Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77881
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳中明
dc.contributor.authorI-Hsin Chuangen
dc.contributor.author莊宜欣zh_TW
dc.date.accessioned2021-07-11T14:36:36Z-
dc.date.available2022-08-31
dc.date.copyright2017-08-31
dc.date.issued2017
dc.date.submitted2017-08-15
dc.identifier.citation[1] Max Roser and Esteban Ortiz-Ospina (2016) – ‘World Population Growth’. Published online at OurWorldInData.org. Retrieved from: https://ourworldindata.org/world-population-growth/ [Online Resource]
[2] 范光中, & 許永河. (2010). 台灣人口高齡化的社經衝擊. 台灣老年醫學會暨老年學雜誌, 5, 149-68.
[3] Kramarow, E. A., Chen, L. H., Hedegaard, H., & Warner, M. (2015). Deaths from Unintentional Injury Among Adults Aged 65 and Over, United States, 2000-2013 (No. 2015). US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics.
[4] 衛生福利部. (2016). 2025 衛生福利政策白皮書.
[5] Delahoz, Y. S., & Labrador, M. A. (2014). Survey on fall detection and fall prevention using wearable and external sensors. Sensors, 14(10), 19806-19842.
[6] Mubashir, M., Shao, L., & Seed, L. (2013). A survey on fall detection: Principles and approaches. Neurocomputing, 100, 144-152.
[7] Mathie, M. J., Coster, A. C., Lovell, N. H., & Celler, B. G. (2004). Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Physiological measurement, 25(2), R1.
[8] Tamura, T., Yoshimura, T., Sekine, M., Uchida, M., & Tanaka, O. (2009). A wearable airbag to prevent fall injuries. IEEE Transactions on Information Technology in Biomedicine, 13(6), 910-914.
[9] Bianchi, F., Redmond, S. J., Narayanan, M. R., Cerutti, S., & Lovell, N. H. (2010). Barometric pressure and triaxial accelerometry-based falls event detection. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(6), 619-627.
[10] Zhuang, X., Huang, J., Potamianos, G., & Hasegawa-Johnson, M. (2009, April). Acoustic fall detection using Gaussian mixture models and GMM supervectors. In Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on (pp. 69-72). IEEE.
[11] Toreyin, B. U., Soyer, E. B., Onaran, I., & Cetin, A. E. (2008). Falling person detection using multisensor signal processing. EURASIP Journal on Advances in Signal Processing, 2008, 29.
[12] Noury, N., Fleury, A., Rumeau, P., Bourke, A. K., Laighin, G. O., Rialle, V., & Lundy, J. E. (2007, August). Fall detection-principles and methods. In Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE (pp. 1663-1666). IEEE.
[13] Williams, G., Doughty, K., Cameron, K., & Bradley, D. A. (1998, October). A smart fall and activity monitor for telecare applications. In Engineering in Medicine and Biology Society, 1998. Proceedings of the 20th Annual International Conference of the IEEE (Vol. 3, pp. 1151-1154). IEEE.
[14] Doughty, K., Lewis, R., & McIntosh, A. (2000). The design of a practical and reliable fall detector for community and institutional telecare. Journal of Telemedicine and Telecare, 6(1_suppl), 150-154.
[15] Schwickert, L., Becker, C., Lindemann, U., Maréchal, C., Bourke, A., Chiari, L., ... & Bandinelli, S. (2013). Fall detection with body-worn sensors. Zeitschrift für Gerontologie und Geriatrie, 46(8), 706-719.
[16] Hsu, Y. W., Chen, K. H., Yang, J. J., & Jaw, F. S. (2016, October). Smartphone-based fall detection algorithm using feature extraction. In Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), International Congress on (pp. 1535-1540). IEEE.
[17] Wu, F., Zhao, H., Zhao, Y., & Zhong, H. (2015). Development of a wearable-sensor-based fall detection system. International journal of telemedicine and applications, 2015, 2.
[18] Lim, D., Park, C., Kim, N. H., Kim, S. H., & Yu, Y. S. (2014). Fall-detection algorithm using 3-axis acceleration: combination with simple threshold and hidden Markov model. Journal of Applied Mathematics, 2014.
[19] Nari, M. I., Suprapto, S. S., Kusumah, I. H., & Adiprawita, W. (2016, November). A simple design of wearable device for fall detection with accelerometer and gyroscope. In Electronics and Smart Devices (ISESD), International Symposium on (pp. 88-91). IEEE.
[20] Chen, D., Zhang, Y., Feng, W., & Li, X. (2012, July). A wireless real-time fall detecting system based on barometer and accelerometer. In Industrial Electronics and Applications (ICIEA), 2012 7th IEEE Conference on (pp. 1816-1821). IEEE.
[21] Tolkiehn, M., Atallah, L., Lo, B., & Yang, G. Z. (2011, August). Direction sensitive fall detection using a triaxial accelerometer and a barometric pressure sensor. In Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE (pp. 369-372). IEEE.
[22] Pierleoni, P., Belli, A., Maurizi, L., Palma, L., Pernini, L., Paniccia, M., & Valenti, S. (2016). A wearable fall detector for elderly people based on ahrs and barometric sensor. IEEE Sensors Journal, 16(17), 6733-6744.
[23] Pierleoni, P., Belli, A., Palma, L., Pellegrini, M., Pernini, L., & Valenti, S. (2015). A high reliability wearable device for elderly fall detection. IEEE Sensors Journal, 15(8), 4544-4553.
[24] Kangas, M., Vikman, I., Wiklander, J., Lindgren, P., Nyberg, L., & Jämsä, T. (2009). Sensitivity and specificity of fall detection in people aged 40 years and over. Gait & posture, 29(4), 571-574.
[25] Chao, P. K., Chan, H. L., Tang, F. T., Chen, Y. C., & Wong, M. K. (2009). A comparison of automatic fall detection by the cross-product and magnitude of tri-axial acceleration. Physiological measurement, 30(10), 1027.
[26] Weiss, A., Shimkin, I., Giladi, N., & Hausdorff, J. M. (2010). Automated detection of near falls: algorithm development and preliminary results. BMC research notes, 3(1), 62.
[27] Zhang, T., Wang, J., Xu, L., & Liu, P. (2006). Fall detection by wearable sensor and one-class SVM algorithm. Intelligent computing in signal processing and pattern recognition, 858-863.
[28] Doukas, C., Maglogiannis, I., Tragas, P., Liapis, D., & Yovanof, G. (2007). Patient fall detection using support vector machines. Artificial Intelligence and Innovations 2007: from Theory to Applications, 147-156.
[29] Yuwono, M., Moulton, B. D., Su, S. W., Celler, B. G., & Nguyen, H. T. (2012). Unsupervised machine-learning method for improving the performance of ambulatory fall-detection systems. Biomedical engineering online, 11(1), 9.
[30] Kerdegari, H., Samsudin, K., Ramli, A. R., & Mokaram, S. (2012, June). Evaluation of fall detection classification approaches. In Intelligent and Advanced Systems (ICIAS), 2012 4th International Conference on (Vol. 1, pp. 131-136). IEEE.
[31] Cheng, J., Chen, X., & Shen, M. (2013). A framework for daily activity monitoring and fall detection based on surface electromyography and accelerometer signals. IEEE journal of biomedical and health informatics, 17(1), 38-45.
[32] Tong, L., Song, Q., Ge, Y., & Liu, M. (2013). HMM-based human fall detection and prediction method using tri-axial accelerometer. IEEE Sensors Journal, 13(5), 1849-1856.
[33] Kangas, M., Konttila, A., Lindgren, P., Winblad, I., & Jämsä, T. (2008). Comparison of low-complexity fall detection algorithms for body attached accelerometers. Gait & posture, 28(2), 285-291.
[34] Sabatini, A. M. (2005). Quaternion-based strap-down integration method for applications of inertial sensing to gait analysis. Medical and Biological Engineering and Computing, 43(1), 94-101.
[35] Bourke, A. K., O’brien, J. V., & Lyons, G. M. (2007). Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait & posture, 26(2), 194-199.
[36] Madgwick, S. O., Harrison, A. J., & Vaidyanathan, R. (2011, June). Estimation of IMU and MARG orientation using a gradient descent algorithm. In Rehabilitation Robotics (ICORR), 2011 IEEE International Conference on (pp. 1-7). IEEE.
[37] Pierleoni, P., Belli, A., Palma, L., Pernini, L., & Valenti, S. (2014, September). An accurate device for real-time altitude estimation using data fusion algorithms. In Mechatronic and Embedded Systems and Applications (MESA), 2014 IEEE/ASME 10th International Conference on (pp. 1-5). IEEE.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77881-
dc.description.abstract全球目前正面臨人口快速老化的問題。根據臺灣衛福部統計,2013至2015年65歲以上老年人口所有意外事故死亡事件中,跌倒為第二大主要死因;又根據美國疾病控制與預防中心統計,2012至2013年,65歲以上老年人口所有意外事故死亡事件中,55%為跌倒所導致,而在2000至2013年,65歲以上老年人口每十萬人中,因跌倒而死亡之比率將近成長兩倍。由此可見,跌倒成為高齡化社會之醫療照顧課題中急需解決之問題。
本研究提出同時使用氣壓傳感器與加速度傳感器之跌倒偵測方法,進入跌倒偵測方法前,使用氣壓傳感器之資訊,進行是否有一定程度之高度變化之判斷,若有,則進入跌倒偵測流程,高度變化作為Trigger Key以降低跌倒偵測所進行之較複雜運算。跌倒偵測流程分為兩階段,第一階段使用氣壓傳感器之資訊,並使用門檻值法進行是否進入第二階段之判斷,第二階段使用加速度傳感器之資訊,使用leave one-subject out進行訓練樣本與驗證樣本之分類,再使用支持向量機法進行是否為跌倒事件之判斷。
本實驗設計共有兩種情境:第一種情境為靜態之情況下執行動作之模擬,共24位受試者,執行日常生活動作與跌倒動作共5種;第二種情境為動態情況下執行動作之模擬,共9位受試者,執行日常生活動作與跌倒動作共15種。經過本研究所提出跌倒偵測方法之分類結果,第一種情境之敏感度、特異度與正確率分別為0.92、1、0.95;第二種情境之15種動作之敏感度、特異度與正確率分別為0.87、0.95、0.9,排除第15個跌倒動作,僅計算14種動作之敏感度、特異度與正確率分別為0.99、0.95、0.97。
zh_TW
dc.description.abstractAging society is a global issue and growth of elderly population is growing faster. According to Ministry of Health and Welfare of Taiwan, fall events are the second cause of accident casualty of the elderly (people aging 65 years or older) during 2013 to 2015. In addition, statistics by Centers for Disease Control and Prevention of the U.S. also shows that 55% of accident casualty of the elderly caused by fall events during 2012 to 2013. Moreover, mortality of the elderly due to fall events grows nearly twice during 2000 to 2013. Therefore, fall events become an important issue among aging health care service.
In this study, we proposed an integrating fall detection using barometer and accelerometer. Our algorithm contains three stages: Trigger Key: using barometer and simple threshold method to detect whether there is a significant negative height change, Stage One: using barometer and simple threshold method to determine whether there is a possible fall event, Stage Two: using accelerometer and support vector machine method to classify whether it is a fall event.
For experiment design, we have two different scenarios. The first scenario is static and including two daily activities and three fall events. The second scenario is non-static and including seven daily activities and eight fall events. Sensitivity, specificity and accuracy of static scenario are 92%, 100%, 95% and 99%, 95%, 97% for non-static scenario.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:36:36Z (GMT). No. of bitstreams: 1
ntu-106-R01548036-1.pdf: 1923132 bytes, checksum: 072f9e445963fe33dc443087eb49c550 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員委員審定書…………………………………………………………………#
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
第二章 文獻探討 9
2.1 基於穿戴式裝置之跌倒偵測方法之主要演算法 9
2.2 基於穿戴式裝置之跌倒偵測方法之配戴位置 9
2.3 僅使用加速度傳感器之跌倒偵測研究 10
2.4 使用加速度傳感器與氣壓傳感器之跌倒偵測研究 12
第三章 實驗設計與研究方法 14
3.1 實驗設計 14
3.1.1 實驗器材 14
3.1.2 實驗對象 15
3.1.3 實驗流程 16
3.2 資料分析方法 20
3.2.1. 資料前處理 20
3.2.2. 特徵值擷取 21
3.2.3. 資料訓練與分類 27
第四章 結果與討論 30
4.1 第一種情境 31
4.1.1 Trigger Key 31
4.1.2 第一階段 32
4.1.3 第二階段 34
4.2 第二種情境 36
4.2.1 Trigger Key 36
4.2.2 第一階段 41
4.2.3 第二階段 44
第五章 結論與未來展望 48
參考文獻 49
dc.language.isozh-TW
dc.title結合氣壓傳感器與加速度傳感器之跌倒偵測方法zh_TW
dc.titleIntegrating Fall Detection Using Barometer and Accelerometeren
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李佳燕,莊競程
dc.subject.keyword跌倒偵測,氣壓傳感器,加速度傳感器,門檻值法,支持向量機法,zh_TW
dc.subject.keywordfall detection,barometer,accelerometer,simple threshold method,support vector machine method,en
dc.relation.page53
dc.identifier.doi10.6342/NTU201703528
dc.rights.note有償授權
dc.date.accepted2017-08-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-R01548036-1.pdf
  目前未授權公開取用
1.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved