Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77905
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝博全(Po-Chuan Hsieh)
dc.contributor.authorTa-Kang Huangen
dc.contributor.author黃大剛zh_TW
dc.date.accessioned2021-07-11T14:37:07Z-
dc.date.available2022-08-31
dc.date.copyright2017-08-31
dc.date.issued2017
dc.date.submitted2017-08-14
dc.identifier.citation1. 王韻雯。2011。臺灣蜂蜜之抗發炎及其活性特徵分析之研究。碩士論文。雲林:虎尾科技大學生物科技研究所。
2. 李坤易。2006。高感度葡萄糖生物感測器之研究。碩士論文。雲林:國立雲林科技大學化學工程研究所。
3. 安奎、何鎧光。1997。養蜂學。初版。臺北:華香園。
4. 何仁、李軍生、侯革非。2004。現行國家標準在鑑別蜂蜜摻假方面存在的缺陷。食品發酵工業 30(2):115-117.
5. 呂怡芯。2010。蜂蜜模式系統在熱加工中梅納反應毒性物質生成及抑制之研究。碩士論文。新北:輔仁大學食品科學研究所。
6. 林峻民。2012。電化學沉積氧化鋅薄膜應用於可撓式染料敏化太陽能電池之研究。碩士論文。臺北:國立臺北科技大學有機高分子研究所。
7. 食品藥物管理署。2016。食品添加物使用範圍及限量暨規格標準。衛生福利部。台北。
8. 陳宜君。2006。台灣蜂蜜攙假檢測方法之研究。碩士論文。臺中:國立中興大學食品暨應用生物科技學研究所。
9. 陳翠華。2009。台灣市售蜂蜜消費行為及喜好性調查。碩士論文。臺中:國立中興大學食品暨應用生物科技學研究所。
10. 陳裕文。2014。蜂蜜及加工品摻偽分析與產地鑑定技術實務。網址:http://emabio.niu.edu.tw/files/archive/219_c6516134.pdf
11. 區少梅。1999。蜂蜜之品質管制。台灣養蜂業展望研討會專刊:32-42。
12. 張世揚。1986。基礎養蜂學。初版。臺北:淑馨。
13. 曹碧鳳。2002。蜂蜜真偽之鑑定及其品質之評估。碩士論文。屏東:國立屏東科技大學食品科學研究所。
14. 黃玉瓊。2005。從真假蜜辨識,談台灣蜂蜜產業現況。農政與農情。159:47-49。
15. 湯明杰、蔡健榮、吳小娟、呂強。2011。蜂蜜還原能力的電化學傳感器檢測。農業工程學報 27(2): 366-369。
16. 經濟部標準檢驗局。2016。中華民國國家標準。蜂蜜。總號1305。類號N5024。經濟部。台北。
17. 楊昇晃。2005。微型燃料電池設計、製作與電化學阻抗量測分析。碩士論文。高雄:國立中山大學機械與機電工程學系研究所。
18. 楊富鈞。2012。結合蜂蜜花粉分析與高效液相層析鑑定台灣荔枝蜜與龍眼蜜。碩士論文。臺北:臺灣大學生態學與演化生物學研究所。
19. 蔡崇哲。2012。奈米金樹結構修飾電極於葡萄糖感測之應用。碩士論文。臺中:國立中興大學機械工程研究所。
20. 羅金蓮、蘇新元。1995。加工與貯存對蜂蜜品質之影響研究。農特產品加工研討會專刊:37-44。
21. 龔毅。2014。油品品質電化學阻抗感測器─生質柴油與酒精汽油的應用。博士論文。臺北:國立臺灣大學生物產業機電工程學研究所。
22. Abdel-Aal, E. M., Ziena, H. M., & Youssef, M. M. 1993. Adulteration of honey with high-fructose corn syrup: Detection by different methods. Food chemistry, 48(2): 209-212.
23. Acquarone, C., Buera, P., & Elizalde, B. 2007. Pattern of pH and electrical conductivity upon honey dilution as a complementary tool for discriminating geographical origin of honeys. Food Chemistry, 101(2), 695-703.
24. Anklam, E. 1998. A review of the analytical methods to determine the geographical and botanical origin of honey. Food chemistry, 63(4), 549-562.
25. Baena, L. M., Gómez, M., & Calderón, J. A. 2012. Aggressiveness of a 20% bioethanol–80% gasoline mixture on autoparts: I behavior of metallic materials and evaluation of their electrochemical properties. Fuel, 95, 320-328.
26. Bard, A. J., & Faulkner, L. R. 2001. Electrochemical methods: Fundamentals and applications. 2nd ed. New York: Wiley.
27. Beretta, G., Granata, P., Ferrero, M., Orioli, M., & Facino, R. M. 2005. Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Analytica Chimica Acta, 533(2), 185-191.
28. Cai, J., Wu, X., Yuan, L., Han, E., Zhou, L., & Zhou, A. 2013. Determination of Chinese Angelica honey adulterated with rice syrup by an electrochemical sensor and chemometrics. Analytical Methods, (9), 2324-2328.
29. Chen, L., Xue, X., Ye, Z., Zhou, J., Chen, F., & Zhao, J. 2011. Determination of Chinese honey adulterated with high fructose corn syrup by near infrared spectroscopy. Food Chemistry, 128(4), 1110-1114.
30. Chen, R. L. C. 2008. Electrochemistry for Biomedical Researchers. 1st ed. Taipei: National Taiwan University Press.
31. Cherchi, A., Spanedda, L., Tuberoso, C., & Cabras, P. 1994. Solid-phase extraction and high-performance liquid chromatographic determination of organic acids in honey. Journal of Chromatography A, 669(1-2), 59-64.
32. Chevalier, D., Ossart, F., & Ghommidh, C. 2006. Development of a non-destructive salt and moisture measurement method in salmon (Salmosalar) fillets using impedance technology. Food control, 17(5), 342-347.
33. Cimpoiu, C., Hosu, A., Miclaus, V., & Puscas, A. 2013. Determination of the floral origin of some Romanian honeys on the basis of physical and biochemical properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 100, 149-154.
34. Çinar, S. B., Ekşi, A., & Coşkun, İ. 2014. Carbon isotope ratio (13C/12C) of pine honey and detection of HFCS adulteration. Food chemistry, 157: 10-13.
35. Ciulu, M., Solinas, S., Floris, I., Panzanelli, A., Pilo, M. I., Piu, P. C., Spano, N., & Sanna, G. 2011. RP-HPLC determination of water-soluble vitamins in honey. Talanta, 83(3), 924-929.
36. Cuevas-Glory, L. F., Pino, J. A., Santiago, L. S., & Sauri-Duch, E. 2007. A review of volatile analytical methods for determining the botanical origin of honey. Food Chemistry, 103(3), 1032-1043.
37. da Silva, P. M., Gauche, C., Gonzaga, L. V., Costa, A. C. O., & Fett, R. 2016. Honey: Chemical composition, stability and authenticity. Food chemistry, 196, 309-323.
38. De Souza, J. P., Mattos, O. R., Sathler, L., & Takenouti, H. 1987. Impedance measurements of corroding mild steel in an automotive fuel ethanol with and without inhibitor in a two and three electrode cell. Corrosion science, 27(12), 1351-1364.
39. Dominguez, M. A., Jacksén, J., Emmer, Å., & Centurión, M. E. 2016. Capillary electrophoresis method for the simultaneous determination of carbohydrates and proline in honey samples. Microchemical Journal, 129, 1-4.
40. Escriche, I., Kadar, M., Juan-Borrás, M., & Domenech, E. 2014. Suitability of antioxidant capacity, flavonoids and phenolic acids for floral authentication of honey. Impact of industrial thermal treatment. Food chemistry, 142, 135-143.
41. Escuredo, O., Dobre, I., Fernández-González, M., & Seijo, M. C. 2014. Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. Food chemistry, 149, 84-90.
42. Gil, E. S., & Couto, R. O. 2013. Flavonoid electrochemistry: a review on the electroanalytical applications. Revista Brasileira de Farmacognosia, 23(3), 542-558.
43. Hermosı́n, I., Chicón, R. M., & Cabezudo, M. D. 2003. Free amino acid composition and botanical origin of honey. Food Chemistry, 83(2), 263-268.
44. Iglesias, M. T., Martín-Álvarez, P. J., Polo, M. C., de Lorenzo, C., González, M., & Pueyo, E. 2006. Changes in the free amino acid contents of honeys during storage at ambient temperature. Journal of agricultural and food chemistry, 54(24), 9099-9104.
45. Jafari, H., Idris, M. H., Ourdjini, A., Rahimi, H., & Ghobadian, B. 2011. EIS study of corrosion behavior of metallic materials in ethanol blended gasoline containing water as a contaminant. Fuel, 90(3), 1181-1187.
46. Kečkeš, J., Trifković, J., Andrić, F., Jovetić, M., Tešić, Ž., & Milojković‐Opsenica, D. 2013. Amino acids profile of Serbian unifloral honeys. Journal of the Science of Food and Agriculture, 93(13), 3368-3376.
47. Khaled, A. Y., Aziz, S. A., & Rokhani, F. Z. 2014. Development and evaluation of an impedance spectroscopy sensor to assess cooking oil quality. International Journal of Environmental Science and Development, 5(3), 299.
48. Kuson, P., & Terdwongworakul, A. 2013. Minimally-destructive evaluation of durian maturity based on electrical impedance measurement. Journal of Food Engineering, 116(1), 50-56.
49. Lasia, A. 2014. Electrochemical impedance spectroscopy and its applications. New York: Springer.
50. León-Ruiz, V., Vera, S., González-Porto, A. V., & San Andrés, M. P. 2013. Analysis of water-soluble vitamins in honey by isocratic RP-HPLC. Food Analytical Methods, 6(2), 488-496.
51. Liu, J. R., Ye, Y. L., Lin, T. Y., Wang, Y. W., & Peng, C. C. 2013. Effect of floral sources on the antioxidant, antimicrobial, and anti-inflammatory activities of honeys in Taiwan. Food chemistry, 139(1), 938-943.
52. Louveaux, J., Maurizio, A., & Vorwohl, G. 1978. Methods of melissopalynology. Bee world, 59(4), 139-157.
53. Lvovich, V. F. 2012. Impedance spectroscopy: applications to electrochemical and dielectric phenomena. 1st ed. New Jersey: John Wiley & Sons.
54. Mato, I., Huidobro, J. F., Simal-Lozano, J., & Sancho, M. T. 2006. Rapid determination of nonaromatic organic acids in honey by capillary zone electrophoresis with direct ultraviolet detection. methods, 20, 30-41.
55. Méndez, M. A., Suárez, M. F., & Cortés, M. T. 2006. Electrochemical impedance spectroscopy of diluted solutions of Bisphenol A. Journal of Electroanalytical Chemistry, 590(2), 181-189.
56. Metrohm Autolab B. V. 2011. Autolab application note EIS02. Retrieved from http://www.ecochemie.nl/download/Applicationnotes/Autolab_Application_Note_EIS02.pdf
57. Molan, P. C. 1992. The antibacterial activity of honey: 2. Variation in the potency of the antibacterial activity. Bee World, 73(2), 59-76.
58. Morales, V., Corzo, N., and Sanz, M. L. 2008. HPAEC-PAD oligosaccharide analysis to detect adulterations of honey with sugar syrups. Food Chemistry, 107(2), 922-928.
59. Murray, R. W., Ewing, A. G., & Durst, R. A. 1987. Chemically modified electrodes molecular design for electroanalysis. Analytical Chemistry, 59(5), 379A-390A.
60. Nakonieczna, A., Paszkowski, B., Wilczek, A., Szypłowska, A., & Skierucha, W. 2016. Electrical impedance measurements for detecting artificial chemical additives in liquid food products. Food Control, 66, 116-129.
61. Padovan, G. J., De Jong, D., Rodrigues, L. P., and Marchini, J. S. 2003. Detection of adulteration of commercial honey samples by the 13C/12C isotopic ratio. Food Chemistry, 82(4): 633-636.
62. Padovan, G. J., Rodrigues, L. P., Leme, I. A., De Jong, D., and Marchini, J. S. 2007. Presence of C4 sugars in honey samples detected by the carbon isotope ratio measured by IRMS. Eurasian Journal of Analytical Chemistry, 2(3), 134-141.
63. Paszkowski, B., Wilczek, A., Szypłowska, A., Nakonieczna, A., & Skierucha, W. 2014. A low-frequency sensor for determination of honey electrical properties in varying temperature conditions. Journal of Food Engineering, 138, 17-22.
64. Rinaldi, A. L., and Carballo, R. 2016. Impedimetric non-enzymatic glucose sensor based on nickel hydroxide thin film onto gold electrode. Sensors and Actuators B: Chemical,228, 43-52.
65. Ruiz-Matute, A. I., Soria, A. C., Martínez-Castro, I., and Sanz, M. L. 2007. A new methodology based on GC-MS to detect honey adulteration with commercial syrups. Journal of agricultural and food chemistry, 55(18): 7264-7269.
66. Scandurra, G., Tripodi, G., & Verzera, A. 2013. Impedance spectroscopy for rapid determination of honey floral origin. Journal of Food Engineering, 119(4), 738-743.
67. Singh, S., Kumar, N., Meena, V. K., Kranz, C., & Mishra, S. 2016. Impedometric phenol sensing using graphenated electrochip. Sensors and Actuators B: Chemical, 237, 318-328.
68. Suarez-Luque, S., Mato, I., Huidobro, J. F., Simal-Lozano, J., & Sancho, M. T. 2002. Rapid determination of minority organic acids in honey by high-performance liquid chromatography. Journal of Chromatography A, 955(2), 207-214.
69. Ward, G., Hadar, Y., Bilkis, I., & Dosoretz, C. G. 2003. Mechanistic features of lignin peroxidase-catalyzed oxidation of substituted phenols and 1, 2-dimethoxyarenes. Journal of Biological Chemistry, 278(41), 39726-39734.
70. White, J. W. 1978. Honey. Advances in food research, 24, 287-374.
71. Yu, L., Zhang, Y., Hu, C., Wu, H., Yang, Y., Huang, C., & Jia, N. 2015. Highly sensitive electrochemical impedance spectroscopy immunosensor for the detection of AFB 1 in olive oil. Food chemistry, 176, 22-26.
72. Yuan, X., Wang, H., Sun, J. C., & Zhang, J. 2007. AC impedance technique in PEM fuel cell diagnosis—A review. International Journal of Hydrogen Energy, 32(17), 4365-4380.
73. Zábrodská, B., & Vorlová, L. 2015. Adulteration of honey and available methods for detection–a review. Acta Veterinaria Brno, 83(10), 85-102.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77905-
dc.description.abstract天然的蜂蜜成本較為昂貴,因此常有不肖商人在市售蜂蜜中混摻成本較低之人工糖漿,冒充純正蜂蜜以賺取利潤的情形發生,使消費者與養蜂業者的權益受影響。現用的摻偽檢測方法多倚賴分析級儀器,檢測程序較為繁瑣且耗時,然而市售蜂蜜品牌眾多,大規模或高頻率地進行分析並不符合成本考量,因此,亟需發展出一套快速、可靠的檢測方法。本研究旨在利用電化學阻抗頻譜分析(Electrochemical Impedance Spectroscopy, EIS)做為基礎檢測技術,來建立一套蜂蜜摻偽快速檢測系統。實驗結果顯示,本檢測系統僅需對樣品進行簡單稀釋的前處理,即可透過阻抗圖譜奈氏圖(Nyquist plot)的觀察,區別出市售的純正蜂蜜、糖漿、及調和蜂蜜,並進一步得出三種類型樣品間差異最為顯著的是電荷轉移阻抗(Charge Transfer Resistance, Rct)之數值,同時藉由此阻抗值會與蜂蜜中混摻糖漿比例呈現正相關的特性,可將電荷轉移阻抗做為判斷蜂蜜摻假與否的潛力指標。當阻抗分析的掃引頻率介於101至105 Hz之間時,調和蜂蜜與純正蜂蜜間之阻抗值(LogZ)差異可達一個數量級,因此即便在對數維度下,透過阻抗波德圖(Bode plot)仍可輕易地將兩者區分開來。藉由本研究所訂定的鑑別條件,收集得來之10件調和蜂蜜可以完全地與34件純正蜂蜜樣品區分開來,因此摻假蜂蜜的鑑別成功率達100%。本檢測系統在具分辨性之頻率區間內針對單一樣品進行一次完整頻譜掃引只需花費3分鐘;若是在上述區間內擇一頻率進行定頻檢測,更可將檢測時間大幅縮短至數秒鐘。zh_TW
dc.description.abstractSince the price of natural honey is much higher than any other sweeteners, producers tended to adulterate honey with less expensive substances such as high fructose corn syrup. However, recent methods for detecting adulteration rely on expensive instruments and the procedures are time-consuming, a fast, simple, and low-cost analytical method is therefore demanded. A rapid and simple detection method for honey adulteration was developed based on electrochemical impedance spectroscopy (EIS) with a detection chamber composed of a gold electrode pair. After a simple sample pretreatment of water dilution, the differences of Nyquist curves among pure honeys, syrups, and adulterated honeys could be easily observed. The simulated impedance data of equivalent circuit model revealed the honey adulteration ratio is most distinguishable from the values of charge transfer resistances (Rct), and an obvious positive correlation was shown between them. Furthermore, in the frequency region between 101 to 105 Hz (Bode plot), the impedance response consistently increased along with the increasing adulteration ratio, which indicated that the adulteration ratio can be estimated even by the logarithmic values of the impedances (LogZ) at any designated frequency in the mentioned region. Based on the proposed method, all the 10 commercial adulterated honey samples were successfully identified from all the 34 authentic pure honey samples whether judged by Rct or LogZ. The data acquisition time was about 3 min for a single frequency scan (1 to 106 Hz) while only few sec was required for the impedance data at a designated frequency.en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:37:07Z (GMT). No. of bitstreams: 1
ntu-106-R04631011-1.pdf: 2134215 bytes, checksum: 354c263b62f2db4151d488fee4284866 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 x
第一章 前言及研究目的 1
第二章 文獻回顧 3
2.1 蜂蜜生產過程簡介 3
2.2 蜂蜜成份及特性 4
2.2.1 醣類 4
2.2.2 水分 5
2.2.3 羥甲基糠醛 5
2.2.4 澱粉酶活性值 5
2.2.5 類黃酮與酚類化合物 6
2.2.6 有機酸 6
2.2.7 胺基酸 7
2.2.8 維生素 7
2.3 蜂蜜植物源及產地之鑑別 8
2.4 蜂蜜摻假檢測方法之研究 10
2.5 電化學阻抗頻譜分析法 13
2.5.1 阻抗量測及分析原理 13
2.5.2 電化學阻抗頻譜分析法之應用 19
第三章 材料與方法 21
3.1 實驗藥品 21
3.2 實驗儀器設備 22
3.3 蜂蜜及糖漿樣品之物理化學性質測試 23
3.3.1 含水率 23
3.3.2 黏度 23
3.3.3 pH值 23
3.4 電化學阻抗頻譜分析樣品前處理 24
3.4.1 蜂蜜及糖漿樣品之基本阻抗性質分析 24
3.4.2 蜂蜜混摻糖漿之阻抗分析 24
3.4.3 加入調和蜂蜜添加物於糖漿之阻抗分析 25
3.4.4 加入有機酸於糖漿之阻抗分析 26
3.4.5 加入胺基酸於糖漿之阻抗分析 27
3.4.6 加入沒食子酸於糖漿之阻抗分析 28
3.4.7 加入抗壞血酸於糖漿之阻抗分析 28
3.5 電化學阻抗頻譜分析 29
3.5.1 參數設定 29
3.5.2 系統架設及實驗流程 29
第四章 結果與討論 32
4.1 蜂蜜及糖漿之物理化學性質測試 32
4.2 蜂蜜及糖漿之基本阻抗性質分析 34
4.2.1 等效電路模型之修正 34
4.2.2 阻抗圖譜及等效電路元件數值分析 36
4.2.3 含水率對於樣品阻抗值之影響 38
4.2.4 前處理方式之適當性 40
4.3 混摻糖漿對於蜂蜜阻抗性質之影響 41
4.4 調和蜂蜜添加物對於檢測系統之影響 44
4.4.1 蜂蜜香料 44
4.4.2 焦糖色素 46
4.5 蜂蜜成份對於檢測系統之影響 49
4.5.1 有機酸 49
4.5.2 胺基酸 51
4.5.3 沒食子酸 52
4.5.4 抗壞血酸 53
4.6 市售蜂蜜樣品之鑑別 54
4.6.1 以電荷轉移阻抗值進行鑑別之結果 54
4.6.2 以定頻檢測下之阻抗值進行鑑別之結果 55
4.6.3 檢測方法應用層面之探討 57
第五章 結論 58
參考文獻 60
dc.language.isozh-TW
dc.title蜂蜜摻偽快速檢測法之開發zh_TW
dc.titleDevelopment of a Rapid Screening Method for Identifying Honey Adulterationen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳力騏(Richie L. C. Chen),莊旻傑(Min-Chieh Chuang)
dc.subject.keyword蜂蜜,高果糖糖漿,摻偽,電化學阻抗頻譜分析法,快篩檢測,zh_TW
dc.subject.keywordHoney,High fructose corn syrup,Adulteration,Electrochemical impedance spectroscopy,Rapid screening,en
dc.relation.page67
dc.identifier.doi10.6342/NTU201702656
dc.rights.note有償授權
dc.date.accepted2017-08-14
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-R04631011-1.pdf
  目前未授權公開取用
2.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved