請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77890
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張耀乾(Yao-Chien Alex Cgang) | |
dc.contributor.author | Jen-An Lin | en |
dc.contributor.author | 林仁安 | zh_TW |
dc.date.accessioned | 2021-07-11T14:36:47Z | - |
dc.date.available | 2022-08-31 | |
dc.date.copyright | 2017-08-31 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-15 | |
dc.identifier.citation | 么煥英. 2007. 應用 Pour-through 介質溶液測定法於以水草栽培之蝴蝶蘭. 國立臺灣大學園藝學系碩士論文. 臺北.
王怡景. 2010. 碳氮對文心蘭生長與開花之影響. 國立臺灣大學園藝學系碩士論文. 臺北. 李哖. 1991. 蝴蝶蘭之幼年性. 園藝作物產期調節研討會專輯. 台中區農業改良場. 臺中. p. 77-86. 李哖、王明吉. 1997. 白花蝴蝶蘭由幼年到成熟相之礦物成分和碳水化合物之變化. 中國園藝 43:295-305. 李哖、李嘉慧. 1996. 蝴蝶蘭花芽誘引和花序發育時之碳水化合物變化. 中國園藝 42:262-275. 李哖、林菁敏. 1984. 溫度對白花蝴蝶蘭生長與開花之影響. 中國園藝 30:223-231. 李哖、林菁敏. 1987. 蝴蝶蘭之花期調節. 園藝作物產期調節研討會專輯. 台中區農業改良場. p. 27-44. 林思佑、陳香君、鍾仁賜、張耀乾. 2013. 株齡影響蝴蝶蘭對介質鹽度的耐受度. 臺灣園藝 59:1-13. 游雅娸. 2012. 蝴蝶蘭於氮、磷、鉀養分逆境下之生長反應與基因功能分析. 國立臺灣大學園藝學系碩士論文. 臺北. 雷欣怡. 2007. 蝴蝶蘭開花期礦物元素組成變化與肥料需求. 國立臺灣大學園藝學系碩士論文. 臺北. 廖季珈. 2016. 蝴蝶蘭之開花抑制. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北. Arora, N.K. and S. Raghbir. 2006. Seasonal variation in nitrogen and total carbohydrates level of leaf and spur of pear as influenced by supplemental application of nitrogen. Environ. Ecol. 24:999-1002. Bichsel, R.G., T.W. Starman, and Y.T. Wang. 2008. Nitrogen, phosphorus, and potassium requirements for optimizing growth and flowering of the nobile Dendrobium as a potted orchid. HortScience 43:328-332. Chang, Y.C.A. and H.Y. Yao. 2011. A practical method for monitoring the fertility of sphagnum moss during Phalaenopsis cultivation, p. 65-84. In: W. H. Chen and H. H. Chen (eds.). Orchid Biotechnology II. World Scientific, Singapore. Chansean, M., A. Nakano, and S. Ichihashi. 2006. Control of spiking in Phalaenopis by application of mineral salts and plant growth regulators. Bull. Aichi Univ. Edu. 55:39-44. Chen, W., Y. Tseng, Y. Liu, C. Chuo, P. Chen, K. Tseng, Y. Yeh, M. Ger, and H. Wang. 2008. Cool-night temperature induces spike emergence and affects photosynthetic efficiency and metabolizable carbohydrate and organic acid pools in Phalaenopsis aphrodite. Plant Cell Rpt. 27:1667-1675. Chen, W.S., L. Yang, W.H. Chen, H.Y. Liu, and Z.H. Liu. 1994. Geibberllin and temperature influence carbohydrate content and flowering in Phalaenopsis. Physiol. Plant. 90:391-395. Guo, W.J. and N. Lee. 2006. Effect of leaf and plant age, and day/night temperature on net CO2 uptake in Phalaenopsis amabilis var. formosa. J. Amer. Soc. Hort. Sci. 131:320-326. Hew, C., L. Lim, and C. Low. 1993. Nitrogen uptake by tropical orchids. Enviro. Expt. Bot. 33:273-281. Hou, J.Y., W.B. Miller, and Y.C.A. Chang. 2011. Effects of simulated dark shipping on the carbohydrate status and post-shipping performance of Phalaenopsis. J. Amer. Soc. Hort. Sci. 136:364-371. Hsu, Y., M. Tseng, and C. Lin. 1999. The fluctuation of carbohydrates and nitrogen compounds in flooded wax-apple trees. Bot. Bul. Acad. Sinica 40:193-198. Ichihashi, S. 2003. Effects of nitrogen application on leaf growth, inflorescence development and flowering in Phalaenopsis. Bull. Aichi Univ. Edu. 52:35-42. Ichihashi, S., K. Miyata, K. Kato, T. Miwa, Y. Nakazawa, A. Suzuki, R. Kashima, and J. Kato. 2010. The effects of NH4-N and plant growth regulators on Phalaenopsis spiking and flowering. Acta Hort. 878:335-345. Ichihashi, S. and W.T. Tsai. 2011. Basic research of nobile-type Dendrobium in Japan. Seed Nursery (Taiwan) 13:1-18. Kaakinen, S., E. Vapaavuori, S. Iivonen, and A. Jolkkonen. 2004. Growth, allocation and tissue chemistry of Picea abies seedlings affected by nutrient supply during the second growing season. Tree Physiol. 24:707-719. Kataoka, K., K. Sumitomo, T. Fudano, and K. Kawase. 2004. Changes in sugar content of Phalaenopsis leaves before floral transition. Scientia Hort. 102:121-132. Klebs, G. 1918. Über die blütenbildung von Sempervivum. Flora oder Allgemeine Botanische Zeitung 111:128-151. Kubota, S. and K. Yoneda. 1994. Effect of time of nitrogen application on growth and flowering in Phalaenopsis plant. Jpn. J. Trop. Agr. 38:73-77. Kunisaki, J., J. Silva, and T. Higaki. 1983. Tissue analysis of Dendrobiums elemental content of leaves. Res. Ext. Ser. College Trop. Agr. Human Resources Univ. Hawaii 126:145-148. Larry, M.W. 1973. Carbohydrate reserves of grasses: A review. J. Range Mgt. 26:13-18. Lim, L.Y., Y.C. Hew, S.C. Wong, and C.S. Hew. 1992. Effects of light intensity, sugar and CO2 concentrations on growth and mineral uptake of dendrobium plantlets. J. Hort. Sci. 67:601-611. Liu, Y.C., K.M. Tseng, C.C. Chen, Y.T. Tsai, C.H. Liu, W.H. Chen, and H.L. Wang. 2013. Warm-night temperature delays spike emergence and alters carbon pool metabolism in the stem and leaves of Phalaenopsis aphroide. Scientia Hort. 161:198-203. Lopez, R.G. and E.S. Runkle. 2005. Environmental physiology of growth and flowering of orchids. HortScience 40:1969-1973. Malip, M. and M. Masri. 2006. Establishment of protocol for carbohydrate analysis and monitoring seasonal variations between carbohydrates and nitrogen levels in Garcinia mangostana (mangosteen). Acta Hort. 727:569-575. Mandal, D., A. Sarkar, and B. Ghosh. 2014. Induction of flowering by use of chemicals and cincturing in 'Bombai' litchi. Acta Hort. 1029:265-271. Mantovani, C., R. de Mello Prado, and K.F.L. Pivetta. 2015. Foliar diagnosis in Phalaenopsis orchid plants subjected to application of nitrogen. African J. Agr. Res. 10:4906-4912. Metson, A.J. and W.M.H. Saunders. 1978. Seasonal variation in chemical composition of pasture. 2. Nitrogen, sulphur and soluble carbohydrate. N.Z. J. Agr. Res. 21:355-364. Mooney, H.A. 1972. The carbon balance of plants. Annu. Rev. Ecolo. Systematics 3:315-346. Mooney, H.A. and C. Chu. 1974. Seasonal carbon allocation in Heteromeles arbutifolia, a California evergreen shrub. Oecologia 14:295-306. Ng, C.K.Y. and C.S. Hew. 2000. Orchid pseudobulbs–'false' bulbs with a genuine importance in orchid growth and survival! Scientia Hort. 83:165-172. Poole, H. and J. Seeley. 1978. Nitrogen, potassium and magnesium nutrition of three orchid genera. J. Amer. Soc. Hort. Sci. 103:485-488. Poole, H. and T. Sheehan. 1974. Chemical composition of plant parts of Phalaenopsis orchids. Amer. Orchid Soc. Bull. 43:242-246. Poorter, H., C. Remkes, and H. Lambers. 1990. Carbon and nitrogen economy of 24 wild species differing in relative growth rate. Plant Physiol. 94:621-627. Rodriguez-Lovelle, B. and J.P. Gaudillère. 2002. Carbon and nitrogen partitioning in either fruiting or non-fruiting grapevines: effects of nitrogen limitation before and after veraison. Aust. J. Grape Wine Res. 8:86-94. Ruamrungsri, S., T. Khuankaew, T. Ohyama, and T. Sato. 2014. Nitrogen sources and its uptake in Dendrobium orchid by 15N tracer study. Acta Hort.:207-211. Sheehan, T. 1961. Effects of nutrition and potting media on growth and flowering of certain epiphytic orchids. Amer. Orchid Soc. Bull. 30:289-292. Simamoto, K., M. Doi, and H. Imanishi. 1991. Effects of growing temperature on ripeness to flower of Dendrobium Snowflake 'Red Star'. J. Jpn. Soc. Hort. Sci. 60:518-519. Stolwijk, J. and K.V. Thimann. 1957. On the uptake of carbon dioxide and bicarbonate by roots, and its influence on growth. Plant Physiol. 32:513-520. Suryanarayana, V. 1978. Seasonal changes in sugars, starch, nitrogen and C:N ratio in relation to flowering in mango. Plant Biochem. J. 5:108-117. Susilo, H. and Y.C.A. Chang. 2014. Nitrogen source for inflorescence development in Phalaenopsis: II. Effect of reduced fertilizer level on stored nitrogen use. J. Amer. Soc. Hort. Sci. 139:76-82. Susilo, H., Y.C. Peng, and Y.C.A. Chang. 2014. Nitrogen source for inflorescence development in Phalaenopsis: I. Relative significance of stored and newly absorbed nitrogen. J. Amer. Soc. Hort. Sci. 139:69-75. Susilo, H., Y.C. Peng, S.C. Lee, Y.C. Chen, and Y.C.A. Chang. 2013. The uptake and partitioning of nitrogen in Phalaenopsis Sogo Yukidian ‘V3’as shown by 15N as a tracer. J. Amer. Soc. Hort. Sci. 138:229-237. Suto, K., K. Tsutsui, and K. Sinoda. 1984. Effects of temperature and nitrogen nutrition on the growth and flowering in nobile-type Dendrobium. Bul. Veg. Ornamental Crops Res. Sta. 12:65-83. Tahir, F., M. Ibrahim, and K. Hamid. 2003. Seasonal variation in nutrient concentration of bearing and non-bearing terminals in mango (Mangifera indica L.). Asian J. Plant Sci. 2:113-115. Tanaka, T., T. Matsuno, M. Masuda, and K. Gomi. 1988. Effects of concentration of nutrient solution and potting media on growth and chemical composition of a Phalaenopsis hybrid. J. Jpn. Soc. Hort. Sci. 57:78-84. Uprety, D.C. and V. Mahalaxmi. 2000. Effect of elevated CO2 and nitrogen nutrition on photosynthesis, growth and carbon-nitrogen balance in Brassica juncea. J. Agron. Crop Sci. 184:271-276. Wada, K. and Y. Shinozaki. 1985. Flowering response in relation to C and N contents of Pharbitis nil plants cultured in nitrogen-poor media. Plant Cell Physiol. 26:525-535. Wang, Y.T. 1995. Phalaenopsis orchid light requirement during the induction of spiking. HortScience 30:59-61. Wang, Y.T. 2003. Effects of N and P concentration on growth and flowering of the Phalaenopsis orchid. HortScience 38:746-747. Wang, Y.T. 2008. High NO3-N to NH4-N ratios promote growth and flowering of a hybrid Phalaenopsis grown in two root substrates. HortScience 43:350-353. Wang, Y.T. 2010. Phalaenopsis mineral nutrition. Acta Hort. 878:321-333. Wang, Y.T. and L.L. Gregg. 1994. Medium and fertilizer affect the performance of Phalaenopsis orchids during two flowering cycles. HortScience 29:269-271. Wang, Y.T. and E.A. Konow. 2002. Fertilizer source and medium composition affect vegetative growth and mineral nutrition of a hybrid moth orchid. J. Amer. Soc. Hort. Sci. 127:442-447. Wangsin, N. and T. Pankasemsuk. 2005. Effect of potassium chlorate on flowering, total nitrogen, total nonstructural carbohydrate, C/N ratio, and contents of cytokinin-like and gibberellin-like substances in stem apex 'Do' longan. Acta Hort. 665:255-258. Wee, S.H. 1971. Maturation period of pods and time taken for plant to flower. Malayan Orchid Rev. 10:42-46. Xia, M.Z. 1993. The relationship between sugar-nitrogen ratio and reproductive organs abscission in faba bean (Vicia faba L.). J. Agron. Crop Sci. 170:348-353. Yamasaki, A., N. Nakashima, K. Tanaka, T. Yoneyama, and F. Tanaka. 2002. Tracer studies on the allocation of carbon and nitrogen during flower induction of strawberry plants as affected by the nitrogen level. Acta Hort. 567:349-352. Yen, C.Y.T., T.W. Starman, Y.T. Wang, A. Holzenburg, and G. Niu. 2008. Timing of nutrient termination and reapplication for growth, flower initiation, and flowering of the nobile dendrobium orchid. J. Amer. Soc. Hort. Sci. 133:501-507. Yoneda, K., H. Momose, and S. Kubota. 1991. Effects of daylength and temperature on flowering in juvenile and adult Phalaenopsis plants. J. Jpn. Soc. Hort. Sci. 60:651-657. Yoneda, K., M. Usui, and S. Kubota. 1997. Effect of nutrient deficiency on growth and flowering of Phalaenopsis. J. Jpn. Soc. Hort. Sci. 66:141-147. Yong, J. and C. Hew. 1995. The importance of photoassimilate contribution from the current shoot and connected back shoots to inflorescence size in the thin-leaved sympodial orchid Oncidium Goldiana. Intl. J. Plant Sci. 156:450-459. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77890 | - |
dc.description.abstract | 蘭花為臺灣最重要的外銷花卉,本研究以屬單莖型蘭花的蝴蝶蘭 (Phalaenopsis spp.) 與屬複莖型蘭花的春石斛 (Dendrobium spp.) 為代表,探討不同生育階段之植體碳氮養分變化,以及碳氮對蘭科植物開花之影響。植體中碳和氮的比例稱為碳氮比 (C/N ratio),碳氮比假說認為高C/N促進生殖生長,低C/N則促進營養生長甚至抑制開花。涼溫為促進蝴蝶蘭與春石斛開花之主要因子,然探討碳氮對其開花影響之研究甚少,甚至結果互相衝突。
分析白色大花蝴蝶蘭 (P. Sogo Yukidian ‘V3’) 新葉及第一、二、三、五、七片成熟葉之碳氮濃度,氮濃度隨葉齡增加而下降,新葉有最高的氮濃度2.72%,第二、三、五片成熟葉氮濃度無顯著差異,第七片成熟葉氮濃度1.48%最低,碳氮比則隨葉序增加而上升。進一步分析第二片成熟葉片內不同位置之碳氮濃度,顯示葉片內碳氮濃度非均值,葉片中段氮濃度1.96%、碳氮比22.3,最接近全葉片均值。綜上所述,以蝴蝶蘭第二片成熟葉中段做為葉片營養分析取樣部位,可獲得具代表性且適當之乾重與碳氮測值。 分析白色大花蝴蝶蘭 (P. Sogo Yukidian ‘V3’)、紫色小花蝴蝶蘭 (P. Sogo Lotte ‘F2510’)、雜交春石斛 (D. Lai’s Yukisakura) 於不同生育階段之植體碳氮濃度。白色大花蝴蝶蘭由瓶苗發育至開花株,全株氮濃度由4.63%逐漸下降至1.63%,全株碳氮比則由9.1上升至26.7;紫色小花蝴蝶蘭氮濃度、碳氮比變化趨勢與白色大花蝴蝶蘭相同,數值亦相當接近。雜交春石斛當代假球莖在停心至成熟期間,氮濃度由1.12%下降至0.53%,碳氮比由41.8上升至85.6。參試兩蝴蝶蘭品種與春石斛的植體氮濃度皆隨植株成熟而下降,此趨勢有普遍性,顯示氮濃度有做為成熟度指標之潛力。 關於高或低氮肥是否能延遲或促進蝴蝶蘭開花,目前研究結果多有分歧。本試驗分析白色大花蝴蝶蘭 (P. Sogo Yukidian ‘V3’)、紫色小花蝴蝶蘭 (P. Sogo Lotte ‘F2510’) 兩品種,自最後8週營養生長期 (30/28˚C) 並接續生殖生長期 (20/18˚C) 給予不同氮肥處理:高氮肥 (28.6 mM N)、正常氮肥 (14.3 mM N)、低氮肥 (1.4 mM N)、無氮肥 (0 mM N)。兩品種蝴蝶蘭在營養生長期結束時,施用氮肥濃度越高,莖葉、根部氮濃度越高。於生殖生長期,缺氮逆境下 (0 mM、1.4 mM) 蝴蝶蘭根部總氮含量增加速率為負值,顯示花序發育會消耗儲存性氮。所有參試植株皆抽梗開花,然處理間的抽梗時間與開花品質略有差異:與正常氮肥處理組相比,高氮肥延遲小花品種抽梗達8.9天,但對於大花品種則無影響;低氮肥或無氮肥處理會使兩品種提早1-2天抽梗,並使小花品種花朵數分別下降2與3朵,但對大花品種花朵數則無影響。儲存性氮含量會影響短期氮肥施用的效應,迷你型蝴蝶蘭(小花品種)的開花表現較易受到氮肥施用而改變,而標準型蝴蝶蘭(大花品種)則幾乎不受影響。 涼溫與光照是蝴蝶蘭抽梗開花之必要環境條件,本試驗比較涼溫光照、涼溫黑暗、高溫光照及高溫黑暗等四種栽培環境下,白花蝴蝶蘭 (P. amabilis) 第二片成熟葉碳水化合物濃度的變化。溫度不影響葉片葡萄糖與果糖濃度,然高溫處理下葉片有較高的蔗糖濃度,又以高溫光照處理濃度最高;而黑暗處理下有較高的葡萄糖與果糖濃度。葉片澱粉濃度不受溫度影響,光照組有較高的澱粉濃度。本試驗結果與前人研究結果趨勢不同甚至相反,可能受取樣部位效應、機械傷害及品種差異等因素影響。 | zh_TW |
dc.description.abstract | Orchids are the major flower crops for export in Taiwan. In this research, monopodial phalaenopsis (Phalaenopsis spp.) and sympodial nobile dendrobium (Dendrobium spp.) are used to investigate the changes in carbon (C) and nitrogen (N) composition of tissues during various developmental stages. How C and N affect their flowering was also studied. The ratio of tissue C and N concentration is called C/N ratio (C/N). In the literature, high tissue C/N promotes reproductive growth and low C/N increases vegetative growth or even inhibits flowering. Cool temperatures is the main factor that controls the flowering of phalaenopsis and dendrobium. However, literatures on how C and N affect the growth and flowering of orchids are limited and even controversial.
Tissue analysis of new leaf and 1st, 2nd, 3rd, 5th, 7th mature leaves of large, white-flowered phalaenopsis (P. Sogo Yukidian ‘V3’) demonstrated that N concentration decreased as leaf matured. As leaf position progressed from new leaf to 7th mature leaf, N concentration decreased from 2.72% to 1.48% and C/N therefor increased. There were no significant differences among N concentrations of 2nd-5th mature leaves. Analysis of various sections of the 2nd mature leaf indicated that C and N were not evenly distributed in the leaf. The N concentration and C/N of middle part from 2nd mature leaf were 1.96% and 22.3, respectively, which are very close to the average of whole leaf. The middle part of 2nd mature leaf is the appropriate tissue for sampling to obtain the representative N concentration and dry weight values. To investigate the changes in the C and N in tissues through various developmental stages, this research compared large, white-flowered phalaenopsis (P. Sogo Yukidian ‘V3’), small, purple-flowered phalaenopsis (P. Sogo Lotte ‘F2510’), and hybrid dendrobium (D. Lai’s Yukisakura) by performing tissue analysis. As the large, white-flowered phalaenopsis grew from deflasked plantlet to mature plant in 10.5-cm pot, N concentration of whole plant decreased from 4.63% to 1.63% and C/N increased from 41.8 to 85.6. The N concentration and C/N of small, purple-flowered phalaenopsis had similar values and trends. From terminal leaf emerged to pseudobulb matured, the N concentration of current psudobulb decreased from 1.12% to 0.53% and C/N increased from 41.8 to 85.6. The N concentration of both phalaenopsis cultivars and hybrid dendrobium decreased as plant matured. It indicates that N concentration has the potential of becoming a maturity index. Results in the literature regarding whether growers can delay or advance spiking of phalaenopsis by high or low N level, respectively, have been controversial. Nutrient solutions with four N levels, namely, high (28.6 mM N), normal (14.3 mM N), low (1.43 mM N), and deficient (0 mM N), were applied to large, white-flowered phalaenopsis (P. Sogo Yukidian ‘V3’) and small, purple-flowered phalaenopsis (P. Sogo Lotte ‘F2510’) in their last 8 weeks of vegetative growth at 30/28 oC. The same fertilization regimen was carried onto their reproductive growth stage at 20/18 oC. A significant difference of tissue N concentration is detected in both cultivars 8 weeks after treatment: Higher N level in nutrient solution resulted in higher shoot and root N concentration and lower C/N. The root and shoot both had a negative N gain in the low N and deficient N treatments during the reproductive stage of the two cultivars, indicating that stored N was utilized for inflorescences development when N supply was limited. All plants spiked and flowered but differed slightly in time and quality of flowering. High N delayed the spiking of the small-flowered phalaenopsis ‘F2510’ by 8.9 days but did not affect the large-flowered phalaenopsis ‘V3’. Plants in low N and deficient N treatments spiked only 1-2 days earlier than the normal N treatment in both cultivars. Nitrogen levels did not affect flower count of the large-flowered ‘V3’ but number of flowers in the small-flowered ‘F2510’ was reduced by 2 and 3 in the low N and deficient N treatments, respectively. It is concluded that effects of short-term N application on spiking and flowering of phalaenopsis mainly depend on the size of stored N pool. Flowering performance of miniature-type phalaenopsis is more likely to be lightly manipulated by short-term N application but not those of standard-type phalaenopsis. Cool temperature and light are essential factors that stimulate phalaenopsis to flower. This research compared carbohydrate concentrations of the 2nd mature leaf of a white-flowered phalaenopsis (P. amabilis) at four different cultivation environments: cool in light, cool in dark, warm in light, and warm in dark. Temperature did not affect concentrations of glucose and fructose. Plants in dark treatments had higher concentrations of glucose and fructose. Plants with warm treatments had higher concentrations of sucrose. Sucrose concentration of warm in light treatment was higher than that of warm in dark. Temperature did not affect the concentration of starch; light treatments resulted in higher leaf starch concentration. Many results in this research are different from previous literatures, even with conflicts. These differences might be attributed to the effects of sampling position, mechanical stress, and cultivar difference. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T14:36:47Z (GMT). No. of bitstreams: 1 ntu-106-R03628123-1.pdf: 1736159 bytes, checksum: b27e2521e146d957e04f9f66d03e1930 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 致謝 (Acknowledgment) i
摘要 ii Abstract iv 目錄 (Contents) vii 表目錄 (List of tables) ix 圖目錄 (List of figures) xi 前言 (Introduction) 1 前人研究 (Literature review) 3 一、作物的碳氮養分吸收與分配 3 (一)植物體中的碳 3 (二)蘭科作物對氮的吸收與分配 4 二、作物不同生育階段之植體碳氮變化 5 (一)非蘭科作物之不同生育階段植體碳氮變化 5 (二)蘭科作物之不同生育階段植體碳氮變化 6 三、碳氮與作物開花之關係 7 四、氮對蝴蝶蘭生長及開花的影響 9 五、蝴蝶蘭開花及碳水化合物生理 11 (一)蝴蝶蘭生殖生長期間植體碳水化合物變化 11 (二)光線與溫度對蝴蝶蘭開花及碳水化合物的影響 11 材料與方法 (Material and Methods) 13 一、 試驗設計 13 二、碳氮分析 20 三、碳水化合物分析 20 四、統計分析 22 結果 (Results) 23 試驗一:蝴蝶蘭不同葉序以及葉片位置碳氮分配 23 試驗二:蝴蝶蘭不同生育階段碳氮比較 24 試驗三:春石斛不同生育階段碳氮變化 25 試驗四:蝴蝶蘭催花前後碳氮與碳水化合物變化 28 試驗五:不同氮肥濃度對蝴蝶蘭植體碳氮組成與開花之影響 30 試驗六:溫度與光線對蝴蝶蘭葉片碳水化合物之影響 33 討論 (Discussion) 37 一、蝴蝶蘭及春石斛碳氮養分分佈 37 二、蝴蝶蘭及春石斛於不同生育階段之碳氮養分變化 38 三、開花對蝴蝶蘭以及春石斛碳氮分配的影響 39 四、碳氮作為幼年性與成熟度指標的潛力 41 五、短期氮肥施用對蝴蝶蘭植體碳氮的影響 42 六、短期氮肥施用對蝴蝶蘭生長開花的影響 43 七、溫度與光線對蝴蝶蘭葉片碳水化合物的影響 44 結論 (Conclusion) 48 參考文獻 (References) 49 表 (Tables) 54 圖 (Figures) 84 附錄 (Appendix) 120 | |
dc.language.iso | zh-TW | |
dc.title | 碳氮濃度及碳氮比對蝴蝶蘭及春石斛開花之影響 | zh_TW |
dc.title | Effects of Carbon and Nitrogen Concentrations and C:N Ratio on Flowering of Phalaenopsis and Nobile-type Dendrobium | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鍾仁賜(Ren-Shih Chung),李達源(Dar-Yuan Lee),王恆隆(Heng-Long Wang) | |
dc.subject.keyword | 蝴蝶蘭,春石斛,碳氮比,植體分析,開花,碳水化合物, | zh_TW |
dc.subject.keyword | Phalaenopsis,Dendrobium,C/N ratio,tissue analysis,flowering,carbohydrate, | en |
dc.relation.page | 120 | |
dc.identifier.doi | 10.6342/NTU201703200 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-15 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-R03628123-1.pdf 目前未授權公開取用 | 1.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。