請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77908完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱雪萍(Hsueh-Ping Chu) | |
| dc.contributor.author | Pei-Chen Chiu | en |
| dc.contributor.author | 邱培真 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:37:10Z | - |
| dc.date.available | 2025-08-20 | |
| dc.date.copyright | 2020-08-24 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-17 | |
| dc.identifier.citation | de Lange, T., Protection of mammalian telomeres. Oncogene, 2002. 21(4): p. 532-40. Zhang, X., et al., Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. Genes Dev, 1999. 13(18): p. 2388-99. Blackburn, E.H. and J.G. Gall, A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J Mol Biol, 1978. 120(1): p. 33-53. Griffith, J.D., et al., Mammalian telomeres end in a large duplex loop. Cell, 1999. 97(4): p. 503-14. Azzalin, C.M., et al., Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science, 2007. 318(5851): p. 798-801. de Lange, T., Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev, 2005. 19(18): p. 2100-10. van Steensel, B., A. Smogorzewska, and T. de Lange, TRF2 protects human telomeres from end-to-end fusions. Cell, 1998. 92(3): p. 401-13. Harley, C.B., A.B. Futcher, and C.W. Greider, Telomeres shorten during ageing of human fibroblasts. Nature, 1990. 345(6274): p. 458-60. Shay, J.W., W.E. Wright, and H. Werbin, Defining the molecular mechanisms of human cell immortalization. Biochim Biophys Acta, 1991. 1072(1): p. 1-7. Shay, J.W., Role of Telomeres and Telomerase in Aging and Cancer. Cancer Discov, 2016. 6(6): p. 584-93. Greider, C.W. and E.H. Blackburn, Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell, 1985. 43(2 Pt 1): p. 405-13. Yu, G.L., et al., In vivo alteration of telomere sequences and senescence caused by mutated Tetrahymena telomerase RNAs. Nature, 1990. 344(6262): p. 126-32. Bryan, T.M., et al., Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J, 1995. 14(17): p. 4240-8. Dunham, M.A., et al., Telomere maintenance by recombination in human cells. Nat Genet, 2000. 26(4): p. 447-50. Cesare, A.J. and R.R. Reddel, Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet, 2010. 11(5): p. 319-30. Cesare, A.J. and J.D. Griffith, Telomeric DNA in ALT cells is characterized by free telomeric circles and heterogeneous t-loops. Mol Cell Biol, 2004. 24(22): p. 9948-57. Draskovic, I., et al., Probing PML body function in ALT cells reveals spatiotemporal requirements for telomere recombination. Proc Natl Acad Sci U S A, 2009. 106(37): p. 15726-31. Groff-Vindman, C., et al., Recombination at long mutant telomeres produces tiny single- and double-stranded telomeric circles. Mol Cell Biol, 2005. 25(11): p. 4406-12. Henson, J.D., et al., DNA C-circles are specific and quantifiable markers of alternative-lengthening-of-telomeres activity. Nature Biotechnology, 2009. 27(12): p. 1181-U148. Cho, N.W., et al., Interchromosomal homology searches drive directional ALT telomere movement and synapsis. Cell, 2014. 159(1): p. 108-121. Arora, R., et al., RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nat Commun, 2014. 5: p. 5220. Graf, M., et al., Telomere Length Determines TERRA and R-Loop Regulation through the Cell Cycle. Cell, 2017. 170(1): p. 72-85 e14. Scharer, O.D., Nucleotide excision repair in eukaryotes. Cold Spring Harb Perspect Biol, 2013. 5(10): p. a012609. Hoeijmakers, J.H., Human nucleotide excision repair syndromes: molecular clues to unexpected intricacies. Eur J Cancer, 1994. 30A(13): p. 1912-21. Zhu, X.D., et al., ERCC1/XPF removes the 3' overhang from uncapped telomeres and represses formation of telomeric DNA-containing double minute chromosomes. Mol Cell, 2003. 12(6): p. 1489-98. Wu, Y., T.R. Mitchell, and X.D. Zhu, Human XPF controls TRF2 and telomere length maintenance through distinctive mechanisms. Mech Ageing Dev, 2008. 129(10): p. 602-10. Sollier, J., et al., Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. Mol Cell, 2014. 56(6): p. 777-85. Rosado, I.V., et al., The Walker B motif in avian FANCM is required to limit sister chromatid exchanges but is dispensable for DNA crosslink repair. Nucleic Acids Res, 2009. 37(13): p. 4360-70. Wang, L.C., et al., Fanconi anemia proteins stabilize replication forks. DNA Repair (Amst), 2008. 7(12): p. 1973-81. Pan, X., et al., FANCM, BRCA1, and BLM cooperatively resolve the replication stress at the ALT telomeres. Proc Natl Acad Sci U S A, 2017. 114(29): p. E5940-E5949. Pan, X., et al., FANCM suppresses DNA replication stress at ALT telomeres by disrupting TERRA R-loops. Sci Rep, 2019. 9(1): p. 19110. Brunet, T.D.P. and W.F. Doolittle, The generality of Constructive Neutral Evolution. Biology Philosophy, 2018. 33(1-2). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77908 | - |
| dc.description.abstract | 真核細胞中染色體尾端會有端粒(telomere)存在,目的是保護以及維持染色體末端的完整性。隨著細胞的分裂會使端粒長度縮短,當端粒短到某種程度後就無法繼續保護染色體,此時細胞中會有端粒延長機制來確保其長度。大部分的癌細胞是以端粒酶(telomerase)來延長,但有10~15%的癌細胞則是使用另一種機制,稱為alternative lengthening of telomeres (ALT),目前可知主要是透過同源染色重組 (homologous recombination, HR) 來延長端粒,然而對於此機制仍不清楚。此外,在ALT細胞中有一種高度表現的長鏈非編碼RNA (long non-coding RNA, lncRNA) - TERRA (telomeric repeat-containing RNA),被認為可能會參與ALT機制。因此本篇目的是要以TERRA-interacting protein為出發點,探討其蛋白質如何參與ALT 機制。其中之一enriched-TERRA-interacting protein為XPF (xeroderma pigmentosum, complementation group F),是一種內切酶,主要參與細胞中DNA修復。我發現在U2OS細胞中,XPF和telomeric repeat-binding factor 2 (TRF2) 有高度重疊;並且,在U2OS細胞中高度表現RNase H時則會減少XPF被聚集到TRF2上。此結果表示telomeric R-loop會影響細胞中XPF聚集至端粒。進一步研究XPF在ALT機制中的角色,我利用siRNA在U2OS細胞中降低XPF表現量。結果顯示,在XPF knockdown (KD) U2OS細胞中,端粒上的RPA (single strand binding protein) 和γH2AX都會下降,telomere clustering也會下降。有研究指出,XPF和另一種內切酶-XPG (xeroderma pigmentosum complementation group G)會一起在轉錄過程中形成的R-loop上形成雙股DNA斷裂(DNA double-strand break, DSB),並促進其修復。在我的結果也顯示出在XPF以及XPG KD U2OS細胞中,端粒上的γH2AX都有顯著下降。而之前研究顯示,在U2OS細胞中降低Fanconi anemia group M protein (FANCM) 會導致telomeric R-loop累積、端粒上的DSB增加以及C-circle的高度表現。而我發現當在FANCM-deficiency細胞中降低XPF表現量時,會使其增加的telomere intensity、DSB和C-circle都顯著下降。綜合上述結果可知在ALT細胞中,XPF參與ALT端粒上telomeric R-loop誘發的DNA雙股斷裂,並且會進一步影響由DNA break-induced replication fork所產生的C-circle。 | zh_TW |
| dc.description.abstract | Telomeres are important for protecting the integrity of chromosomes that contain vital information of DNA. A subset of human cancer cells maintains telomeres through the alternative lengthening of telomeres (ALT) pathway. Telomeric repeat-containing RNA (TERRA), a long non-coding RNA, transcribed from subtelomeric regions, is highly expressed in ALT cancer cells. However, the mechanism of ALT remains unclear. To study the role of TERRA-interacting protein in ALT, we knocked down (KD) several TERRA-interacting proteins in human ALT cells, U2OS, derived from osteosarcoma. One of those proteins is xeroderma pigmentosum complementation group F (XPF), which is a DNA repair protein encoded by ERCC4 gene and is responsible for nucleotide excision repair. We found that XPF is highly co-localized with telomeric repeat-binding factor 2 (TRF2) in ALT cells, but not in non-ALT cells. Depletion R-loop (DNA-RNA hybrids) formation by overexpressing wild type RNase H reduces XPF recruitment to telomeres, suggesting that telomeric R-loops trigger XPF localization to telomeres. To test the role of XPF in the ALT pathway, we depleted XPF by siRNAs and found that single strand binding protein (RPA) and γH2AX at telomeres are decreased. Moreover, knockdown of XPF suppresses telomere clustering in ALT cells. A pervious study has shown that XPF and xeroderma pigmentosum complementation group G (XPG), which is also an endonuclease, are involved in the generation of DSB from transcription-coupled R-loop and promote DNA repair. When we double KD XPF and XPG in U2OS cells, both KD cells were showed the decreased γH2AX at telomeres. Our recent studies have shown that knockdown of Fanconi anemia group M protein (FANCM) leads to accumulation of telomeric R-loops, DNA double-strand breaks at telomeres and c-circle formation in ALT cells. When XPF was depleted in FANCM-deficient cells, DNA double-strand breaks and telomere intensity were dramatically attenuated, and the c-circle formation was also reduced. These results imply that XPF mediates DNA double-strand breaks induced by telomeric R-loops in human ALT cancer cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:37:10Z (GMT). No. of bitstreams: 1 U0001-1608202018351000.pdf: 5494230 bytes, checksum: 734c018580f7a2cff8c85011b1379e81 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 論文口試委員審定書 II 誌謝 III 中文摘要 IV Abstract VI CONTENTS VIII Content of figures XI Content of supplementary figures XII Content of tables XIII Chapter 1 Introduction 1 1-1 Telomere 1 1-2 Shelterin complex 1 1-3 Alternative lengthening of telomeres (ALT) 2 1-4 Telomeric repeat-containing RNAs (TERRA) 3 1-5 NER-associated proteins 4 1-6 FANCM 5 Chapter 2 Materials and Methods 6 2-1 Cell culture 6 2-2 Reverse transfection 6 2-3 Forward transfection 7 2-4 Concentration of siRNA in knockdown group 8 2-5 RNA extraction 8 2-6 cDNA synthesis 9 2-7 Quantitative PCR 9 2-8 Western blot 9 2-9 Immunofluorescence (IF) 10 2-10 Immuno-Fluorescence in situ hybridization (FISH) 11 2-11 C-circle assay 13 2-12 Quantitative and statistical analysis 13 Chapter 3 Results 15 3-1 XPF is highly co-localized with TRF2 in ALT cells 15 3-2 R-loops regulate the recruitment of XPF to telomeres in ALT cell 16 3-3 XPF-depletion does not significantly alter the number of APB foci and C-circle level in ALT cells 16 3-4 XPF contributes to processing the DSBs on telomeres 17 3-5 XPF depletion leads to decreased telomere intensity 18 3-6 XPF-depletion does not significantly alter the level of TERRA R-loops induced by FANCM-deficiency 19 3-7 XPF is required for R-loop induced DNA double-strand breaks at telomere 19 3-8 XPF and XPG both are required for DSBs at telomeres in ALT cells 21 3-9 XPF reduces C-circles induced by FANCM-deficiency 21 Chapter 4 Discussion 23 Chapter 5 Supplementary data 48 Chapter 6 References 74 Abbreviations 76 | |
| dc.language.iso | en | |
| dc.subject | telomeric R-loop | zh_TW |
| dc.subject | telomere | zh_TW |
| dc.subject | ALT | zh_TW |
| dc.subject | XPF | zh_TW |
| dc.subject | XPG | zh_TW |
| dc.subject | XPF | en |
| dc.subject | ALT | en |
| dc.subject | telomere | en |
| dc.subject | XPG | en |
| dc.title | XPF參與ALT端粒上telomeric R-loop誘發的DNA雙股斷裂 | zh_TW |
| dc.title | XPF is Required for telomeric R-loop Induced DNA Double-Strand Breaks at ALT Telomeres | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林敬哲(Jing-Jer Lin),吳青錫(Ching-Shyi Wu) | |
| dc.subject.keyword | telomere,ALT,XPF,XPG,telomeric R-loop, | zh_TW |
| dc.subject.keyword | telomere,ALT,XPF,XPG, | en |
| dc.relation.page | 78 | |
| dc.identifier.doi | 10.6342/NTU202003600 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-17 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-20 | - |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1608202018351000.pdf 未授權公開取用 | 5.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
