請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77901
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳振中(Jerry Chun-Chung Chan) | |
dc.contributor.author | An-Chi Huang | en |
dc.contributor.author | 黃安琪 | zh_TW |
dc.date.accessioned | 2021-07-11T14:37:01Z | - |
dc.date.available | 2022-08-31 | |
dc.date.copyright | 2017-08-31 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-14 | |
dc.identifier.citation | 1. Neumann, M.; Sampathu, D. M.; Kwong, L. K.; Truax, A. C.; Micsenyi, M. C.; Chou, T. T.; Bruce, J.; Schuck, T.; Grossman, M.; Clark, C. M.; McCluskey, L. F.; Miller, B. L.; Masliah, E.; Mackenzie, I. R.; Feldman, H.; Feiden, W.; Kretzschmar, H. A.; Trojanowski, J. Q.; Lee, V. M. Y., Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. Science 2006, 314 (5796), 130.
2. Buratti, E.; Baralle, F. E., Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front Biosci 2008, 13 (867-7), 8. 3. Kuo, P.-H.; Doudeva, L. G.; Wang, Y.-T.; Shen, C.-K. J.; Yuan, H. S., Structural insights into TDP-43 in nucleic-acid binding and domain interactions. Nucleic acids research 2009, 37 (6), 1799-1808. 4. Igaz, L. M.; Kwong, L. K.; Chen-Plotkin, A.; Winton, M. J.; Unger, T. L.; Xu, Y.; Neumann, M.; Trojanowski, J. Q.; Lee, V. M. Y., Expression of TDP-43 C-terminal fragments in vitro recapitulates pathological features of TDP-43 proteinopathies. Journal of Biological Chemistry 2009, 284 (13), 8516-8524. 5. Chen, A. K. H.; Lin, R. Y. Y.; Hsieh, E. Z. J.; Tu, P.-H.; Chen, R. P. Y.; Liao, T.-Y.; Chen, W.; Wang, C.-H.; Huang, J. J. T., Induction of amyloid fibrils by the C-terminal fragments of TDP-43 in amyotrophic lateral sclerosis. Journal of the American Chemical Society 2010, 132 (4), 1186-1187. 6. Furukawa, Y.; Kaneko, K.; Watanabe, S.; Yamanaka, K.; Nukina, N., A seeding reaction recapitulates intracellular formation of Sarkosyl-insoluble transactivation response element (TAR) DNA-binding protein-43 inclusions. Journal of Biological Chemistry 2011, 286 (21), 18664-18672. 7. Liu, G. C.-H.; Chen, B. P.-W.; Ye, N. T.-J.; Wang, C.-H.; Chen, W.; Lee, H.-M.; Chan, S. I.; Huang, J. J.-T., Delineating the membrane-disrupting and seeding properties of the TDP-43 amyloidogenic core. Chemical communications 2013, 49 (95), 11212-11214. 8. Gillam, J. E.; MacPhee, C. E., Modelling amyloid fibril formation kinetics: mechanisms of nucleation and growth. Journal of Physics: Condensed Matter 2013, 25 (37), 373101. 9. Chiti, F.; Dobson, C. M., Protein misfolding, functional amyloid, and human disease. Annual Review of Biochemistry 2006, 75, 333-366. 10. Chimon, S.; Shaibat, M. A.; Jones, C. R.; Calero, D. C.; Aizezi, B.; Ishii, Y., Evidence of fibril-like β-sheet structures in a neurotoxic amyloid intermediate of Alzheimer's β-amyloid. Nature structural & molecular biology 2007, 14 (12), 1157-1164. 11. Berthelot, K.; Cullin, C.; Lecomte, S., What does make an amyloid toxic: Morphology, structure or interaction with membrane? Biochimie 2013, 95 (1), 12-19. 12. Chen, W.-T.; Liao, Y.-H.; Yu, H.-M.; Cheng, I. H.; Chen, Y.-R., Distinct Effects of Zn2+, Cu2+, Fe3+, and Al3+ on Amyloid-β Stability, Oligomerization, and Aggregation AMYLOID-β DESTABILIZATION PROMOTES ANNULAR PROTOFIBRIL FORMATION. Journal of Biological Chemistry 2011, 286 (11), 9646-9656. 13. Smith, T. J.; Stains, C. I.; Meyer, S. C.; Ghosh, I., Inhibition of β-amyloid fibrillization by directed evolution of a β-sheet presenting miniature protein. Journal of the American Chemical Society 2006, 128 (45), 14456-14457. 14. Yang, C. I.; Tsai, B. N. F.; Huang, S. J.; Wang, T. Y.; Tai, H. C.; Chan, J. C. C., Aggregation of Beta‐Amyloid Peptides Proximal to Zwitterionic Lipid Bilayers. Chemistry–An Asian Journal 2015, 10 (9), 1967-1971. 15. Mukherjee, S.; Chowdhury, P.; Gai, F., Effect of dehydration on the aggregation kinetics of two amyloid peptides. The Journal of Physical Chemistry B 2008, 113 (2), 531-535. 16. Matzke, S. F.; Creagh, A. L.; Haynes, C. A.; Prausnitz, J. M.; Blanch, H. W., Mechanisms of protein solubilization in reverse micelles. Biotechnology and bioengineering 1992, 40 (1), 91-102. 17. Van Horn, W. D.; Ogilvie, M. E.; Flynn, P. F., Reverse micelle encapsulation as a model for intracellular crowding. Journal of the American Chemical Society 2009, 131 (23), 8030-8039. 18. Yeung, P. S. W.; Axelsen, P. H., The crowded environment of a reverse micelle induces the formation of β-strand seed structures for nucleating amyloid fibril formation. Journal of the American Chemical Society 2012, 134 (14), 6061-6063. 19. Stine, W. B.; Dahlgren, K. N.; Krafft, G. A.; LaDu, M. J., In vitro characterization of conditions for amyloid-β peptide oligomerization and fibrillogenesis. Journal of Biological Chemistry 2003, 278 (13), 11612-11622. 20. Colvin, M. T.; Silvers, R.; Frohm, B.; Su, Y.; Linse, S.; Griffin, R. G., High resolution structural characterization of Aβ42 amyloid fibrils by magic angle spinning NMR. Journal of the American Chemical Society 2015, 137 (23), 7509-7518. 21. Macao, B.; Hoyer, W.; Sandberg, A.; Brorsson, A.-C.; Dobson, C. M.; Härd, T., Recombinant amyloid beta-peptide production by coexpression with an affibody ligand. BMC biotechnology 2008, 8 (1), 82. 22. Naiki, H.; Gejyo, F., [20] Kinetic analysis of amyloid fibril formation. Methods in Enzymology 1999, 309, 305-318. 23. Jarudilokkul, S.; Poppenborg, L. H.; Stuckey, D. C., Backward extraction of reverse micellar encapsulated proteins using a counterionic surfactant. Biotechnology and bioengineering 1999, 62 (5), 593-601. 24. Cheng, S. I.; Stuckey, D. C., Protein recovery from surfactant precipitation. Biotechnology progress 2011, 27 (6), 1614-1622. 25. Krebs, M. R. H.; Bromley, E. H. C.; Donald, A. M., The binding of thioflavin-T to amyloid fibrils: localisation and implications. Journal of Structural Biology 2005, 149 (1), 30-37. 26. Abelson, J. N.; Simon, M. I.; Wetzel, R., Amyloid, prions, and other protein aggregates. Academic Press: 1999; Vol. 309. 27. Han, Y.; Huang, X.; Cao, M.; Wang, Y., Micellization of surfactin and its effect on the aggregate conformation of amyloid β (1-40). The Journal of Physical Chemistry B 2008, 112 (47), 15195-15201 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77901 | - |
dc.description.abstract | 部分神經退化性疾病致病原因爲蛋⽩質或胜肽的不正常堆疊,形成有神經毒性的類澱粉樣聚集物。在 2006 年,TAR DNA-binding Protein 43 (TDP-43) 被發現為造成肌萎縮性脊髓側索硬化症 (amyotrophic lateral sclerosis, ALS) 和額顳葉退化症 (frontotemporal lobar degeneration, FTLD) 病理堆積物的主要成分。⽽近年來有 TDP-43 蛋⽩質 C 端⽚段 (TDP-43 C-terminal fragment) 被發現有極⾼的傾向形成澱粉樣纖維。⽬前已有許多⽂獻指出,寡聚物的神經毒性⽐單體與纖維都來得⾼。然⽽,這些寡聚物較不穩定且胜肽聚合過程呈多態性 (polymorphism),因此較難直接研究寡聚物的特性。 在本實驗中,我們嘗試利⽤逆相微胞去限制胜肽的聚集化過程。使⽤Aerosol-OT (sodium bis (2-ethylhexyl) sulfosuccinate, AOT) 界⾯活性劑來製備逆相微胞,並選擇粒徑⼤⼩為 33 nm ([H2O]/[AOT surfactant] = 70) 的逆相微胞來包覆單體,微胞內的⽔相環境可使胜肽單體碰撞聚合,並產⽣胜肽寡聚物。在逆相微胞內的寡聚物⽣成後,會因為系統內有限的空間與單體數⽬,⽽無法形成纖維。本研究將利⽤ TDP-43 蛋⽩質 C 端胜肽⽚段作為研究聚合過程的澱粉樣胜肽,並在除去微胞並純化寡聚物後,利⽤ ThT (thiofalvin T) 螢光,研究聚集情形;同時以圓⼆⾊光譜儀及電⼦顯微鏡,研究寡聚物之⼆級結構變化與形貌。最後藉由引晶效應 (seeding effect) 來證實寡聚物能作為核種 (seed),並加速 TDP-43 蛋⽩質聚集化現象。 | zh_TW |
dc.description.abstract | Misfolded proteins or peptides forming neurotoxic amyloid aggregates are hallmarks of many neurodegenerative diseases. In 2006, TAR DNA-binding protein (TDP-43) was identified as major protein components of inclusion bodies derived from amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) patients. It is now known that TDP-43 C-terminal fragments are not only the major component of the inclusions but also show the propensity to form fibrils. According to recent research, oligomeric intermediates are more relevant to pathological progression than species such as monomers or fibrillar aggregates. Unfortunately, these oligomeric intermediates are always unstable and short-lived. Herein, we developed a system applying reversed micelles (RMs) to constrain limited peptide molecules inside each vesicle. After forming oligomers inside RMs, limited molecules disallow them from further developing into fibril structure as final state. In this study, peptide fragments derived from TDP-43 C-terminal were prepared by RMs method. By stabilizing the unstable peptidic oligomeric intermediates, it allows us to study the biophysical properties by steady-state techniques, such as transmission electron microscopy (TEM), circular dichroism (CD) and thioflavin T (ThT).Aerosol-OT (AOT, sodium bis(2-ethylhexyl) sulfosuccinate), an anionic surfactant, was used to prepare RMs. In water-in-oil microemulsion systems, water droplets containing pre-disaggregated peptides were encapsulated by AOT and dispersed in isooctane. The average size of RMs was related to water loading parameter (w0), which is the molar ratio of water to surfactant molecules (w0 = [H2O] / [AOT]). Amyloid peptides derived from TDP-43 in RMs (w0 = 70) resulted in vesicles with 33 nm diameters measured by dynamic light scattering (DLS). In addition, we also disrupt reverse micelle to obtain the oligomers and keep tracking their dramatically changed conformations by using ThT fluorescence. As time goes on, freshly extracted oligomers will form fibrils/ films. Moreover, oligomeric intermediates would induce TDP-43 protein aggregation by showing seeding effect compared to monomers or fibrils. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T14:37:01Z (GMT). No. of bitstreams: 1 ntu-106-R04223208-1.pdf: 65509375 bytes, checksum: 61c676e85f13717a33ea73084e5a7ffb (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 中文摘要 i
Abstract ii 謝誌 iii 縮寫表 v 第 1 章 . 緒論 1 1-1 TDP-43 蛋白質 1 1-2 TDP-43聚集化現象與其C端的關係 2 1-3 類澱粉樣纖維聚合途徑 5 1-4 寡聚物 (oligomers) 及其穩定方式 6 1-5 逆相微胞 (Reverse micelle, RM) 10 1-6 研究動機 13 第 2 章 . 合成與鑑定 14 2-1 化學試劑與儀器 14 2-2 胜肽製備 16 2-2-1 胜肽合成 16 2-2-2 胜肽純化 18 2-2-3 胜肽鑑定 19 2-2-4 胜肽定量 20 2-2-5 胜肽單體製備 21 2-2-6 RM-peptide的製備-直接注入法 21 2-2-7 利用相反電荷界面活性劑來萃取胜肽 22 2-3 胜肽之澱粉樣蛋白性質鑑定方法 23 2-3-1 ThT (Thioflavin T) 螢光光譜 23 2-3-2 圓二色光譜儀 (Circular Dichroism, CD) 25 2-3-3 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 25 2-4 動態光散射粒徑分析儀 (Dynamic Light Scattering, DLS) 26 2-5 無細胞系統 (Cell-Free System) 觀察晶種效應實驗 26 2-6 西方墨點法 (Western Blot) 28 2-7 胜肽螢光標記 29 2-8 寡聚物性質測試實驗流程圖 30 第 3 章 . 實驗結果與討論 31 3-1 胜肽合成、純化與鑑定 31 3-2 胜肽性質的鑑定 32 3-2-1 胜肽細微影像觀測 (TEM) 32 3-2-2 不同溫度下胜肽之類澱粉蛋白性質鑑定與二級結構變化 33 3-3 以逆相微胞包覆胜肽單體 (RM- TDP43307-322/ TDP43302-322) 36 3-4 以逆相微胞包覆胜肽單體及萃取方式 36 3-5 逆相微胞寡聚物類澱粉蛋白性質鑑定 37 3-5-1 TEM影像觀測逆相微胞寡聚物 37 3-5-2 逆相微胞寡聚物類澱粉蛋白性質鑑定與二級結構變化 38 3-6 全反射螢光影像動態觀測逆相微胞寡聚物核化聚合過程 41 3-7 引晶效應 42 第 4 章 . 結論 46 附錄 47 (1) 胜肽純化質譜鑑定 47 (2) 胜肽之螢光標記 49 (3) 藉由核磁共振儀定量所剩餘之界面活性劑AOT 51 (4) 胜肽單體與界面活性劑AOT培養 54 參考文獻 58 | |
dc.language.iso | zh-TW | |
dc.title | 探討以逆相微胞製備之 TDP-43 胜肽寡聚物的特性 | zh_TW |
dc.title | Characterization of the TDP-43 peptide oligomers derived from reverse micelle | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 黃人則(Joseph Jen-Tse Huang) | |
dc.contributor.oralexamcommittee | 戴桓青(Hwan-Ching Tai) | |
dc.subject.keyword | 逆相微胞,TDP-43蛋白,類澱粉樣纖維,寡聚物, | zh_TW |
dc.subject.keyword | Reverse micelle,TDP-43,amyloid fibrils,oligomer, | en |
dc.relation.page | 60 | |
dc.identifier.doi | 10.6342/NTU201703215 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-15 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-R04223208-1.pdf 目前未授權公開取用 | 63.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。