品種豆莢L與a*值皆隨介質VWC降低而提高,‘高雄9號’之L、a*值分別增加了13.3%與19.1%,‘高雄11號’分別增加了14.1%與44.5%。春秋作介質VWC與兩品種黃化豆莢率則皆呈顯著負相關,R2高於0.77。秋作兩品種單株總莢數皆高於其春作,秋作‘高雄9號’可達44莢;秋作‘高雄9號’及‘高雄11號’生育期亦分別較其春作短48及23天。
秋作毛豆兩品種於採收之前進行乾旱處理後復水,可以減緩乾旱對‘高雄9號’葉片氣孔導度、葉綠素計讀值及黃化豆莢率之影響,其分別較乾旱組顯著提高22.2%、40.7%及57.2%;而‘高雄11號’之葉片氣孔導度、葉綠素計讀值及葉綠素螢光Fv/Fm則分別較乾旱組顯著提高69.7%、2.3倍及5.1倍。毛豆適當的採收期為豆仁為七至八分飽滿且80%豆莢達綠熟階段;‘高雄9號’及‘高雄11號’在50%可銷售成熟度時進行乾旱處理,其對於氣孔導度、葉綠素計讀值、Fv/Fm及黃化豆莢率之影響,與在80%可銷售成熟度時處理乾旱者相同,但單株總莢重及十粒重較於80%可銷售成熟度時處理乾旱者少,‘高雄9號’分別少11.4%及34.3%,而‘高雄11號’分別少25.4%及11.7%。兩品種豆莢於-20 oC儲藏三個月,其豆仁之十粒重、長、寬、含水量及外觀色彩仍與採收當天無顯著差異,而於7 oC及常溫儲藏三個月之毛豆不具銷售價值。
毛豆各部位GABA含量方面,秋作毛豆兩品種於採收前進行乾旱處理,隨著乾旱天數增加,豆仁GABA含量逐漸增加,莢殼與葉片之GABA含量則逐漸減少,但乾旱組豆仁與莢殼之GABA含量皆高於對照組,‘高雄9號’分別可達107.3及140.3 mg·100g-1、‘高雄11號’分別可達152.8及132.9 mg·100g-1。毛豆不同部位對於乾旱後復水之反應有差異,兩品種皆僅豆仁於乾旱3天後復水組比連續乾旱組有較高的GABA含量。毛豆於50%可銷售成熟度處理乾旱組之莢殼及豆仁GABA含量皆較於80%可銷售成熟度處理乾旱者高,‘高雄9號’及‘高雄11號’於50%可銷售成熟度處理乾旱組之豆仁GABA含量最高,分別可達425.8及284.1 mg·100 g-1,顯示乾旱逆境下植株不同生殖生長階段也是影響GABA含量的因子。兩品種豆莢於-20 oC儲藏三個月也可大量增加莢殼及豆仁之GABA含量,‘高雄9號’及‘高雄11號’莢殼最高分別可達278.2及229.7 mg·100 g-1,而豆仁最高分別可達583.4及290.4 mg·100 g-1。
zh_TW
dc.description.abstractVegetable soybean (Glycine max L. Merr), rich in protein, oil and mineral, is a crop with high healthcare value. The water requirement during growth and development of vegetable soybean is relatively high. Water stress during reproductive stages leads to physiological change and poor yield. But water stress can enhance γ-aminobutyric acid (GABA) levels in leaf, root and nodule of soybean. This research aimed on the effect of drought stress and rewatering before harvest, and the storage temperature on yield and GABA content of pod shell and seed of vegetable soybean ‘Kaohsiung no.9’ and ‘Kaohsiung no.11’cultivated in greenhouse. Enhancing functional component in vegetable soybean was expected.
Vegetable soybean ‘Kaohsiung no.9’ and ‘Kaohsiung no.11’ were exposed to drought for 17 and 10 days by progressive transpiration before harvest with more than 80% pods at marketable maturity during R6 seed development stage in spring and autumn. The substrate volumetric water content (VWC) was measured periodically during the treatment. In both seasons, two cultivars were treated with drought before harvest. As the drought was prolonged, substrate VWC declined significantly. Substrate VWC were significantly positively correlated with leaf stomatal conductance and SPAD value with R2 higher than 0.90 and 0.76 respectively. There was also a significantly positive correlation between VWC and Fv/Fm of two cultivars in autumn with R2 higher than 0.73. However, VWC and Fv/Fm in ‘Kaohsiung no. 11’ showed no correlation in spring. In two seasons, the L and a* values of pods in two cultivars increased with the decrease of substrate VWC. The L and a* values in ‘Kaohsiung 9’ increased by 13.3% and 19.1% respectively, and ‘Kaohsiung 11’ increased by 14.1% and 44.5% respectively. In two seasons, substrate VWC and yellow pods of two cultivars showed significantly negative correlation with R2 higher than 0.77. Both cultivars also produced more pods per plant in autumn than that in spring. ‘Kaohsiung no.9’ had 44 pods per plant in autumn. Growth period of both cultivars was shorter in autumn than that in spring, with 48 d and 23 d less in ‘Kaohsiung no. 9’ and ‘Kaohsiung no. 11’, respectively.
In both cultivars in autumn, drought followed by rewatering before harvest could alleviate leaf stomatal conductance, SPAD value and yellowing pod ratio in ‘Kaohsiung no. 9’ with significantly increase by 22.2%, 40.7% and 57.2% respectively, when comparing to the drought treatment. Leaf stomatal conductance, SPAD value and fluorescence Fv/Fm of ‘Kaohsiung no.11’ were significantly increased by 69.7%, 2.3-fold and 5.1-fold respectively, when comparing to the drought treatment. The appropriate harvest timing of vegetable soybean was up to 80% pods of marketable maturity and seeds of 70~80% fullness in green ripe stage. For ‘Kaohsiung no. 9’ and ‘Kaohsiung no. 11’, leaf stomatal conductance, SPAD value, fluorescence Fv/Fm and yellow pod ratio in drought treatment at 50% pods of marketable maturity before harvest, were not significantly different with those in drought treatment at 80% pods of marketable maturity. But total pod weight per plant and 10 grains weight in drought treatment at 50% pods of marketable maturity were less than those treated drought at 80% of marketable maturity. The total pod weight and 10 grains weight of ‘Kaohsiung no. 9’ were decreased for 11.4% and 34.3% respectively, while ‘Kaohsiung no. 11’ decreased for 25.4% and 11.7% respectively. Pods of two cultivars were stored at -20 oC for three months maintained 10 grain weight, and length, width, moisture content and color of seeds were non-significantly different with those on the harvest day. However, Pods stored at 7 oC and room temperature for three months did not have sale value.
Concerning GABA contents in different parts of vegetable soybean, in both season, the longer drought treatment was, the higher GABA content in seed of both cultivars was. While the GABA contents in the pod shell and leaf gradually decreased. GABA contents in seed and pod shell in drought treatment were higher than those of control. GABA content in seed and pod shell of ‘Kaohsiung no.9’ were 107.3 and 140.3 mg·100 g-1 respectively, and ‘Kaohsiung no.11’ were 152.8 and 132.9 mg·100 g-1 respectively. The responses of different tissues to drought followed by rewatering were different. Treatment of rewatering after drought for three days in both cultivars showed higher seed GABA content than continuous drought treatment. The GABA contents in pod shell and seed of drought treatment at 50% pods of marketable maturity were higher than those of drought treatment at 80% marketable maturity. The seed GABA contents in ‘Kaohsiung no.9’ and ‘Kaohsiung no.11’ of drought treatment at 50% pods of marketable maturity reached up to 425.8 and 284.1 mg·100 g-1 respectively. Different reproductive growth stage of the plants under drought stress also affected the GABA content. In addition, pods of both cultivars stored at -20oC for three months showed substantial increased GABA content in pod shell and seeds. Pod shell GABA contents in ‘Kaohsiung no. 9’ and ‘Kaohsiung no.11’ were increased up to 278.2 and 229.7 mg·100 g-1 respectively, while seed GABA content were increased ut to 583.4 and 290.4 mg·100 g-1.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:37:17Z (GMT). No. of bitstreams: 1
ntu-106-R04628101-1.pdf: 2880254 bytes, checksum: 239ecf54418ae6a24e6c148580c9a4ca (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents摘要 i
Abstract iii
表目錄 viii
圖目錄 ix
前言 (Introduction) 1
前人研究 (Literature Review) 3
一、土壤含水量及其測量 3
二、乾旱逆境下大豆植株之生理變化及其影響 4
三、乾旱處理時機對植株之影響 6
四、復水對植株生理變化及其影響 8
五、植株於非生物逆境下γ-胺基丁酸累積情形 10
六、覆蓋對於土壤溫度、濕度及作物根域溫度之影響 13
七、儲藏條件對作物品質之影響 14
材料與方法 (Material and Methods) 16
一、試驗材料、調查項目及統計方法 16
試驗一、春作毛豆於採收前乾旱處理之植株生理、γ-胺基丁酸含量及產量變化 16
試驗二、秋作毛豆採收前乾旱處理之植株生理、γ-胺基丁酸含量及產量變化 17
試驗三、秋作毛豆於50%及80%可銷售成熟度乾旱處理之植株生理、γ-胺基丁酸含量及產量變化 18
試驗四、採收前乾旱及復水處理對毛豆生理、γ-胺基丁酸含量及產量之影響 20
試驗五、儲藏溫度對毛豆品質及γ-胺基丁酸含量之影響 21
二、調查方法 22
結果 (Results) 26
試驗一、春作毛豆於採收前乾旱處理之植株生理、γ-胺基丁酸含量及產量變化 26
試驗二、秋作毛豆採收前乾旱處理之植株生理、γ-胺基丁酸含量及產量變化 28
試驗三、秋作毛豆於50%及80%可銷售成熟度乾旱處理之植株生理、γ-胺基丁酸含量及產量變化 30
試驗四、採收前乾旱及復水處理對毛豆生理、γ-胺基丁酸含量及產量之影響 34
試驗五、儲藏溫度對毛豆品質及γ-胺基丁酸含量之影響 38
討論 (Discussion) 101
一、介質含水量之測量及變化 101
二、毛豆生理參數之之探討 102
三、栽培季節對毛豆產量之影響 108
四、γ-胺基丁酸(γ-aminobutyric acid, GABA)含量變化之探討 110
結論 (Conclusion) 115
參考文獻 (References) 116
附錄 (Appendix) 127
dc.language.isozh-TW
dc.title毛豆採收前乾旱逆境對產量與γ-胺基丁酸含量影響之研究zh_TW
dc.titleStudy on Drought Stress before Harvest on The Yield and γ-Aminobutyric Acid Content in Vegetable Soybeanen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊雯如(Wen-Ju Yang),林淑怡(Shu-I Lin)
dc.subject.keyword介質體積含水量,復水,可銷售成熟度,豆仁,莢殼,機能性物質,儲藏,zh_TW
dc.subject.keywordsubstrate volumetric water content,rewatering,marketable maturity,seed,pod shell,functional component,storage,en
dc.relation.page130
dc.identifier.doi10.6342/NTU201702959
dc.rights.note有償授權
dc.date.accepted2017-08-11
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-106-R04628101-1.pdf
  目前未授權公開取用
2.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved