Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77902
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏志平
dc.contributor.authorYi-Min Huangen
dc.contributor.author黃奕閔zh_TW
dc.date.accessioned2021-07-11T14:37:02Z-
dc.date.available2022-08-30
dc.date.copyright2017-08-30
dc.date.issued2017
dc.date.submitted2017-08-14
dc.identifier.citationBianchi, M., Campodall’Orto S. C., Frattini F., & Vercesi, P. (2010) Enabling open innovation in small and medium-sized enterprises: how to find alternative applications for your technologies. R&D Management, 40(4), pp. 414-431.
Chandrasekaran, B., & Josephson, J. R. (2000). Function in device representation. Engineering with Computers, 16, pp. 162-177.
Chesbrough, H. W. (2006) Open business models: How to thrive in the new innovation landscape. Harvard Business Press.
Chittaro, L., & Kumar, A. N. (1998). Reasoning about function and its applications to engineering. Artificial Intelligence in Engineering, 12, pp. 331-336.
Choi, S., Yoon, J., Kim, K., Lee, J. Y., & Kim, C. H. (2011) SAO network analysis of patents for technology trends identification: a case study of polymer electrolyte membrane technology in proton exchange membrane fuel cells. Scientometrics, 88(2), pp. 863-883.
Collan, M. & Heikkilä, M. (2011) Enhancing patent valuation with the pay-off method. Journal of Intellectual Property Rights, 16, pp. 377-384.
De Marneffe, M. C., MacCartney, B., & Manning, C. D. (2006). Generating typed dependency parses from phrase structure parses. In Proceedings of LREC (6), pp. 449-454.
De Marneffe, M. C., & Manning, C. D. (2008). Stanford typed dependencies manual. https://nlp.stanford.edu/software/dependencies_manual.pdf.
Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990) Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6), pp. 391-407.
Dewulf, S. (2006) Directed variation: Variation of properties for new or improved function product DNA, A base for ‘connect and develop’. Proceedings of the ETRIA TRIZ Future Conference, Kortrijk, Belgium.
Evenson, R., & Putnam, J. (1988). The Yale-Canada patent flow concordance. Economic Growth Centre Working Paper, New Haven Connecticut: Yale University.
Glaser, M. & Miecznik, B. (2009) TRIZ for reverse inventing in market research: a case study from WITTENSTEIN AG, identifying new areas of application of a core technology. Creativity and Innovation Management, 18(2), pp. 90-100.
Hoi, H. I. (2013) A function-based approach to identifying cross-sectoral applications for patents. Department of Information Management College of Management, National Taiwan University Master Thesis.
Jeon, J., Lee, C. & Park, Y. (2011) How to use patent information to search potential technology partners in open innovation. Journal of Intellectual Property Rights, 16, pp. 385-393.
Johnson, D. K. N. (2002). The OECD technology concordance (OTC): Patents by industry of manufacture and sector of use. STI Working Papers, 5, Paris: OECD.
Kimbrough, S. O., MacMillan, I. & Ranieri, J. (2007). U.S. Patent No. 7,257,568.
Kutty, A. A. & Chakravarty, S. (2011) The competition-IP dichotomy: Emerging challenges in technology transfer licenses. Journal of Intellectual Property Rights, 16, pp. 258-266.
Lee, C., Jeon, J., & Park, Y. (2011) Monitoring trends of technological changes based on the dynamic patent lattice: a modified formal concept analysis approach. Technological Forecasting and Social Changes, 78, pp. 690-702.
Lee, S., Yoon, B., & Park, Y. (2009) An approach to discovering new technology opportunities: Keyword-based patent map approach. Technovation 29, pp. 481-497.
Lee, S., Park, G., Yoon, B., & Park, J., (2010) Open innovation in SMEs- An Intermediated Network Model. Research Policy, 29, pp. 290-300.
Lichtenthaler, U. (2008) Opening up strategic technology planning: extended roadmaps and functional markets. Management Decision, 46(1), pp. 77-91.
Lichtenthaler, U. (2010) Technology exploitation in the context of open innovation: Finding the right ‘job’ for your technology. Technovation, 30, pp. 429-435.
Lichtenthaler, U. (2011) Implementation steps for successful out-licensing. Research-Technology Management, 54, pp. 47-53.
Loh H. T., He C., & Shen L. (2006) Automatic classification of patent documents for TRIZ users. World Patent Information, 28(1), pp. 6-13.
Mann, D. (2002) Assessing the accuracy of the contradiction matrix for recent mechanical inventions. TRIZ Journal.
Miller, G. (1995) Wordnet: A lexical database for English. Communications of the ACM, 38(11), pp. 39-41.
Moehrle, M. G. (2005) What is TRIZ? From conceptual basics to a framework for research. Creativity and innovation management, 14(1), pp. 3-13.
Moehrle, M. G., Walter, L., Geritz, A., & Müller, S. (2005) Patent‐based inventor profiles as a basis for human resource decisions in research and development. R&D Management, 35(5), pp. 513-524.
Ngassa, A., Bachelet, R., & Truchot, P. (2003) How to turn an invention into an innovation? An approach based on a reverse use of TRIZ. Proceedings of 12th International Conference on Management of Technology (IAMOT), Nancy, France.
Noh, H., Jo, Y., & Lee, S. (2015) Keyword selection and processing strategy for applying text mining to patent analysis. Expert Systems with Applications, 42, pp. 4348-4360.
Ovtcharova, J. & Marinov, M. (2008). Function based identification of affected components in cross-domain engineering. In B. Rachev & A. Smrikarov (eds.), CompSysTech (p./pp. 21,): ACM. ISBN: 978-954-9641-52-3.
Park, H., Kim, K., Choi, S., & Yoon, J. (2013). A patent intelligence system for strategic technology planning. Expert Systems with Applications, 40, pp. 2373-2390.
Park, H., Yoon, J., & Kim, K. (2013) Using function-based patent analysis to identify potential application areas of technology for technology transfer. Expert Systems with Applications 40, pp. 5260-5265.
Park, I., & Yoon, B. (2013) Identifying Potential Partnership for Open Innovation by using Bibliographic Coupling and Keyword Vector Mapping. World Academy of Science, Engineering and Technology, 7, pp. 375-380.
Park, Y., Lee, S., & Lee, S. (2012) Patent analysis for promoting technology transfer
in multi-technology industries: the Korean aerospace industry case. J Technol Transf, 37, pp. 355-374.
Salton, G., Wong, A., & Yang C. S. (1975) A vector space model for automatic indexing. Communications of the ACM, 18, pp. 613-620.
Sánchez, A. M. & Pérez, M. P. (2002) R&D project efficiency management in the Spanish industry. International Journal of Project Management, 20, pp. 545-560.
Schmoch, U., Laville, F., Patel, P., & Frietsch, R. (2003). Linking technology areas to industrial sectors: Final report to the European commission. DG Research, Karlsruhe: Fraunhofer ISI.
She, T. W. (2012) A text mining approach to identifying cross-sectoral applications. Department of Information Management College of Management, National Taiwan University Master Thesis.
Song, B., Seol, H., Park, Y. (2016) A patent portfolio-based approach for assessing potential R&D partners: An application of the Shapley value. Technological Forecasting & Social Change, 103, pp. 156-165.
Umeda, Y. & Tomiyama, T. (1997). Functional reasoning in design. IEEE Expert, 12, pp. 42-48.
Verhaegen, P. A., D’hondt, J., Vertommen, J., Dewulf, S., & Duflou, J. R. (2009) Interrelating products through properties via patent analysis. Proceedings of the 18th CIRP Design Conference, pp. 252-257.
Verspagen, B., Morgastel, T., & Slabbers, M. (1994). MERIT concordance table: IPC–ISIC (rev. 2). Maastricht: MERIT Research Memorandum.
Yoon, J., & Kim, K. (2011) An automated method for identifying TRIZ evolution trends from patents. Expert Systems with Applications, 38(12), pp. 15540-15548.
Yoon, J., & Kim, K. (2012) Detecting signals of new technological opportunities
using semantic patent analysis and outlier detection. Scientometrics, 90, pp. 445-461.
Yoon, J., Park, H., & Kim, K. (2013) Identifying technological competition trends for R&D planning using dynamic patent maps: SAO-based content analysis. Scientometrics, 94, pp. 313-331.
Yoon, J., Ko, N., Kim, J., Lee, J. M., Coh, B. L., & Song, I. (2015) A function-based knowledge base for technology intelligence. Industrial Engineering & Management Systems, 14(1), pp. 73-87.
Zhang, Y., Porter, A. L., Hu, Z., Guo, Y., & Newman, N. C. (2014) ‘Term clumping’ for technical intelligence: A case study on dye-sensitized solar cells. Technological Forecasting and Social Change, 85, pp. 26-39.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77902-
dc.description.abstract「跨業應用」是指企業在與自身不同的產業中為企業自身的核心技術尋找可能的應用。由於跨業應用會牽涉到技術轉移與專利的授權,因此跨業應用會幫助企業充分地利用自身現有的技術與資源獲得額外的收益,進而增加企業自身的競爭優勢。而對於被授權方來說,跨業應用也可以讓企業直接取得其他產業的專利知識進行生產,而免於投資大量時間與研發成本,以及研發失敗的風險。這樣雙贏的情況讓許多企業更有意願接受與尋找跨業應用。
傳統上尋找技術的跨業應用大都依賴領域專家的知識,但這樣通常會耗費企業大量的資源與時間,且專家通常沒有跨領域的知識,這對企業來說是很大的挑戰。因此,我們採用基於功能分析與書目耦合的概念提出一個系統化與全自動化的方法取代專家尋找技術的跨業應用。我們的想法是利用專利分析的方式來為焦點專利尋找功能相似與強書目耦合關係的其他專利,而這些專利的技術領域就可以視為焦點專利的跨業應用領域。
zh_TW
dc.description.abstractCross-sectoral application of a technology is to explore the technology to different applications in industries different from the industry of the firm owning the technology. Cross-sectoral applications can help firms to enlarge their revenue streams because the firms can receive fees from technology transfer and/or licensing associated with possible cross-sectoral applications of their proprietary technologies. Besides economic returns and potential competitive advantage acquired by technology owners, the concept of cross-sectoral applications also benefits technology receiving firms. Such a win-win situation enhances the willingness of technology transfers or licenses between firms. Conventional approaches to identify potential application areas for a focal technology rely heavily on experts’ knowledge and intuition, which are costly (in terms of time and resources) and make most firms being limited in business resources and facing enormous challenges. Thus, in this research, we use the concept of function analysis and bibliographic coupling to propose a systematic and fully automatic approach to deal with the task of identification of cross-sectoral application efficiently. The main idea of our proposed method is that the application area in which most prior patents have similar functions and cite the same patents as the focal patent can be regarded as a potential cross-sectoral application area of the focal patent. Then we can recommend such cross-sectoral applications for the focal patent.en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:37:02Z (GMT). No. of bitstreams: 1
ntu-106-R04725035-1.pdf: 2681976 bytes, checksum: 5430cdae1cc98459eaf1731d161877a7 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 i
中文摘要 ii
ABSTRACT iii
TABLE OF CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES viii
Chapter 1 Introduction 1
1-1. Background 1
1-2. Research Motivation 3
1-3. Research Objective 4
Chapter 2 Literature Review 6
2-1. Identifying Characteristics of A Focal Technology 7
2-2. Identifying Reference Technologies of A Focal Technology 10
2-3. Mapping Reference Technologies to Application Areas 11
2-4. Rank Candidates of Identified Application Areas 14
2-5. Review Summary 15
Chapter 3 Our Proposed Approach 16
3-1. Overview 16
3-2. AO Structure Extraction 18
3-2-1. Natural Language Processing for Syntactic Analysis 18
3-2-2. Process of AO Structure Extraction 20
3-3. AO Structure Selection 23
3-3-1. Functional AO Structure Selection 24
3-3-2. AO Structure Grouping 25
3-4. Selecting Relevant Patents 27
3-4-1. Function-based Method 28
3-4-2. Bibliographic-coupling-based Method 28
3-4-3. Merge Method 29
3-5. Reference Patents Retrieval 29
3-6. Candidates of Application Areas Generation 30
3-7. Candidates Scoring and Ranking 30
Chapter 4 Empirical Evaluation 32
4-1. Golden Answer of Cross-sectoral Applications 32
4-2. Patent Data Collection 33
4-3. Evaluation Criterion 34
4-4. Performance Benchmark 35
4-5. Parameter Tuning Experiments 35
4-5-1. Tuning Quantity of AO Structures 36
4-5-2. Reference Patents Retrieval with Forward Citation Factor 37
4-5-3. Reference Patents Retrieval without Forward Citation Factor 41
4-5-4. Experimental Comparison 43
4-6. Evaluation Results 48
4-7. Effect of Candidates Scoring 50
Chapter 5 Conclusion and Future Work 55
REFERENCES 57
Appendix A: List of 44 Sectoral Fields 62
Appendix B: Concordance Matrix between Sectoral fields and Sub-classes of IPC Codes 63
dc.language.isoen
dc.subject功能分析zh_TW
dc.subject書目耦合zh_TW
dc.subject專利分析zh_TW
dc.subject自然語言處理zh_TW
dc.subject向量空間模型zh_TW
dc.subject跨業應用zh_TW
dc.subject跨業授權zh_TW
dc.subjectnatural language processingen
dc.subjectpatent analysisen
dc.subjectcross-sectoral applicationsen
dc.subjectcross-sectoral licensingen
dc.subjectfunction-based analysisen
dc.subjectbibliographic couplingen
dc.subjectvector space modelen
dc.title基於功能分析與書目耦合方法尋找專利跨業應用zh_TW
dc.titleA Function- and Bibliographic-coupling-based Approach for Identifying Cross-sectoral Applications of Patentsen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳彥良,盧信銘
dc.subject.keyword專利分析,跨業應用,跨業授權,功能分析,書目耦合,向量空間模型,自然語言處理,zh_TW
dc.subject.keywordpatent analysis,cross-sectoral applications,cross-sectoral licensing,function-based analysis,bibliographic coupling,vector space model,natural language processing,en
dc.relation.page66
dc.identifier.doi10.6342/NTU201703197
dc.rights.note有償授權
dc.date.accepted2017-08-15
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-106-R04725035-1.pdf
  未授權公開取用
2.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved