Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 腦與心智科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77874
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王培育(Pei-Yu Wang)
dc.contributor.authorJin-Wei Yehen
dc.contributor.author葉晉維zh_TW
dc.date.accessioned2021-07-11T14:36:27Z-
dc.date.available2026-02-10
dc.date.copyright2021-02-25
dc.date.issued2021
dc.date.submitted2021-02-08
dc.identifier.citationBirkenfeld, Andreas L., Lee, H.-Y., Guebre-Egziabher, F., Alves, Tiago C., Jurczak, Michael J., Jornayvaz, Francois R., . . . Shulman, Gerald I. (2011). Deletion of the Mammalian <em>INDY</em> Homolog Mimics Aspects of Dietary Restriction and Protects against Adiposity and Insulin Resistance in Mice. Cell Metabolism, 14(2), 184-195
Birkenfeld, A. L., Shulman, G. I. (2014). Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology (Baltimore, Md.), 59(2), 713-723
Brachs, S., Winkel, A. F., Tang, H., Birkenfeld, A. L., Brunner, B., Jahn-Hofmann, K., . . . Spranger, J. (2016). Inhibition of citrate cotransporter Slc13a5/mINDY by RNAi improves hepatic insulin sensitivity and prevents diet-induced non-alcoholic fatty liver disease in mice. Molecular metabolism, 5(11), 1072-1082
Brauburger, K., Burckhardt, G., Burckhardt, B. C. (2011). The sodium-dependent di- and tricarboxylate transporter, NaCT, is not responsible for the uptake of D-, L-2-hydroxyglutarate and 3-hydroxyglutarate into neurons. Journal of inherited metabolic disease, 34(2), 477-482
Can, A., Dao, D. T., Terrillion, C. E., Piantadosi, S. C., Bhat, S., Gould, T. D. (2012). The tail suspension test. Journal of visualized experiments : JoVE(59), e3769-e3769
Chen, X., Tsukaguchi, H., Chen, X. Z., Berger, U. V., Hediger, M. A. (1999). Molecular and functional analysis of SDCT2, a novel rat sodium-dependent dicarboxylate transporter. The Journal of clinical investigation, 103(8), 1159-1168
Cohen, S. J., Stackman, R. W., Jr. (2015). Assessing rodent hippocampal involvement in the novel object recognition task. A review. Behavioural brain research, 285, 105-117
Donath, M. Y., Shoelson, S. E. (2011). Type 2 diabetes as an inflammatory disease. Nature Reviews Immunology, 11(2), 98-107
El-Assal, O., Hong, F., Kim, W. H., Radaeva, S., Gao, B. (2004). IL-6-deficient mice are susceptible to ethanol-induced hepatic steatosis: IL-6 protects against ethanol-induced oxidative stress and mitochondrial permeability transition in the liver. Cell Mol Immunol, 1(3), 205-211
Ennaceur, A. (2010). One-trial object recognition in rats and mice: Methodological and theoretical issues. Behavioural brain research, 215(2), 244-254
Ennaceur, A., Delacour, J. (1988). A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behavioural brain research, 31(1), 47-59
Fagerberg, L., Hallström, B. M., Oksvold, P., Kampf, C., Djureinovic, D., Odeberg, J., . . . Uhlén, M. (2014). Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Molecular cellular proteomics : MCP, 13(2), 397-406
Fan, S.-Z., Sung, C.-W., Tsai, Y.-H., Yeh, S.-R., Lin, W.-S., Wang, P.-Y. (2020). Nervous System Deletion of Mammalian INDY in Mice Mimics Dietary Restriction-Induced Memory Enhancement. The Journals of Gerontology: Series A
Farrell, G. C., Larter, C. Z. (2006). Nonalcoholic fatty liver disease: From steatosis to cirrhosis. Hepatology, 43(S1), S99-S112
Faucher, Q., Alarcan, H., Marquet, P., Barin-Le Guellec, C. (2020). Effects of Ischemia-Reperfusion on Tubular Cell Membrane Transporters and Consequences in Kidney Transplantation. Journal of clinical medicine, 9(8), 2610
Fujita, T., Katsukawa, H., Yodoya, E., Wada, M., Shimada, A., Okada, N., . . . Ganapathy, V. (2005). Transport characteristics of N-acetyl-l-aspartate in rat astrocytes: involvement of sodium-coupled high-affinity carboxylate transporter NaC3/NaDC3-mediated transport system. Journal of Neurochemistry, 93(3), 706-714
George, R. L., Huang, W., Naggar, H. A., Smith, S. B., Ganapathy, V. (2004). Transport of N-acetylaspartate via murine sodium/dicarboxylate cotransporter NaDC3 and expression of this transporter and aspartoacylase II in ocular tissues in mouse. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1690(1), 63-69
Hagos, Y., Krick, W., Braulke, T., Mühlhausen, C., Burckhardt, G., Burckhardt, B. C. (2008). Organic anion transporters OAT1 and OAT4 mediate the high affinity transport of glutarate derivatives accumulating in patients with glutaric acidurias. Pflügers Archiv - European Journal of Physiology, 457(1), 223-231
Hardies, K., de Kovel, C. G. F., Weckhuysen, S., Asselbergh, B., Geuens, T., Deconinck, T., . . . Consortium, o. b. o. t. a. r. w. g. o. t. E. R. (2015). Recessive mutations in SLC13A5 result in a loss of citrate transport and cause neonatal epilepsy, developmental delay and teeth hypoplasia. Brain, 138(11), 3238-3250
Huang, W., Wang, H., Kekuda, R., Fei, Y.-J., Friedrich, A., Wang, J., . . . Ganapathy, V. (2000). Transport of <em>N</em>-Acetylaspartate by the Na<sup>+</sup>-Dependent High-Affinity Dicarboxylate Transporter NaDC3 and Its Relevance to the Expression of the Transporter in the Brain. Journal of Pharmacology and Experimental Therapeutics, 295(1), 392-403
Huard, K., Brown, J., Jones, J. C., Cabral, S., Futatsugi, K., Gorgoglione, M., . . . Erion, D. M. (2015). Discovery and characterization of novel inhibitors of the sodium-coupled citrate transporter (NaCT or SLC13A5). Scientific reports, 5, 17391-17391
Huard, K., Gosset, J. R., Montgomery, J. I., Gilbert, A., Hayward, M. M., Magee, T. V., . . . Erion, D. M. (2016). Optimization of a Dicarboxylic Series for in Vivo Inhibition of Citrate Transport by the Solute Carrier 13 (SLC13) Family. Journal of Medicinal Chemistry, 59(3), 1165-1175
Indra, A. K., Warot, X., Brocard, J., Bornert, J.-M., Xiao, J.-H., Chambon, P., Metzger, D. (1999). Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ERT and Cre-ERT2 recombinases. Nucleic Acids Research, 27(22), 4324-4327
Inoue, K., Fei, Y.-J., Huang, W., Zhuang, L., Chen, Z., Ganapathy, V. (2002). Functional identity of Drosophila melanogaster Indy as a cation-independent, electroneutral transporter for tricarboxylic acid-cycle intermediates. The Biochemical journal, 367(Pt 2), 313-319
Inoue, K., Fei, Y.-J., Zhuang, L., Gopal, E., Miyauchi, S., Ganapathy, V. (2004). Functional features and genomic organization of mouse NaCT, a sodium-coupled transporter for tricarboxylic acid cycle intermediates. The Biochemical journal, 378(Pt 3), 949-957
Inoue, K., Zhuang, L., Ganapathy, V. (2002). Human Na+-coupled citrate transporter: primary structure, genomic organization, and transport function. Biochemical and Biophysical Research Communications, 299(3), 465-471
Inoue, K., Zhuang, L., Maddox, D. M., Smith, S. B., Ganapathy, V. (2002). Structure, Function, and Expression Pattern of a Novel Sodium-coupled Citrate Transporter (NaCT) Cloned from Mammalian Brain. Journal of Biological Chemistry, 277(42), 39469-39476
Kaufhold, M., Schulz, K., Breljak, D., Gupta, S., Henjakovic, M., Krick, W., . . . Burckhardt, G. (2011). Differential interaction of dicarboxylates with human sodium-dicarboxylate cotransporter 3 and organic anion transporters 1 and 3. American Journal of Physiology-Renal Physiology, 301(5), F1026-F1034
Kekuda, R., Wang, H., Huang, W., Pajor, A. M., Leibach, F. H., Devoe, L. D., . . . Ganapathy, V. (1999). Primary Structure and Functional Characteristics of a Mammalian Sodium-coupled High Affinity Dicarboxylate Transporter. Journal of Biological Chemistry, 274(6), 3422-3429
Klover, P. J., Zimmers, T. A., Koniaris, L. G., Mooney, R. A. (2003). Chronic Exposure to Interleukin-6 Causes Hepatic Insulin Resistance in Mice. Diabetes, 52(11), 2784-2789
Knauf, F., Mohebbi, N., Teichert, C., Herold, D., Rogina, B., Helfand, S., . . . Aronson, P. S. (2006). The life-extending gene Indy encodes an exchanger for Krebs-cycle intermediates. Biochem J, 397(1), 25-29
Knauf, F., Rogina, B., Jiang, Z., Aronson, P. S., Helfand, S. L. (2002). Functional characterization and immunolocalization of the transporter encoded by the life-extending gene <em>Indy</em>. Proceedings of the National Academy of Sciences, 99(22), 14315-14319
Kristianto, J., Johnson, M. G., Zastrow, R. K., Radcliff, A. B., Blank, R. D. (2017). Spontaneous recombinase activity of Cre–ERT2 in vivo. Transgenic Research, 26(3), 411-417
Lois, C., Hong, E. J., Pease, S., Brown, E. J., Baltimore, D. (2002). Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science, 295(5556), 868-872
Mills, E. L., Pierce, K. A., Jedrychowski, M. P., Garrity, R., Winther, S., Vidoni, S., . . . Chouchani, E. T. (2018). Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature, 560(7716), 102-106
Otto, G. P., Rathkolb, B., Oestereicher, M. A., Lengger, C. J., Moerth, C., Micklich, K., . . . de Angelis, M. H. (2016). Clinical Chemistry Reference Intervals for C57BL/6J, C57BL/6N, and C3HeB/FeJ Mice (Mus musculus). Journal of the American Association for Laboratory Animal Science, 55(4), 375-386
Pajor, A. M. (2006). Molecular properties of the SLC13 family of dicarboxylate and sulfate transporters. Pflugers Archiv : European journal of physiology, 451(5), 597-605
Pajor, A. M. (2014). Sodium-coupled dicarboxylate and citrate transporters from the SLC13 family. Pflügers Archiv - European Journal of Physiology, 466(1), 119-130
Pajor, A. M., Gangula, R., Yao, X. (2001). Cloning and functional characterization of a high-affinity Na+/dicarboxylate cotransporter from mouse brain. American Journal of Physiology-Cell Physiology, 280(5), C1215-C1223
Pesta, D. H., Perry, R. J., Guebre-Egziabher, F., Zhang, D., Jurczak, M., Fischer-Rosinsky, A., . . . Birkenfeld, A. L. (2015). Prevention of diet-induced hepatic steatosis and hepatic insulin resistance by second generation antisense oligonucleotides targeted to the longevity gene mIndy (Slc13a5). Aging, 7(12), 1086-1093
Postic, C., Girard, J. (2008). Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. The Journal of clinical investigation, 118(3), 829-838
Rogers, R. P., Rogina, B. (2014). Increased mitochondrial biogenesis preserves intestinal stem cell homeostasis and contributes to longevity in Indy mutant flies. Aging, 6(4), 335-350
Rogers, R. P., Rogina, B. (2015). The role of INDY in metabolism, health and longevity. Frontiers in genetics, 6, 204-204
Rogina, B. (2017). INDY-A New Link to Metabolic Regulation in Animals and Humans. Frontiers in genetics, 8, 66-66
Rogina, B., Reenan, R. A., Nilsen, S. P., Helfand, S. L. (2000). Extended Life-Span Conferred by Cotransporter Gene Mutations in <em>Drosophila</em>. Science, 290(5499), 2137-2140
Schlessinger, A., Sun, N. N., Colas, C., Pajor, A. M. (2014). Determinants of substrate and cation transport in the human Na+/dicarboxylate cotransporter NaDC3. The Journal of biological chemistry, 289(24), 16998-17008
Schwarz, F., Karadeniz, Z., Fischer-Rosinsky, A., Willmes, D. M., Spranger, J., Birkenfeld, A. L. (2015). Knockdown of Indy/CeNac2 extends Caenorhabditis elegans life span by inducing AMPK/aak-2. Aging, 7(8), 553-567
Shuprisha, A., Lynch, R. M., Wright, S. H., Dantzler, W. H. (1999). Real-time assessment of α-ketoglutarate effect on organic anion secretion in perfused rabbit proximal tubules. American Journal of Physiology-Renal Physiology, 277(4), F513-F523
Smith, G. S., Walter, G. L., Walker, R. M. (2013). Chapter 18 - Clinical Pathology in Non-Clinical Toxicology Testing. In W. M. Haschek, C. G. Rousseaux, M. A. Wallig (Eds.), Haschek and Rousseaux's Handbook of Toxicologic Pathology (Third Edition) (pp. 565-594). Boston: Academic Press.
Teng, L.-L., Lu, G.-L., Chiou, L.-C., Lin, W.-S., Cheng, Y.-Y., Hsueh, T.-E., . . . Wang, P.-Y. (2019). Serotonin receptor HTR6-mediated mTORC1 signaling regulates dietary restriction–induced memory enhancement. PLOS Biology, 17(3), e2007097
Thevenon, J., Milh, M., Feillet, F., St-Onge, J., Duffourd, Y., Jugé, C., . . . Rivière, J.-B. (2014). Mutations in SLC13A5 cause autosomal-recessive epileptic encephalopathy with seizure onset in the first days of life. American journal of human genetics, 95(1), 113-120
Vadder, F. d., Mithieux, G. (2018). Gut-brain signaling in energy homeostasis: the unexpected role of microbiota-derived succinate. Journal of Endocrinology, 236(2), R105
Van Schaftingen, E., Hers, H. G. (1981). Inhibition of fructose-1,6-bisphosphatase by fructose 2,6-biphosphate. Proceedings of the National Academy of Sciences of the United States of America, 78(5), 2861-2863
von Loeffelholz, C., Lieske, S., Neuschäfer-Rube, F., Willmes, D. M., Raschzok, N., Sauer, I. M., . . . Birkenfeld, A. L. (2017). The human longevity gene homolog INDY and interleukin-6 interact in hepatic lipid metabolism. Hepatology, 66(2), 616-630
Wada, M., Shimada, A., Fujita, T. (2006). Functional characterization of Na+-coupled citrate transporter NaC2/NaCT expressed in primary cultures of neurons from mouse cerebral cortex. Brain Research, 1081(1), 92-100
Wang, H., Fei, Y.-J., Kekuda, R., Yang-Feng, T. L., Devoe, L. D., Leibach, F. H., . . . Ganapathy, V. (2000). Structure, function, and genomic organization of human Na+-dependent high-affinity dicarboxylate transporter. American Journal of Physiology-Cell Physiology, 278(5), C1019-C1030
Wang, P.-Y., Neretti, N., Whitaker, R., Hosier, S., Chang, C., Lu, D., . . . Helfand, S. L. (2009). Long-lived Indy and calorie restriction interact to extend life span. Proceedings of the National Academy of Sciences of the United States of America, 106(23), 9262-9267
Weeke, L. C., Brilstra, E., Braun, K. P., Zonneveld-Huijssoon, E., Salomons, G. S., Koeleman, B. P., . . . de Vries, L. S. (2017). Punctate white matter lesions in full-term infants with neonatal seizures associated with SLC13A5 mutations. European Journal of Paediatric Neurology, 21(2), 396-403
Willmes, D. M., Birkenfeld, A. L. (2013). The Role of INDY in Metabolic Regulation. Computational and structural biotechnology journal, 6, e201303020-e201303020
Willmes, D. M., Kurzbach, A., Henke, C., Schumann, T., Zahn, G., Heifetz, A., . . . Birkenfeld, A. L. (2018). The longevity gene INDY (I'm Not Dead Yet) in metabolic control: Potential as pharmacological target. Pharmacology Therapeutics, 185, 1-11
Yamaguchi, K., Nishimura, T., Ishiba, H., Seko, Y., Okajima, A., Fujii, H., . . . Itoh, Y. (2015). Blockade of interleukin 6 signalling ameliorates systemic insulin resistance through upregulation of glucose uptake in skeletal muscle and improves hepatic steatosis in high-fat diet fed mice. Liver Int, 35(2), 550-561
Yodoya, E., Wada, M., Shimada, A., Katsukawa, H., Okada, N., Yamamoto, A., . . . Fujita, T. (2006). Functional and molecular identification of sodium-coupled dicarboxylate transporters in rat primary cultured cerebrocortical astrocytes and neurons. Journal of Neurochemistry, 97(1), 162-173
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77874-
dc.description.abstract長壽基因Indy (I’m Not Dead Yet)對於代謝調控的重要性最早是透過使用果蠅和線蟲的研究所揭露。Indy基因會轉譯出在細胞膜上負責克氏循環二羧酸和三羧酸運送的通道蛋白,若在果蠅中將這個基因突變可以降低果蠅的體脂肪含量、類胰島素蛋白以及過氧化物質的產生。除此之外,以Indy在哺乳類中被稱為Solute carrier family 13, member 5 (SLC13A5)的同源基因為目標的基因剔除小鼠,也被發現能夠抵抗高脂飲食所造成的肥胖、脂肪肝和胰島素阻抗,另外有些已發表的文獻也指出患有第二型糖尿病和非酒精性脂肪肝的肥胖病人具有較高的SLC13A5表現量。
然而,Indy的另外一個被稱為Solute carrier family 13, member 3 (SLC13A3)的哺乳類同源基因,雖然也能夠運送多種克氏循環的中間產物,但是它在哺乳類中的功能卻還沒有被完整地研究。根據目前對於SLC13A3的研究成果,我們發現透過傳統性剔除模式使小鼠喪失SLC13A3的功能可以透過增強小鼠的能量代謝和減少血液、肝臟以及白色脂肪組織中三酸甘油脂的堆積來避免小鼠肥胖,除此之外,我們也發現缺乏SLC13A3基因表現的小鼠具有較好的胰島素敏感性以及較低的肝臟中脂肪合成相關基因表現,而對於小鼠的認知功能則是沒有顯著的影響。由於SLC13A3也會在小鼠的胎盤中表現,使用傳統性剔除模式使小鼠喪失SLC13A3的功能可能會影響胚胎時期母體與胎兒之間的養分交換,進而影響胎兒的發育,因此在這項研究中,我們利用誘導性DNA重組酶系統讓小鼠發育成熟之後才使其失去SLC13A3的功能,以確認SLC13A3在成年小鼠的代謝調控中扮演的角色,我們發現在誘發全身性SLC13A3基因剔除之後,小鼠的體增重和脂肪累積顯著減少,我們也觀察到誘發全身性SLC13A3基因剔除小鼠具有較高的能量代謝、較輕的肝臟和脂肪組織以及較好的葡萄糖恆定和胰島素敏感性,而在認知功能方面則沒有顯著的影響。大部分的研究成果都和我們先前的發現一致,說明了SLC13A3是未來對科學家研究如何預防肥胖和非酒精性脂肪肝疾病的一個具有潛力的目標基因。
zh_TW
dc.description.abstractThe importance of the life-extending gene, Indy (I’m Not Dead Yet) in metabolic regulation was first revealed through studies in Drosophila melanogaster and Caenorhabditis elegans. Indy gene encodes di and tri-carboxylate transporter of Krebs cycle intermediates on the plasma membrane, and mutating this gene in D. melanogaster reduced body fat content, insulin-like proteins and reactive oxygen species production. Besides, knockout-mouse model of the mammalian homologue of Indy, which is called Solute carrier family 13, member 5 (SLC13A5), was reported to be protected from HFD induced obesity, fatty liver and insulin resistance, and some published studies had also shown that obese humans with type 2 diabetes and non-alcoholic fatty liver disease have increased levels of SLC13A5. However, another mammalian homologue of Indy called Solute carrier family 13, member 3 (SLC13A3), which could transport a wide range of intermediates in tricarboxylate cycle, has not been fully investigated for its function. According to the results of the current research on SLC13A3, we found that the conventional knockout of SLC13A3 prevented mice from obesity through increased energy expenditure and reduced accumulation of triglyceride in serum, liver and adipose tissue. Besides, we also found better insulin sensitivity and downregulation of the lipogenesis-associated genes in the liver of SLC13A3 knockout mice, but there was no significant change in their cognitive function. Because SLC13A3 is also expressed in the placenta of mice and may affect embryonic development, in this study, we induced systemic deletion of SLC13A3 after they were
fully developed with inducible Cre recombinase system to confirm the function of this gene in adult mice. We found that the body weight gain and fat mass of mice were decreased after induced systemic deletion of SLC13A3, and we also observed higher energy expenditure, lower weight of liver and white adipose tissue, as well as better glucose homeostasis and insulin sensitivity in mice after induced systemic deletion of SLC13A3. However, there was no significant difference in cognitive function. Most of the results are consistent with our previous findings and show that SLC13A3 may be a potential target for scientists to investigate how to prevent obesity and non-alcoholic fatty liver disease (NAFLD) in the future.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:36:27Z (GMT). No. of bitstreams: 1
U0001-0802202111190100.pdf: 1899685 bytes, checksum: 397dcaec3d89032cef128c5dfacac1c4 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員審定書 i
Contents ii
誌謝 iv
Abbreviation table vi
摘要 viii
Abstract ix
Chapter 1 Introduction 1
Chapter 2 Materials and Methods 6
2.1 Mice 6
2.2 Genotyping 8
2.3 Body weight monitoring and body composition analysis 9
2.4 Behavioral tests 10
2.5 Metabolic monitoring 14
2.6 Biochemical analysis 15
2.7 Glucose tolerance test (GTT), insulin tolerance test (ITT), fasting blood insulin level and glucose clearance rate (KITT) 18
2.8 RNA extraction and quantitative real-time PCR 19
2.9 Statistical analysis 20
Chapter 3 Results 20
3.1 Generation of mice with inducible systemic deletion of Slc13a3 20
3.2 Di/tri-carboxylates accumulated in mice with inducible systemic deletion of Slc13a3 21
3.3 Reduced body weight gain, lower accumulation of fat mass, and higher energy expenditure were observed in mice with inducible systemic deletion of Slc13a3 21
3.4 The loss of Slc13a3 in adulthood did not significantly influence the olfactory function, motor performance and cognition of mice 23
3.5 Biochemical analysis of serum revealed the better lipid profile in mice with inducible systemic deletion of Slc13a3 and there is no significant change in kidney function-associated index 24
3.6 The loss of Slc13a3 in adulthood improved the glucose homeostasis, insulin sensitivity and lipid metabolism in mice 25
Chapter 4 Discussion 26
Chapter 5 Table and Figures 31
Chapter 6 Reference 45
dc.language.isoen
dc.subject胰島素阻抗zh_TW
dc.subject肥胖zh_TW
dc.subject非酒精性脂肪肝zh_TW
dc.subjectINDYen
dc.subjectSLC13A3en
dc.subjectNAFLDen
dc.title抑制成年小鼠SLC13A3的表現降低脂肪累積及胰島素阻抗之研究zh_TW
dc.titleReduced expression of SLC13A3 in adult mice prevents lipid accumulation and insulin resistanceen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee范守仁(Shou-Zen Fan),李立仁(Li-Jen Lee)
dc.subject.keyword非酒精性脂肪肝,肥胖,胰島素阻抗,zh_TW
dc.subject.keywordINDY,SLC13A3,NAFLD,en
dc.relation.page51
dc.identifier.doi10.6342/NTU202100668
dc.rights.note有償授權
dc.date.accepted2021-02-08
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept腦與心智科學研究所zh_TW
dc.date.embargo-lift2026-02-10-
顯示於系所單位:腦與心智科學研究所

文件中的檔案:
檔案 大小格式 
U0001-0802202111190100.pdf
  未授權公開取用
1.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved