請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77879
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳振中(Jerry Chun-Chung Chan) | |
dc.contributor.author | Ming-Jou Chien | en |
dc.contributor.author | 簡明柔 | zh_TW |
dc.date.accessioned | 2021-07-11T14:36:33Z | - |
dc.date.available | 2022-08-31 | |
dc.date.copyright | 2017-08-31 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2017-08-16 | |
dc.identifier.citation | (1) Dr. Laurie Gower : Research Interests http://gower.mse.ufl.edu/research.html (accessed Jul 16, 2017).
(2) Mann, S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry; Oxford University Press, 2001. (3) Falini, G.; Albeck, S.; Weiner, S.; Addadi, L. Control of Aragonite or Calcite Polymorphism by Mollusk Shell Macromolecules. Science 1996, 271 (5245), 67–69. (4) Sommerdijk, N. A. J. M.; With, G. de. Biomimetic CaCO3 Mineralization Using Designer Molecules and Interfaces. Chem. Rev. 2008, 108 (11), 4499–4550. (5) Suzuki, M.; Saruwatari, K.; Kogure, T.; Yamamoto, Y.; Nishimura, T.; Kato, T.; Nagasawa, H. An Acidic Matrix Protein, Pif, Is a Key Macromolecule for Nacre Formation. Science 2009, 325 (5946), 1388–1390. (6) Levi-Kalisman, Y.; Falini, G.; Addadi, L.; Weiner, S. Structure of the Nacreous Organic Matrix of a Bivalve Mollusk Shell Examined in the Hydrated State Using Cryo-TEM. J. Struct. Biol. 2001, 135 (1), 8–17. (7) Wilbur, K. M.; Bernhardt, A. M. Effects of Amino Acids, Magnesium, and Molluscan Extrapallial Fluid on Crystallization of Calcium Carbonate: In Vitro Experiments. Biol. Bull. 1984, 166 (1), 251–259. (8) Crenshaw, M. A. The Inorganic Composition of Molluscan Extrapallial Fluid. Biol. Bull. 1972, 143 (3), 506–512. (9) Simkiss, K.; Wilbur, K. M. Biomineralization; Elsevier, 2012. (10) Crick, R. E. Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals; Springer Science & Business Media, 2013. (11) Thorp, J. H.; Covich, A. P. Ecology and Classification of North American Freshwater Invertebrates; Academic Press, 2001. (12) Mann, S.; Archibald, D. D.; Didymus, J. M.; Douglas, T.; Heywood, B. R.; Meldrum, F. C.; Reeves, N. J. Crystallization at Inorganic-Organic Interfaces: Biominerals and Biomimetic Synthesis. Science 1993, 261 (5126), 1286–1292. (13) Cölfen, H.; Mann, S. Higher-Order Organization by Mesoscale Self-Assembly and Transformation of Hybrid Nanostructures. Angew. Chem. Int. Ed. 2003, 42 (21), 2350–2365. (14) Becker, R.; Döring, W. Kinetische Behandlung Der Keimbildung in Übersättigten Dämpfen. Ann. Phys. 1935, 416 (8), 719–752. (15) Gebauer, D.; Kellermeier, M.; Gale, J. D.; Bergström, L.; Cölfen, H. Pre-Nucleation Clusters as Solute Precursors in Crystallisation. Chem. Soc. Rev. 2014, 43 (7), 2348–2371. (16) Song, R.-Q.; Cölfen, H. Additive Controlled Crystallization. CrystEngComm 2011, 13 (5), 1249–1276. (17) Niederberger, M.; Cölfen, H. Oriented Attachment and Mesocrystals: Non-Classical Crystallization Mechanisms Based on Nanoparticle Assembly. Phys. Chem. Chem. Phys. 2006, 8 (28), 3271–3287. (18) Petres, J. J.; Dezelic, G.; Tezak, B. Monodisperse Sols of Barium Sulfate. 3. Electron-Microscopic Study of Internal Structure of Particles. Croat. Chem. Acta 1969, 41 (3), 183. (19) Ito, T.; Inumaru, K.; Misono, M. Structure of Porous Aggregates of the Ammonium Salt of Dodecatungstophosphoric Acid, (NH4)3PW12O40: Unidirectionally Oriented Self-Assembly of Nanocrystallites. J. Phys. Chem. B 1997, 101 (48), 9958–9963. (20) Zhou, L.; O’Brien, P. Mesocrystals: A New Class of Solid Materials. Small 2008, 4 (10), 1566–1574. (21) Falini, G.; Albeck, S.; Weiner, S.; Addadi, L. Control of Aragonite or Calcite Polymorphism by Mollusk Shell Macromolecules. Science 1996, 271 (5245), 67–69. (22) Thompson, J. B.; Paloczi, G. T.; Kindt, J. H.; Michenfelder, M.; Smith, B. L.; Stucky, G.; Morse, D. E.; Hansma, P. K. Direct Observation of the Transition from Calcite to Aragonite Growth as Induced by Abalone Shell Proteins. Biophys. J. 2000, 79 (6), 3307–3312. (23) Meyers, M. A.; Chen, P.-Y.; Lin, A. Y.-M.; Seki, Y. Biological Materials: Structure and Mechanical Properties. Prog. Mater. Sci. 2008, 53 (1), 1–206. (24) Barthelat, F.; Espinosa, H. D. An Experimental Investigation of Deformation and Fracture of Nacre–Mother of Pearl. Exp. Mech. 2007, 47 (3), 311–324. (25) Michenfelder, M.; Fu, G.; Lawrence, C.; Weaver, J. C.; Wustman, B. A.; Taranto, L.; Evans, J. S.; Morse, D. E. Characterization of Two Molluscan Crystal-Modulating Biomineralization Proteins and Identification of Putative Mineral Binding Domains. Biopolymers 2003, 70 (4), 522–533. (26) Weiner, S.; Talmon, Y.; Traub, W. Electron Diffraction of Mollusc Shell Organic Matrices and Their Relationship to the Mineral Phase. Int. J. Biol. Macromol. 1983, 5 (6), 325–328. (27) Weiner, S.; Traub, W.; Parker, S. B. Macromolecules in Mollusc Shells and Their Functions in Biomineralization [and Discussion]. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1984, 304 (1121), 425–434. (28) Nakahara, H.; Kakei, M.; Bevelander, G. Electron Microscopic and Amino Acid Studies on the Outer and Inner Shell Layers of Haliotis Rufescens. Venus Jpn. 1982, 41, 33–46. (29) Samata, T.; Hayashi, N.; Kono, M.; Hasegawa, K.; Horita, C.; Akera, S. A New Matrix Protein Family Related to the Nacreous Layer Formation of Pinctada Fucata. FEBS Lett. 1999, 462 (1), 225–229. (30) Watabe, N. Decalcification of Thin Sections for Electron Microscope Studies of Crystal-Matrix Relationships in Mollusc Shells. J. Cell Biol. 1963, 18 (3), 701–703. (31) Suzuki, M.; Iwashima, A.; Tsutsui, N.; Ohira, T.; Kogure, T.; Nagasawa, H. Identification and Characterisation of a Calcium Carbonate-Binding Protein, Blue Mussel Shell Protein (BMSP), from the Nacreous Layer. ChemBioChem 2011, 12 (16), 2478–2487. (32) Collino, S.; Kim, I. W.; Evans, J. S. Identification and Structural Characterization of an Unusual RING-like Sequence within an Extracellular Biomineralization Protein, AP7. Biochemistry 2008, 47 (12), 3745–3755. (33) Evans, J. S. Aragonite-Associated Biomineralization Proteins Are Disordered and Contain Interactive Motifs. Bioinformatics 2012, 28 (24), 3182–3185. (34) Hunter, G. K.; O’Young, J.; Grohe, B.; Karttunen, M.; Goldberg, H. A. The Flexible Polyelectrolyte Hypothesis of Protein−Biomineral Interaction. Langmuir 2010, 26 (24), 18639–18646. (35) Ponce, C. B.; Evans, J. S. Polymorph Crystal Selection by n16, an Intrinsically Disordered Nacre Framework Protein. Cryst. Growth Des. 2011, 11 (10), 4690–4696. (36) Dunker, A. K.; Oldfield, C. J.; Meng, J.; Romero, P.; Yang, J. Y.; Chen, J. W.; Vacic, V.; Obradovic, Z.; Uversky, V. N. The Unfoldomics Decade: An Update on Intrinsically Disordered Proteins. BMC Genomics 2008, 9 (2), S1. (37) Wustman, B. A.; Morse, D. E.; Evans, J. S. Structural Characterization of the N-Terminal Mineral Modification Domains from the Molluscan Crystal-Modulating Biomineralization Proteins, AP7 and AP24. Biopolymers 2004, 74 (5), 363–376. (38) Kim, I. W.; Darragh, M. R.; Orme, C.; Evans, J. S. Molecular “Tuning” of Crystal Growth by Nacre-Associated Polypeptides. Cryst. Growth Des. 2006, 6 (1), 5–10. (39) Gerbaud, V.; Pignol, D.; Loret, E.; Bertrand, J. A.; Berland, Y.; Fontecilla-Camps, J.-C.; Canselier, J.-P.; Gabas, N.; Verdier, J.-M. Mechanism of Calcite Crystal Growth Inhibition by the N-Terminal Undecapeptide of Lithostathine. J. Biol. Chem. 2000, 275 (2), 1057–1064. (40) Collino, S.; Evans, J. S. Structural Features That Distinguish Kinetically Distinct Biomineralization Polypeptides. Biomacromolecules 2007, 8 (5), 1686–1694. (41) Chang, E. P.; Perovic, I.; Rao, A.; Cölfen, H.; Evans, J. S. Insect Cell Glycosylation and Its Impact on the Functionality of a Recombinant Intracrystalline Nacre Protein, AP24. Biochemistry 2016, 55 (7), 1024–1035. (42) Worthington, M. T.; Amann, B. T.; Nathans, D.; Berg, J. M. Metal Binding Properties and Secondary Structure of the Zinc-Binding Domain of Nup475. Proc. Natl. Acad. Sci. U. S. A. 1996, 93 (24), 13754–13759. (43) Matthews, J. M.; Sunde, M. Zinc Fingers--Folds for Many Occasions. IUBMB Life 2002, 54 (6), 351–355. (44) MJ, van B.; HC, van der L.; GJ, B.; Wm, B.; P, R.; E, de G.; Ba, O.; P, H. A Double RING-H2 Domain in RNF32, a Gene Expressed during Sperm Formation. Biochem. Biophys. Res. Commun. 2002, 292 (1), 58–65. (45) Grizzuti, K.; Perlmann, G. E. Binding of Magnesium and Calcium Ions to the Phosphoglycoprotein Phosvitin. Biochemistry 1973, 12 (22), 4399–4403. (46) Hattan, S. J.; Laue, T. M.; Chasteen, N. D. Purification and Characterization of a Novel Calcium-Binding Protein from the Extrapallial Fluid of the Mollusc, Mytilus Edulis. J. Biol. Chem. 2001, 276 (6), 4461–4468. (47) Amos, F. F.; Evans, J. S. AP7, a Partially Disordered Pseudo C-RING Protein, Is Capable of Forming Stabilized Aragonite in Vitro. Biochemistry 2009, 48 (6), 1332–1339. (48) Amos, F. F.; Ndao, M.; Ponce, C. B.; Evans, J. S. A C-RING-like Domain Participates in Protein Self-Assembly and Mineral Nucleation. Biochemistry 2011, 50 (41), 8880–8887. (49) ExPASy - ProtParam tool http://web.expasy.org/protparam/ (accessed Aug 14, 2017). (50) Allison, L. A. Fundamental Molecular Biology, 2nd Edition; Wiley, 2011. (51) NEBcutter V2.0 http://nc2.neb.com/NEBcutter2/ (accessed Feb 13, 2017). (52) Cleavage Close to the End of DNA Fragments | NEB https://www.neb.com/tools-and-resources/usage-guidelines/cleavage-close-to-the-end-of-dna-fragments (accessed Feb 13, 2017). (53) Fields, G. B.; Noble, R. L. Solid Phase Peptide Synthesis Utilizing 9-Fluorenylmethoxycarbonyl Amino Acids. Int. J. Pept. Protein Res. 1990, 35 (3), 161–214. (54) Basic Steps in Solid Phase Peptide Synthesis Using Fmoc-Chemistry http://www.sigmaaldrich.com/life-science/custom-oligos/custom-peptides/learning-center/solid-phase-synthesis.html (accessed Jul 9, 2017). (55) Circular Dichroism Spectroscopy http://www.ruppweb.org/cd/cdtutorial.htm (accessed Jun 18, 2017). (56) Bulheller, B. M.; Rodger, A.; Hirst, J. D. Circular and Linear Dichroism of Proteins. Phys. Chem. Chem. Phys. 2007, 9 (17), 2020. (57) Virtual Labs http://ccnsb05-iiith.virtual-labs.ac.in/exp6/index.html# (accessed Jun 19, 2017). (58) Matsuo, K. Improved Estimation of the Secondary Structures of Proteins by Vacuum-Ultraviolet Circular Dichroism Spectroscopy. J. Biochem. (Tokyo) 2005, 138 (1), 79–88. (59) Rule, G. S.; Hitchens, T. K. Fundamentals of Protein NMR Spectroscopy; Springer Science & Business Media, 2006. (60) Levitt, M. H. Spin Dynamics: Basics of Nuclear Magnetic Resonance; John Wiley & Sons, 2001. (61) Schanda, P.; Brutscher, B. Very Fast Two-Dimensional NMR Spectroscopy for Real-Time Investigation of Dynamic Events in Proteins on the Time Scale of Seconds. J. Am. Chem. Soc. 2005, 127 (22), 8014–8015. (62) Schanda, P.; Kupče, Ē.; Brutscher, B. SOFAST-HMQC Experiments for Recording Two-Dimensional Deteronuclear Correlation Spectra of Proteins within a Few Seconds. J. Biomol. NMR 2005, 33 (4), 199–211. (63) Scanning Electron Microscopy | Central Microscopy Research Facility https://cmrf.research.uiowa.edu/scanning-electron-microscopy (accessed Jun 18, 2017). (64) scanning electron microscopy http://www.microscopy.ethz.ch/sem.htm (accessed Jun 18, 2017). (65) Andersen, F. A.; Brecevic, L. Infrared Spectra of Amorphous and Crystalline Calcium Carbonate. Acta Chem. Scand. 1991, 45 (10), 1018–1024. (66) Vagenas, N. V.; Gatsouli, A.; Kontoyannis, C. G. Quantitative Analysis of Synthetic Calcium Carbonate Polymorphs Using FT-IR Spectroscopy. Talanta 2003, 59 (4), 831–836. (67) Determination of Secondary Structure in Proteins by FTIR Spectroscopy - JenaLib http://jenalib.leibniz-fli.de/ImgLibDoc/ftir/IMAGE_FTIR.html (accessed Jun 22, 2017). (68) Nucleotide BLAST: Align two or more sequences using BLAST https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch&PROG_DEF=blastn&BLAST_PROG_DEF=megaBlast&BLAST_SPEC=blast2seq (accessed Feb 16, 2017). (69) Pendola, M.; Jain, G.; Davidyants, A.; Huang, Y.-C.; Gebauer, D.; Evans, J. S. A Nacre Protein Forms Mesoscale Hydrogels That “hijack” the Biomineralization Process within a Seawater Environment. CrystEngComm 2016, 18 (40), 7675–7679. (70) Han, J. C.; Han, G. Y. A Procedure for Quantitative Determination of tris(2-Carboxyethyl)phosphine, an Odorless Reducing Agent More Stable and Effective than Dithiothreitol. Anal. Biochem. 1994, 220 (1), 5–10. (71) Buchko, G. W.; Tarasevich, B. J.; Bekhazi, J.; Snead, M. L.; Shaw, W. J. A Solution NMR Investigation into the Early Events of Amelogenin Nanosphere Self-Assembly Initiated with Sodium Chloride or Calcium Chloride. Biochemistry 2008, 47 (50), 13215–13222. (72) Collino, S.; Evans, J. S. Molecular Specifications of a Mineral Modulation Sequence Derived from the Aragonite-Promoting Protein n16. Biomacromolecules 2008, 9 (7), 1909–1918. (73) The effects of solvent and enzyme microenvironment on acidity https://chem.libretexts.org/ (accessed Jul 18, 2017). (74) Kim, I. W.; Collino, S.; Morse, D. E.; Evans, J. S. A Crystal Modulating Protein from Molluscan Nacre That Limits the Growth of Calcite in Vitro. Cryst. Growth Des. 2006, 6 (5), 1078–1082. (75) Currey, J. D. Mechanical Properties of Mother of Pearl in Tension. Proc. R. Soc. Lond. B Biol. Sci. 1977, 196 (1125), 443–463. (76) Du, Y.-P.; Chang, H.-H.; Yang, S.-Y.; Huang, S.-J.; Tsai, Y.-J.; Huang, J. J.-T.; Chan, J. C. C. Study of Binding Interaction between Pif80 Protein Fragment and Aragonite. Sci. Rep. 2016, 6, 30883. (77) Uversky, V. N.; Oldfield, C. J.; Dunker, A. K. Showing Your ID: Intrinsic Disorder as an ID for Recognition, Regulation and Cell Signaling. J Mol Recognit 2005, 18 (5), 343–384. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77879 | - |
dc.description.abstract | 生物成礦指的是生物體製造礦化組織的過程,例如:骨骼、牙齒、棘刺、殼……等。在自然界所有的生物礦物中,碳酸鈣是含量最豐富且被最廣泛研究的一種生物礦物,它具有不同的晶相(方解石、球文石、霰石)。碳酸鈣生物礦物細緻的結構、良好的機械強度以及晶相的調控被認為與生物體中的蛋白、多醣類等大分子有關。其中一種生物礦化相關蛋白的例子便是AP24,此蛋白先前從紅鮑的珍珠層中與另一種蛋白AP7一起被純化出來。先前研究指出,這兩種蛋白可能以二聚體的方式在生物礦化過程中執行其功能性。然而,由於AP24在生理pH值下容易沉澱的特性,人們對全長的AP24的結構及功能並不是了解地非常透徹。為了能進一步了解這個蛋白,本研究首先在AP24較不易沉澱的酸性條件下鑑定其結構。我們使用CD及NMR檢視在添加陽離子、改變pH、與AP7共存的不同條件之下AP24的結構變化。我們發現靜電作用力在AP24分子間交互作用的過程中十分重要。當pH及陽離子濃度增加時,AP24可能由原先單體狀態的隨基螺旋,轉變為具有二級結構的穩定寡聚物。NMR的結果也指出AP7並未對單體狀態的AP24的結構造成明顯的影響。碳酸鈣礦化實驗中,無論是單獨添加AP24或是一起添加AP24及AP7,都未能造成碳酸鈣晶相的選擇性。綜合本研究的實驗結果,我們認為AP24與AP7在碳酸鈣成核的階段並非扮演調控晶相的重要角色。這兩種蛋白或許在礦化過程中具有其他功能,如:對碳酸鈣的形貌調控。其他生物體中的有機基質或許在碳酸鈣晶相調控的過程中也是不可或缺的。至於在蛋白的沉澱中,AP7與AP24是否存在交互作用,則需要透過未來進一步的鑑定(如:固態核磁共振)才能回答這個問題。 | zh_TW |
dc.description.abstract | Biomineralization refers to the process by which living organisms produce mineralized structures such as their bones, teeth, spines and shells. Among all the biominerals produced by organisms in nature, calcium carbonate is the most abundant and most extensively studied mineral, which exists as different polymorphs (calcite, vaterite, aragonite). The delicate structure, fracture toughness and polymorph selection of calcium carbonate biomineral are attributed to macromolecules such as proteins and polysaccharides in organisms. One of these biomineral proteins, AP24, was copurified with another protein, AP7, from the aragonitic nacreous layer of Haliotis rufescens in previous research. It has been suggested that AP24 and AP7 might function as a dimer in biomineralization process. However, little is known about the structure and function of the full-length AP24 due to its aggregation propensity in physiological conditions. To provide additional insights, we characterized the structure of AP24 under acidic pH, where the aggregation problem was mitigated. Using CD and NMR, the structural change of AP24 in response to different factors such as cation, pH, and AP7 was examined. We find that electrostatic force is a key factor for AP24 intermolecular interaction. When concentration of cations and/or pH increased, AP24 could form stable oligomer that possessed different secondary structure compared with its monomeric counterpart. NMR results also revealed that AP7 did not significantly perturb the conformation of monomeric AP24. In vitro mineralization assays indicated neither AP24 nor the synergy of AP24 and AP7 led to phase selection of calcium carbonate. The results suggest AP24 and AP7 are not the major factors in tuning the nucleation stage of calcium carbonate. They might exhibit other functions such as morphology modulation of minerals. The other organic matrix in nacreous layer could also be involved in the polymorphic selection of calcium carbonate biomineral. Further studies are required to clarify whether there exists interaction between AP24 and AP7 in the aggregation form. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T14:36:33Z (GMT). No. of bitstreams: 1 ntu-105-R04223129-1.pdf: 8582810 bytes, checksum: 1659a143968c4b5d33f2d57a908ea1ca (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 目錄
第一章 緒論 9 1-1 生物礦化綜述 9 1-2 碳酸鈣生物礦物 9 1-3 成核理論 13 1-3-1 熱力學與動力學途徑 13 1-3-2 古典成核理論 14 1-3-3 非古典成核理論 15 1-4 生物礦化與有機物 17 1-4-1 固有無序蛋白 19 1-4-2 AP24文獻回顧 21 1-5 研究動機 23 第二章 材料與研究方法 25 2-1 材料與使用儀器 25 2-1-1 化學藥品 25 2-1-2 實驗儀器 27 2-2 AP24重組蛋白質體設計與建構 28 2-2-1 分子克隆原理 28 2-2-2 引子設計 29 2-2-3 Insert製備 30 2-2-4 重組質體的製備與轉型 31 2-2-5 重組質體定序 32 2-3 AP24蛋白製備 33 2-3-1 蛋白表達及純化原理 33 2-3-2 AP24重組蛋白表達及優化 36 2-3-3 AP24重組蛋白純化 36 2-3-4 AP24重組蛋白鑑定 40 A. 蛋白質電泳 40 B. 蛋白身分鑑定 41 2-4 AP7蛋白製備 43 2-4-1 固相胜肽合成簡介 44 2-4-2 固相胜肽合成反應條件 45 2-4-3 AP7蛋白純化及鑑定 47 2-5 離子強度對AP24蛋白結構之影響 47 2-5-1 圓二色光譜儀 48 2-5-2 圓二色光譜儀實驗條件 51 2-6 AP7、鈣離子與pH對AP24結構之影響 52 2-6-1 核磁共振簡介 53 2-6-2 化學位移 55 2-6-3 J-Coupling 56 2-6-4 HMQC 57 2-6-5 SOFAST-HMQC 60 2-6-6 核磁共振實驗條件 61 2-7 AP24蛋白對碳酸鈣礦物生長之影響 63 2-7-1 礦化樣品製備 63 2-7-2 掃描式電子顯微鏡 64 2-7-3 傅立葉轉換紅外線吸收光譜儀 66 第三章 實驗結果與討論 70 3-1 AP24重組蛋白質體建構 70 3-1-1 insert製備 70 3-1-2 重組質體的製備與轉型 71 3-1-3 重組質體定序 72 3-2 AP24蛋白製備與鑑定 74 3-2-1 AP24重組蛋白表達及優化 74 3-2-2 AP24重組蛋白純化 75 3-2-3 AP24重組蛋白身分鑑定 77 3-3 AP7蛋白製備 79 3-3-1 AP7蛋白純化及鑑定 79 3-4 離子強度對蛋白結構之影響 82 3-4-1 圓二色光譜儀 82 3-5 AP7、鈣離子與pH對AP24結構之影響 86 3-5-1 鈣離子之影響 86 3-5-2 AP7之影響 90 3-5-3 pH之影響 92 3-5-3 添加還原劑之影響 94 3-5-4 討論 95 3-6蛋白對碳酸鈣礦物生長之影響 98 3-6-1 AP24/AP7對碳酸鈣晶相及形貌之調控 99 3-6-2 討論 102 第四章 結論及未來展望 106 附錄 109 附錄一 可溶性重組蛋白MBP-AP24之純化 109 附錄二 AP24與AP7之共表達 113 附錄三 高離子強度下之礦化實驗 115 附錄四 高離子強度下AP24形成穩定寡聚物 117 附錄五 添加AP7與50 mM鈣離子之樣品 118 參考文獻 119 | |
dc.language.iso | zh-TW | |
dc.title | 珍珠層相關蛋白之結構鑑定及礦化研究 | zh_TW |
dc.title | Structural Characterization and Mineralization Study of Nacre-Associated Protein AP24 | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 徐駿森(Chun-Hua Hsu),余慈顏(Tsyr-Yan Yu) | |
dc.subject.keyword | 生物礦化,固有無序蛋白,碳酸鈣, | zh_TW |
dc.subject.keyword | biomineralization,intrinsically disordered protein,calcium carbonate,AP24,AP7, | en |
dc.relation.page | 124 | |
dc.identifier.doi | 10.6342/NTU201703548 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-16 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-R04223129-1.pdf 目前未授權公開取用 | 8.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。