請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77887
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳永傳 | |
dc.contributor.author | Ji-Ting Lin | en |
dc.contributor.author | 林季廷 | zh_TW |
dc.date.accessioned | 2021-07-11T14:36:44Z | - |
dc.date.available | 2022-08-31 | |
dc.date.copyright | 2017-08-31 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-15 | |
dc.identifier.citation | [1] P. Michaud, D. Delagnesa, P. Lameslea, “The Effect of the Addition of Alloying Elements on Carbide Precipitation and Mechanical Properties in 5% Chromium Martensitic Steels”, Acta Materialia, Vol.55, No.14, 2007, pp.4877-4889.
[2] R. A. Mesquita, H. J. Kestenbach, “On the effect of silicon on toughness in recent high quality hot work steels”, Materials Science and Engineering: A, Vol.528, No.13–14, 2011, pp.4856-4859. [3] Jian ZHOU, Dang-shen MA, Hong-xiao CHI, Zai-zhi Chen, Xiang-yang LI, “Microstructure and Properties of Hot Working Die Steel H13MOD”, Journal of Iron and Steel Research International, Vol.20, 2013, pp.117-125. [4] 朱致成,“淬火溫度及持溫時間對SKD61及其改良鋼種之機械性質的影響”,國立台灣大學機械工程研究所,碩士論文,2011. [5] 朱柏翰,“淬火冷卻速率及回火持溫時間對熱作工具鋼機械性質的影響”,國立台灣大學機械工程研究所,碩士論文,2012. [6] 辛翰鈞,“淬火冷卻速率對SKD61及其改良鋼種之機械性質的影響”,國立台灣大學機械工程研究所,碩士論文,2014. [7] 楊富程,“JIS SKD61改良鋼種之淬火前顯微組織對熱處理後之衝擊韌性的影響”,國立台灣大學機械工程研究所,碩士論文,2015. [8] 鄭文安,“不同溫度區間的淬火冷速對熱作工具鋼衝擊韌性的影響”,國立台灣大學機械工程研究所,碩士論文,2016. [9] 王文雄,李訓杰,吳錫侃,“AISI H13熱作模具鋼之熱處理”,金屬熱處理,第36期,1993,pp.15-30. [10] 大和久重雄(黃振賢譯),“熱間模具的熱疲勞龜裂與熱處理”,金屬熱處理,第66期,2000,pp.68-73. [11] 李正國,李志偉等,熱處理,高立圖書有限公司,1991,pp.19,342-361. [12] 歐陽渭城,施議訓,模具熱處理,全華科技圖書,1993,pp.79-80,146-151. [13] 西村富隆(黃紹雄譯),“淬火冷卻速度對於模具鋼之硬度及韌性之影響”,金屬熱處理,第54期,1997,pp.85-89. [14] Toshio Okuno, “Effect of Microstructure on the Toughness of Hot Work Tool Steel AISI H13、H10 and H19”, Transactions ISIJ, Vol.27, 1987, pp.51-59. [15] 日本熱處理協會編著(劉文泉譯),熱處理指南,機械工業出版社出版,1987,pp.286. [16] 蔡大和,江益璋,金屬材料組織,全華科技圖書,1993,pp.331-358. [17] 黃振賢,金屬熱處理,文京圖書公司,1985,pp.408-412. [18] 劉喜政,鋼之熱處理,全華科技圖書,1992,pp218~229 [19] 邱六和,葉書宏,羅萬中,黃建龍,“淬冷速率對於JIS SKD61熱作模具鋼碳化物析出擊韌性之影響”,金屬熱處理,110期,2011,pp.45-51. [20] 鋼及其熱處理,加恩出版社,1974,pp.286-287. [21] 楊義雄,熱處理金屬導論-應用篇,全華科技圖書,1994,pp.11-90. [22] 余煥騰,鋼之熱處理技術,六和出版社,1983,pp.60-72. [23] North American Die Casting Association, NADCA#207-2003, “Premium and Superior Quality H13 steel and Heat treatment Acceptance Criteria for Pressure Die Casting Dies”, River Grove, Illinois, USA, 2003. [24] 顧佳羽,李歡,“高溫正火對H13鋼鍛後組織的影響”,金屬熱處理,37期,2012,pp.70-72. [25] A. R. Rosenfield, G. T. Hahn, J. D. Embury, “Fracture of steels containing pearlite”, Metallurgical Transactions, 1972, Vol.3, pp.2797-2804. [26] K. Fukaura, Y. Yokoyama, D. Yokoi, N. Tsujii, K. Ono, “Fatigue of cold-work tool steels: effect of heat treatment and carbide morphology on fatigue crack formation, life, and fracture surface observations”, Metallurgical and materials transactions A, 2004, Vol.35, pp.1289-1300. [27] 張忠侃,“H13鋼碳化物球化過程及組織力學性能的研究”,昆明理工大學碩士論文,2010. [28] Flake C. Campbell, “Elements of Metallurgy and Engineering Alloys”, ASM International, 2008, pp.101-103. [29] 周健,馬黨參,劉寶石,康愛軍,李向陽,“H13鋼帶狀偏析演化規律研究”,鋼鐵研究學報,Vol24,2013,pp.47-52. [30] 霍曉陽,“影響H13熱做工具鋼等向性的因素”,鋼鐵研究學報,Vol.20,No.11,2008,pp.47-50. [31] J. ZHOU, et al, “Influence of thermal homogenization treatment on structure and impact toughness of H13 ESR steel,” Journal of Iron and Steel Research International, 2009, Vol.16, pp.56-60. [32] J. Ekengren, “Estimating inclusion content in high performance steels,” Karlstad University Licentiate thesis, 2008. [33] H. V. Atkinson ,G. Shi, “Characterization of inclusions in clean steels: a review including the statistics of extremes methods”, Progress in Materials Science, 2003, Vol.48, pp.457-520. [34] 潘曉峰,周細應,“SKD61的熱處理工藝和性能研究”,熱處理期刊,2009,24捲,第1期 [35] 王春,“模具鋼SKD61”,河北工業科技,Vol.19,No.5,2009,pp.4. [36] 朱心昆,趙應富,“淬火溫度對H13鋼性能的影響”,金屬熱處理,1994,第8期 [37] Yan G.Huang, X Wang, Y.Qin, X.Yang, M.Chu. Z,and Jin. Kang, “Effects of Heat Treatment on Mechanical Properties of H13 Steel”, Metal Science and Heat Teatment, Vol. 52, Nos.7-8, 2010, pp.393-395. [38] 吳佳霖,李驊登,紀竹旺,“熱作工具鋼系之高溫特性探討”,金屬熱處理,第86期,2006,pp.48-58. [39] M. Gojic, L. Kosec, P. Matkovic, “Effect of tempering temperature on mechanical properties and microstructure of low alloy Cr and CrMo steel”, Journal of Materials Science,v33,n5, 2004, pp.631-634. [40] 蔡錫堯,材料實驗,文京圖書公司,1987,pp.102. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77887 | - |
dc.description.abstract | 本研究使用JIS SKD61熱作工具鋼及其改良種為實驗材料,在固定的升 溫速率(11℃/min)及冷卻速率及冷卻速率(8.27-10℃/min)下,使用淬火溫度1050℃、1020℃、990℃、960℃及淬火持溫時間及淬火持溫時間 30min、90min、120min互相搭配進行淬火。試片經過淬火後,測量試片中心的維克氏硬度並觀察淬火顯微組織。後的試片進行兩次或以上的回火至目標硬度HRC 46-47.5內,並觀察其回火顯微組織及量測衝擊值。最後比較不同鋼材間,淬火條件對其硬度、顯微組織回顯微組織、衝擊韌性之影響。
研究結果顯示,隨著淬火溫度上升與持時間的增 加,Cr、Mo、V合金碳化 物固溶量增多,各鋼種的淬火硬度也會隨之上升。但淬火溫度過高或持時間長則會使晶粒粗大,導致淬火硬度降低,衝擊韌性也會下。淬火溫度過低或持溫時間過短,碳化物固溶量較少,材料硬能不足容易出現大的變韌鐵及 殘留碳化物,導致淬火硬度及衝擊韌性皆會降低。規範鋼的Si、V含量較高,其MC合金碳化物溶解溫度較高。因此,在同樣的淬火條件下,合金碳化物固溶量較少,且含有較多的變韌鐵與殘留碳化物,嚴重降低淬火硬度及衝擊韌性。Cr、Mo、V含量多的鋼材,硬化能較高,淬火後變韌鐵含量較少,韌性較高。 | zh_TW |
dc.description.abstract | This research used JIS SKD61 hot work tool steel and its modified steel as experimental materials. Under the fixed heating rate (11℃/min) and cooling rate (8.27-10℃/min), the specimens were quenched at the quenching temperature of 1050℃, 1020℃, 990℃ and 960℃ and holding time of 30min, 90min and 120min. After quenching, measure the Vickers hardness in the center of specimen and observe the microstructure. The specimen went through twice (or above) tempering after quenching until the tempering hardness is within HRC 〖47〗_(-1)^(+0.5), and then observe its tempering microstructure and measure the impact toughness. Lastly, the effects of quenching conditions on its hardness, microstructure of quenching, microstructure of tempering and impact toughness after quenching was analyzed among different steel materials.
The research results show that with the increase in quenching temperature and holding time, the amount of Cr, Mo, V carbide dissolved in matrix will increase and the quenching hardness will also increase. However, higher quenching temperature or longer holding time will make grains grow quickly, causing the quenching hardness and impact toughness to decrease. When quenching temperature is too low or holding time is too short, carbide dissolved in matrix will decrease and the hardenability of materials is insufficient. Thus, bainites and residual carbides are more likely to appear, causing quenching hardness and impact toughness to decrease. Standard SKD61 steel contains higher MC carbides, and its dissolving temperature of carbides is higher than MODs. Under the same quenching condition, MC carbides dissolved into austenite is less than MODs and contains more bainites and residual carbides, which significantly decreases the quenching hardness and impact toughness. The steel material which contains higher Cr, Mo and V has higher hardenability. After quenching, the amount of bainites is lower and impact toughness is higher. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T14:36:44Z (GMT). No. of bitstreams: 1 ntu-106-R04522735-1.pdf: 34321078 bytes, checksum: a988d107b21669241b437475eeef4252 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 誌 謝 II
摘 要 III Abstract IV 目錄 VI 圖目錄 IX 表目錄 XVI 第一章 緒 論 1 1.1 前 言 1 1.2 實驗動機與目的 1 第二章 實驗理論與文獻回顧 3 2.1 SKD61熱作工具鋼 3 2.2 熱處理 3 2.2.1 淬火 3 2.2.2 回火 6 2.3 合金元素配置的影響 8 2.3.1 合金元素對淬火的影響 8 2.3.2 合金元素對顯微組織(晶粒大小)的影響 9 2.3.3 合金元素對高溫回火軟化抵抗的影響 9 2.3.4 合金元素對回火二次硬化的影響 9 2.3.5 合金元素對韌性的影響 10 2.4 淬火前組織對機械性質的影響 10 2.4.1 合金碳化物的影響 11 2.4.2 巨觀偏析與微觀偏析 11 2.4.3 非金屬夾雜物對韌性的影響 12 2.5 熱處理條件對合金鋼機械性質影響之相關研究 13 第三章 實驗設備與方法 14 3.1 實驗規劃 14 3.2 實驗設備 15 3.2.1 淬火設備 15 3.2.2 回火設備 15 3.2.3 溫度量測與紀錄設備 15 3.2.4 實驗儀器 16 3.3 實驗方法 16 3.3.1 試片的種類與製作 16 3.3.2 溫度校正 17 3.3.3 淬火 17 3.3.4 回火 17 3.3.5 維克氏硬度試驗 18 3.3.6 金相組織觀察 19 3.3.7 衝擊試驗 19 第四章 結果與討論 20 4.1 原材分析 20 4.1.1 合金元素成分分析 20 4.1.2 原材顯微組織觀察 20 4.2 淬火分析 22 4.2.1 淬火硬度分析 22 4.2.2 淬火顯微組織觀察 24 4.3 回火 27 4.3.1 回火條件分析 27 4.3.2 回火顯微組織觀察 28 4.4 衝擊韌性 29 第五章 結 論 32 參考文獻 130 | |
dc.language.iso | zh-TW | |
dc.title | 熱作工具鋼的淬火條件與韌性分析 | zh_TW |
dc.title | Analysis of Different Quenching Parameters and Impact Toughness of Hot Work Tool Steel | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃振賢,周挺正 | |
dc.subject.keyword | 熱作工具鋼,淬火,回火,硬度,衝擊值, | zh_TW |
dc.subject.keyword | Hot work tool steel,Quenching,Tempering,Hardness,Charpy impact toughness., | en |
dc.relation.page | 133 | |
dc.identifier.doi | 10.6342/NTU201702925 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-15 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-R04522735-1.pdf 目前未授權公開取用 | 33.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。