Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77870
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡偉博(Wei-Bor Tsai)
dc.contributor.authorWen-Hsuan Chenen
dc.contributor.author陳玟璇zh_TW
dc.date.accessioned2021-07-11T14:36:22Z-
dc.date.available2022-08-31
dc.date.copyright2017-08-31
dc.date.issued2017
dc.date.submitted2017-08-17
dc.identifier.citation1. Tesler, A.B., P. Kim, and S. Kolle, Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel. Nature Communications, 2015. 6.
2. Anand, G., F.M. Zhang, and R.J. Linhardt, Protein-associated water and secondary structure effect removal of blood proteins from metallic substrates. Langmuir, 2011. 27(5): p. 1830-1836.
3. Chae, K.H., Y.M. Jang, and Y.H. Kim, Anti-fouling epoxy coatings for optical biosensor application based on phosphorylcholine. Sensors and Actuators B-Chemical, 2007. 124(1): p. 153-160.
4. Zhao, C., et al., Functional polymer thin films designed for antifouling materials and biosensors. Chemical Papers, 2012. 66(5): p. 323-339.
5. Bertok, T., L. Klukova, and A. Sediva, Ultrasensitive lmpedimetric Lectin Biosensors with Efficient Antifouling Properties Applied in Glycoprofiling of Human Serum Samples. Analytical Chemistry, 2013. 85(15): p. 7324-7332.
6. Sharma, S., R.W. Johnson, and T.A. Desai, XPS and AFM analysis of antifouling PEG interfaces for microfabricated silicon biosensors. Biosensors & Bioelectronics, 2004. 20(2): p. 227-239.
7. Sodhi, R.N.S., V.P. Sahi, and M.W. Mittelman, Application of electron spectroscopy and surface modification techniques in the development of anti-microbial coatings for medical devices. Journal of Electron Spectroscopy and Related Phenomena, 2001. 121(1-3): p. 249-264.
8. Rosenberg, R., D. Starosvetsky, and I. Gotman, Surface modification of a low modulus Ti-Nb alloy for use in medical implants. Journal of Materials Science Letters, 2003. 22(1): p. 29-32.
9. Amiji, M. and K. Park, Surface modification polymeric biomaterials with poly(ethylene oxide), albumin, and heparin for reduced thrombogenicity. Journal of Biomaterials Science-Polymer Edition, 1993. 4(3): p. 217-234.
10. Okajima, Y., S. Saika, and M. Sawa, Effect of surface coating an acrylic intraocular lens with poly(2-methacryloyloxyethyl phosphorylcholine) polymer on lens epithelial cell line behavior. Journal of Cataract and Refractive Surgery, 2006. 32(4): p. 666-671.
11. Nakabayashi, N. and Y. Iwasaki, Copolymers of 2-methacryloyloxyethyl phosphorylcholine (MPC) as biomaterials. Bio-Medical Materials and Engineering, 2004. 14(4): p. 345-354.
12. Willis, S.L., J.L. Court, and R.P. Redman, A novel phosphorylcholine-coated contact lens for extended wear use. Biomaterials, 2001. 22(24): p. 3261-3272.
13. Kushiro, K., C.H. Lee, and M. Takai, Simultaneous characterization of protein-material and cell-protein interactions using dynamic QCM-D analysis on SAM surfaces. Biomaterials Science, 2016. 4(6): p. 989-997.
14. Senaratne, W., L. Andruzzi, and C.K. Ober, Self-assembled monolayers and polymer brushes in biotechnology: current applications and future perspectives. Biomacromolecules, 2005. 6(5): p. 2427-2448.
15. Hoffman, A.S., Non-fouling surface technologies. Journal of biomaterials science, polymer edition, 1999. 10: p. 1011-1014.
16. Chapman, R.G., E. Ostuni, and S. Takayama, Surveying for surfaces that resist the adsorption of proteins. Journal of the American Chemical Society, 2000. 122(34): p. 8303-8304.
17. Ostuni, E., R.G. Chapman, and R.E. Holmlin, A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir, 2001. 17(18): p. 5605-5620.
18. Li, G., H. Xue, and G. Cheng, Ultralow fouling zwitterionic polymers grafted from surfaces covered with an initiator via an adhesive mussel mimetic linkage. The Journal of Physical Chemistry B, 2008. 112(48): p. 15269-15274.
19. Li, G., G. Cheng, and H. Xue, Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. Biomaterials, 2008. 29(35): p. 4592-4597.
20. Cheng, G., Z. Zhang, and S. Chen, Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials, 2007. 28(29): p. 4192-4199.
21. Zhang, Z., G. Cheng, and L.R. Carr, The hydrolysis of cationic polycarboxybetaine esters to zwitterionic polycarboxybetaines with controlled properties. Biomaterials, 2008. 29(36): p. 4719-4725.
22. Orooji, Y., M. Faghih, and A. Razmjou, Nanostructured mesoporous carbon polyethersulfone composite ultrafiltration membrane with significantly low protein adsorption and bacterial adhesion. Carbon, 2017. 111: p. 689-704.
23. Chen, H., M.Z. Zhang, and J.T. Yang, Synthesis and characterization of antifouling poly(n-acryloylaminoethoxyethanol) with ultralow protein adsorption and cell attachment. Langmuir, 2014. 30(34): p. 10398-10409.
24. Zhang, Z., M. Zhang, and S. Chen, Blood compatibility of surfaces with superlow protein adsorption. Biomaterials, 2008. 29(32): p. 4285-4291.
25. Cheng, J., B.A. Teply, and I. Sherifi, Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials, 2007. 28(5): p. 869-876.
26. McPherson, T., A. Kidane, and I. Szleifer, Prevention of protein adsorption by tethered poly(ethylene oxide) layers: experiments and single-chain mean-field analysis. Langmuir, 1998. 14(1): p. 176-186.
27. Dalsin, J.L., B.H. Hu, and B.P. Lee, Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. Journal of the American Chemical Society, 2003. 125(14): p. 4253-4258.
28. Shen, M.C., L. Martinson, and M.S. Wagner, PEO-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins: in vitro and in vivo studies. Journal of Biomaterials Science-Polymer Edition, 2002. 13(4): p. 367-390.
29. Luk, Y.-Y., M. Kato, and M. Mrksich, Self-assembled mnolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir, 2000. 16(24): p. 9604-9608.
30. Lewis, A.L., Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids and Surfaces B: Biointerfaces, 2000. 18(3-4): p. 261-275.
31. Wiarachai, O., T. Vilaivan, and Y. Iwasaki, Clickable and antifouling platform of poly (propargyl methacrylate)-ran-(2-methacryloyloxyethyl phosphorylcholine) for biosensing applications. Langmuir, 2016. 32(4): p. 1184-1194.
32. Shiojima, T., Y. Inoue, and M. Kyomoto, High-efficiency preparation of poly(2-methacryloyloxyethyl phosphorylcholine) grafting layer on poly(ether ether ketone) by photoinduced and self-initiated graft polymerization in an aqueous solution in the presence of inorganic salt additives. Acta Biomaterialia, 2016. 40: p. 38-45.
33. Lin, S.Y., et al., Plasma initiated graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on silicone elastomer surfaces to enhance bio(hemo)compatibility. Surface & Coatings Technology, 2017. 315: p. 342-349.
34. Goda, T., M. Tabata, and M. Sanjoh, Thiolated 2-methacryloyloxyethyl phosphorylcholine for an antifouling biosensor platform. Chemical Communications, 2013. 49(77): p. 8683-8685.
35. Hong, Y., S.H. Ye, and A. Nieponice, A small diameter, fibrous vascular conduit generated from a poly(ester urethane)urea and phospholipid polymer blend. Biomaterials, 2009. 30(13): p. 2457-2467.
36. Akkahat, P., S. Kiatkamjornwong, and S. Yusa, Development of a novel antifouling platform for biosensing probe immobilization from methacryloyloxyethyl phosphorylcholine-containing copolymer brushes. Langmuir, 2012. 28(13): p. 5872-5881.
37. Yan, L.F. and K. Ishihara, Graft copolymerization of 2-methacryloyloxyethyl phosphorylcholine to cellulose in homogeneous media using atom transfer radical polymerization for providing mew hemocompatible coating materials. Journal of Polymer Science Part a-Polymer Chemistry, 2008. 46(10): p. 3306-3313.
38. Liu, P.S., Q. Chen, and S.S. Wu, Surface modification of cellulose membranes with zwitterionic polymers for resistance to protein adsorption and platelet adhesion. Journal of Membrane Science, 2010. 350(1-2): p. 387-394.
39. Hasegawa, T., Y. Iwasaki, and K. Ishihara, Preparation of blood-compatible hollow fibers from a polymer alloy composed of polysulfone and 2-methacryloyloxyethyl phosphorylcholine polymer. Journal of Biomedical Materials Research, 2002. 63(3): p. 333-341.
40. Lee, I., K. Kobayashi, and H.Y. Sun, Biomembrane mimetic polymer poly (2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) at the interface of polyurethane surfaces. Journal of Biomedical Materials Research Part A, 2007. 82A(2): p. 316-322.
41. Wang, Z.G., P.J. Wan, and M.M. Ding, Synthesis and micellization of new biodegradable phosphorylcholine-capped polyurethane. Journal of Polymer Science Part a-Polymer Chemistry, 2011. 49(9): p. 2033-2042.
42. Laschewsky, A., R. Touillaux, and P. Hendlinger, Characterization of sulfobetaine monomers by nuclear magnetic resonance spectroscopy : a note. Polymer, 1995. 36(15): p. 3045-3049.
43. Lee, W.F. and G.Y. Huang, Poly(sulfobetaine)s and corresponding cationic polymers .5. Synthesis and dilute aqueous solution properties of poly(sulfobetaine)s derived from acrylamide maleic anhydride copolymer. Polymer, 1996. 37(19): p. 4389-4395.
44. Lowe, A.B., N.C. Billingham, and S.P. Armes, Synthesis and properties of low-polydispersity poly(sulfopropylbetaine)s and their block copolymers. Macromolecules, 1999. 32(7): p. 2141-2148.
45. Kathmann, E.E., L.A. White, and C.L. McCormick, Water soluble polymers .70. effects of methylene versus propylene spacers in the pH and electrolyte responsiveness of zwitterionic copolymers incorporating carboxybetaine monomers. Polymer, 1997. 38(4): p. 879-886.
46. Schulz, D.N., et al., Phase-behavior and solution properties of sulfobetaine polymers. Polymer, 1986. 27(11): p. 1734-1742.
47. Huglin, M.B. and M.A. Radwan, Properties of poly[N-2-(methyacryloyloxy)ethyl-N,N-dimethyl-N-3-sulfopropylammonium betaine] in dilute solution. Makromolekulare Chemie-Macromolecular Chemistry and Physics, 1991. 192(10): p. 2433-2445.
48. Zhang, Z., T. Chao, and S. Jiang, Physical, chemical, and chemical−physical double network of zwitterionic hydrogels. The Journal of Physical Chemistry B, 2008. 112(17): p. 5327-5332.
49. Chen, H., L. Yuan, and W. Song, Biocompatible polymer materials: role of protein-surface interactions. Progress in Polymer Science, 2008. 33(11): p. 1059-1087.
50. Zhang, Z., S. Chen, and S. Jiang, Dual-functional biomimetic materials: nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules, 2006. 7(12): p. 3311-3315.
51. Yang, W., S. Chen, and G. Cheng, Film thickness dependence of protein adsorption from blood serum and plasma onto poly(sulfobetaine)-grafted surfaces. Langmuir, 2008. 24(17): p. 9211-9214.
52. Chang, Y., S. Chen, and Z. Zhang, Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. Langmuir, 2006. 22(5): p. 2222-2226.
53. Chang, Y., S.-C. Liao, and A. Higuchi, A highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for plasma protein repulsion. Langmuir, 2008. 24(10): p. 5453-5458.
54. Rodriguez Emmenegger, C., E. Brynda, and T. Riedel, Interaction of blood plasma with antifouling surfaces. Langmuir, 2009. 25(11): p. 6328-6333.
55. Zhang, Z., S. Chen, and Y. Chang, Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. The Journal of Physical Chemistry B, 2006. 110(22): p. 10799-10804.
56. Vaisocherová, H., W. Yang, and Z. Zhang, Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma. Analytical Chemistry, 2008. 80(20): p. 7894-7901.
57. Ladd, J., Z. Zhang, and S. Chen, Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules, 2008. 9(5): p. 1357-1361.
58. Zhang, Z., T. Chao, and S. Chen, Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir, 2006. 22(24): p. 10072-10077.
59. Vermette, P. and L. Meagher, Interactions of phospholipid- and poly(ethylene glycol)-modified surfaces with biological systems: relation to physico-chemical properties and mechanisms. Colloids and Surfaces B: Biointerfaces, 2003. 28(2-3): p. 153-198.
60. Lowe, A.B. and C.L. McCormick, Synthesis and solution properties of zwitterionic polymers. Chemical Reviews, 2002. 102(11): p. 4177-4190.
61. Ishihara K, N.H., Mihara T, Why do phospholipid polymers reduce protein adsorption? Journal of Biomedical Materials Research, 1998. 39: p. 323–330.
62. He, Y., J. Hower, and S. Chen, Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-Assembled monolayers in the presence of water. Langmuir, 2008. 24(18): p. 10358-10364.
63. Ma, H., J. Hyun, and P. Stiller, Non-foulingrdquo oligo(ethylene glycol)- functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization. Advanced Materials, 2004. 16(4): p. 338-341.
64. Liu, J.K. and M.L. Lee, Permanent surface modification of polymeric capillary electrophoresis microchips for protein and peptide analysis. Electrophoresis, 2006. 27(18): p. 3533-3546.
65. Li, D., Q. Zheng, and Y.W. Wang, Combining surface topography with polymer chemistry: exploring new interfacial biological phenomena. Polymer Chemistry, 2014. 5(1): p. 14-24.
66. Sin, M.C., Y.M. Sun, and Y. Chang, Zwitterionic-based stainless steel with well-defined polysulfobetaine brushes for general bioadhesive control. Acs Applied Materials & Interfaces, 2014. 6(2): p. 861-873.
67. Gao, C.L., G.Z. Li, and H. Xue, Functionalizable and ultra-low fouling zwitterionic surfaces via adhesive mussel mimetic linkages. Biomaterials, 2010. 31(7): p. 1486-1492.
68. Chen, S.F., J. Zheng, and L.Y. Li, Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insights into nonfouling properties of zwitterionic materials. Journal of the American Chemical Society, 2005. 127(41): p. 14473-14478.
69. Guo, Y.M., W. Geng, and J.Q. Sun, Layer-by-layer deposition of polyelectrolyte-polyelectrolyte complexes for multilayer film fabrication. Langmuir, 2009. 25(2): p. 1004-1010.
70. Kuo, W.H., M.J. Wang, and H.W. Chien, Surface modification with poly(sulfobetaine methacrylate-co-acrylic acid) to reduce fibrinogen adsorption, platelet adhesion, and plasma coagulation. Biomacromolecules, 2011. 12(12): p. 4348-4356.
71. Lee, H., S.M. Dellatore, and W.M. Miller, Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007. 318(5849): p. 426-30.
72. Wei, Q., F.L. Zhang, and J. Li, Oxidant-induced dopamine polymerization for multifunctional coatings. Polymer Chemistry, 2010. 1(9): p. 1430-1433.
73. Chen, L.J., L. Tan, and S.T. Liu, Surface modification by grafting of poly(SBMA-co-AEMA)-g-PDA coating and its application in CE. Journal of Biomaterials Science-Polymer Edition, 2014. 25(8): p. 766-785.
74. Blumberg, B.S., Astrobiology, space and the future age of discovery. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 2011. 369(1936): p. 508-515.
75. Ruiz-Mirazo, K., C. Briones, and A. de la Escosura, Chemical roots of biological evolution: the origins of life as a process of development of autonomous functional systems. Open Biology, 2017. 7(4).
76. Rosen, R., self-organization in non-equilibrium systems. International Journal of General Systems, 1978. 4(4): p. 266-269.
77. Stano, P. and P.L. Luisi, Basic questions about the origins of life: proceedings of the erice international school of complexity (fourth course). Origins of Life and Evolution of Biospheres, 2007. 37(4-5): p. 303-307.
78. Budin, I. and J.W. Szostak, Expanding roles for diverse physical phenomena during the origin of life, in Annual Review of Biophysics, Vol 39, D.C. Rees, K.A. Dill, and J.R. Williamson, Editors. 2010. p. 245-263.
79. Wagner, N. and A. Pross, The nature of stability in replicating systems. Entropy, 2011. 13(2): p. 518-527.
80. Wagner, N., A. Pross, and E. Tannenbaum, Selection advantage of metabolic over non-metabolic replicators: a kinetic analysis. Biosystems, 2010. 99(2): p. 126-129.
81. Menzies, D.J., A. Ang, and H. Thissen, Adhesive prebiotic chemistry inspired coatings for bone contacting applications. Acs Biomaterials Science & Engineering, 2017. 3(5): p. 793-806.
82. Thissen, H., A. Koegler, and M. Salwiczek, Prebiotic-chemistry inspired polymer coatings for biomedical and material science applications. Npg Asia Materials, 2015. 7.
83. Chang, Y., W. Yandi, and W.-Y. Chen, Tunable bioadhesive copolymer hydrogels of thermoresponsive poly(N-isopropyl acrylamide) containing zwitterionic polysulfobetaine. Biomacromolecules, 2010. 11(4): p. 1101-1110.
84. Zhang, Q., Y. Liu, and Y. Su, Fabrication and characterization of antifouling carbon nanotube/polyethersulfone ultrafiltration membranes. Rsc Advances, 2016. 6(42): p. 35532-35538.
85. Law, K.Y., Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: getting the basics right. Journal of Physical Chemistry Letters, 2014. 5(4): p. 686-688.
86. Liu, Q.S., A.A. Patel, and L.Y. Liu, Superhydrophilic and underwater superoleophobic poly(sulfobetaine methacrylate)-grafted glass fiber filters for oil-water separation. Acs Applied Materials & Interfaces, 2014. 6(12): p. 8996-9003.
87. Wang, R., K.G. Neoh, and E.T. Kang, Integration of antifouling and bactericidal moieties for optimizing the efficacy of antibacterial coatings. Journal of Colloid and Interface Science, 2015. 438: p. 138-148.
88. Wu, J.W., R.D. Wang, and H.X. Yu, Inkjet-printed microelectrodes on PDMS as biosensors for functionalized microfluidic systems. Lab on a Chip, 2015. 15(3): p. 690-695.
89. Abbasi, F., H. Mirzadeh, and A.A. Katbab, Modification of polysiloxane polymers for biomedical applications: a review. Polymer International, 2001. 50(12): p. 1279-1287.
90. Abbasi, F., H. Mirzadeh, and M. Simjoo, Hydrophilic interpenetrating polymer networks of poly(dimethyl siloxane) (PDMS) as biomaterial for cochlear implants. Journal of Biomaterials Science-Polymer Edition, 2006. 17(3): p. 341-355.
91. Siproudhis, L., J. Morcet, and F. Laine, Elastomer implants in faecal incontinence: a blind, randomized placebo-controlled study. Alimentary Pharmacology & Therapeutics, 2007. 25(9): p. 1125-1132.
92. Ng, J.M.K., I. Gitlin, and A.D. Stroock, Components for integrated poly(dimethylsiloxane) microfluidic systems. Electrophoresis, 2002. 23(20): p. 3461-3473.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77870-
dc.description.abstract在高齡人口增加且醫療支出增加的趨勢下,醫療器材產業蓬勃發展,大多數的醫療器材都需要與人類血液抑或是體液接觸,表面容易吸附非特定性蛋白質或微生物的累積,導致器材效能低落、靈敏度下降,因此在表面修飾抗貼附塗層以阻擋非特異性蛋白質吸附,更進一步抵抗細胞貼附。在本研究中,首先藉由自由基聚合合成含有雙離子性的sulfobetaine的共聚物 (pSBMA-co-AEMA),並開發一步驟AMN 塗佈的方式將兩性分子之共聚物修飾表面,使其能夠達到抗血清蛋白吸附及纖維母細胞 (fibroblast) 貼附的效果。
本研究首先探討共聚物濃度、SBMA/AEMA比例以及反應時間對修飾表面的影響,藉由纖維母細胞(L929)貼附實驗找到最佳抗貼附條件,接著利用石英微量天平測量血清蛋白吸附進行表面分析,本研究中抗貼附表面可減少80%蛋白質吸附量,並將此表面修飾方法運用在PDMS及玻璃上,證明此方法能夠廣泛應用在不同基質上。不僅如此,長期穩定性也是抗貼附表面非常重要的一環,經由穩定性實驗得知,此表面抗貼附功能能維持至少45天,證實此修飾方法能夠在長時間中仍保持穩定。
PDMS是醫療器材中常見的一種生醫材料,為了模擬醫療器材製備流程,因此將PDMS表面修飾之後,進行環氧二烷及高壓釜滅菌以確保其抗貼附的穩定性。從研究結果顯示,相較於未修飾的PDMS,沒有任何細胞貼附在修飾後的表面,由此可知,經滅菌之後的表面仍然表現出高度抗貼附的能力。在未來研究中,欲將此表面進行動物實驗,觀察是否在動物體內產生異物反應。
zh_TW
dc.description.abstractDue to the increased elderly population and the trend of medical expenses increasing, the medical device industry is growing rapidly. Most of the medical devices need to contact with human blood or body fluids, so the surface is easy to adsorb the nonspecific proteins and cause accumulation of microorganisms, resulting in low efficiency of devices, and the decreased sensitivity. Therefore, surface modification by antifouling coating is necessary to repel protein adsorption, and further resist the cell attachment. In this study, we synthesized the zwitterionic sulfobetaine containing copolymers (P(SBMA-co-AEMA) via free radical polymerization first. One step AMN assisted zwitterionic copolymers coating was developed for surface modification to achieve the resistance to serum protein adsorption and fibroblast adhesion.
In our research, we explored the effects of copolymer concentration, SBMA / AEMA ratio and coating time on the modified surface, and found the optimal condition for antifouling performance through L929 cell adhesion experiments. Then, using quartz crystal microbalance (QCM) to measure serum protein adsorption, it reduced 80% of the amount protein adsorbed. Further, the coating is also applied to PDMS and glass, which proved that the method can be widely used on different substrates. Moreover, long-term stability is also a key point of the antifouling surface; through the stability experiments, the antifouling function can be maintained at least 45 days, confirmed that this modified method remains stable for a long time.
PDMS is a common used biomaterial for medical devices; in order to mimic the medical device preparation process, thus we sterilized antifouling modified PDMS by ethylene oxide gas and autoclaving to verify its antifouling stability. The results showed that no cell attached on the modified surface compared to unmodified PDMS. We demonstrated that modified surface displayed highly antifouling performance after sterilization. In the future, we will carry on the animal experiments to observe whether modified PDMS induce the foreign body reaction after implanted into rat model or not.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:36:22Z (GMT). No. of bitstreams: 1
ntu-106-R04524050-1.pdf: 2264753 bytes, checksum: 9af0b798f70691f388a2b6bd4bd0084a (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 I
摘要 III
Abstract V
Content VII
List of figures X
List of tables XIV
Chapter 1 Introduction 1
1.1 Antifouling surface 3
1.2 Antifouling materials 5
1.2.1 polyHEMA (poly(hydroxyethyl methacrylate)) 6
1.2.2 PEG (poly(ethylene glycol)) 7
1.2.3 Zwitterionic polymers 9
1.3 Surface modification by antifouling materials 17
1.3.1 Grafting from method 18
1.3.2 Grafting to method 19
1.4 Research motivation 30
1.5 Research objective 32
Chapter 2 Materials and Methods 33
2.1 Chemicals 33
2.1.1 Synthesis of P(SBMA-co-AEMA) & P(MPC-co-AEMA) 33
2.1.2 AMN assisted coating 33
2.1.3 Cell culture 33
2.2 Experimental instrument 35
2.3 Experimental materials 35
2.4 Solution formula 36
2.5 Methods 38
2.5.1 Synthesis of zwitterionic copolymers 38
2.5.2 AMN-assisted deposition of P(SBMA-co-AEMA) onto various substrates 39
2.5.3 Dynamic water contact angle (WCA) 40
2.5.4 QCM measurement 40
2.5.5 Cell culture 43
2.5.6 Cytotoxicity evaluation of antifouling coatings 44
2.5.7 Stability test 46
2.5.8 Sterilization 46
2.5.9 In vivo study for implantation of PDMS 48
2.5.10 Harvest of capsule formation and histological analysis 48
2.5.11 Statistic Analysis 49
Chapter 3 Characterization of antifouling properties for modified surface 55
3.1 Synthesis and characterization of P(SBMA-co-AEMA) 55
3.2 Measurement and evaluation of antifouling properties on P(SBMA-co-AEMA)/AMN modified surfaces by cell adhesion 56
3.3 Evaluation of cytotoxicity to antifouling surface 62
3.4 Surface characterization 63
3.5 The amount of protein adsorption. 67
3.6 Antifouling properties of coating on various substrates 69
3.7 Stability test 70
3.8 Sterilization process 71
3.9 Discussion 74
Chapter 4 Conclusions 80
Chapter 5 Future work 81
Reference 83
List of figures
Figure 1-1. Evolution of antifouling materials. 6
Figure 1-2 The composition of cell membrane. 10
Figure 1-3. The chemical structure of MPC. 11
Figure 1-1. The chemical structure of SBMA monomer [58]. 14
Figure 1-5. The chemical structure of CBMA monomer [33]. 16
Figure 1-6. Schematic illustration of different methods for immobilizing zwitterionic polymers on solid surfaces [65]. 18
Figure 1-7. Schematic illustration of LBL deposition to repel protein adsorption [70]. 22
Figure 1-8. Dopamine structure. 24
Figure 1-9. Dopamine coating process on virtually any material surface. 24
Figure 1-10. Routes for the formation of HCN-derived polymers [81]. 29
Figure 2-1. The synthesis process of P(SBMA-co-AEMA) 50
Figure 2-2. AMN assisted of zwitterionic copolymers coating. 51
Figure 2-3. The scheme of dynamic water contact angle measurement. 52
Figure 2-4. The coating process of QCM chip. 53
Figure 3-1. The 1H NMR spectrums of P(SBMA-co-AEMA) with different SBMA/AEMA ratios. (A) at 4.25 ppm refers to O-CH2, while (B) at 3.34 refers to CH2-NH2 from AEMA segments. 56
Figure 3-2. Cell morphology of L929 fibroblast cultured for 24 h on TCPS modified by different SBMA/AEMA ratio polymers with AMN. (a) AMN, (b) PSB, (c) PSB-AE0.1, (d) PSB-AE0.5, (e) PAEMA, and (f) TCPS. 59
Figure 3-3. Cell morphology of L929 fibroblast cultured for 24 h on TCPS modified by PSB-AE0.1/AMN at different coating time. (a) 2 h, (b) 4 h, (c) 6 h, (d) 8 h, (e) 12 h, (f) 24 h, and (g) TCPS 60
Figure 3-4. Cell morphology of L929 fibroblast cultured for 24 h on TCPS modified by AMN with different PSB-AE0.1 concentrations. PSB-AE0.1/AMN = (a) 1/1, (b) 3/1, (c) 5/1, (d) AMN, and (e) TCPS. 61
Figure 3-5. Cell density of L929 fibroblast cultured for 24 h on TCPS modified by PSB10-AE1/AMN with different (a) SBMA/AEMA ratios, (b) coating time, and (c) polymer concentration. Values = mean ± standard deviation, n = 4. *** represents p < 0.001 vs. TCPS. 61
Figure 3-6. Toxicity of PSB-AE0.1/AMN surface extracts and control standards against L929 fibroblasts (*** represents p < 0.001 vs medium). Viability = sample OD/ medium OD. The values = mean ± standard deviation, n = 4. 63
Figure 3-7. SEM images of the zwitterionic polymers/AMN coating morphology. Scale bar: 10 μm 65
Figure 3-8. The dynamic water contact angles of PSB-AE0.1 coating on TCPS. (a, b) Advancing and receding angles of unmodified TCPS, (c, d) Advancing and receding angles of modified TCPS. 65
Figure 3-9. The dynamic water contact angles of PSB10-AE1 coating on PDMS. (a, b) Advancing and receding angles of unmodified PDMS, (c, d) Advancing and receding angles of modified PDMS. 65
Figure 3-10. The dynamic contact angles of PSB-AE0.1 coating on glass. (a, b) Advancing and receding angles of unmodified glass, (c, d) Advancing and receding angles of modified glass. 66
Figure 3-11. Frequency shifts in QCM adsorption experiment of 300 μL 10% serum at flow rate 36.5 μL/min on PSB-AE0.1/AMN modified surface. 68
Figure 3-12. Cell density of L929 fibroblast cultured for 24 h on modified glass and PDMS. Values = mean ± standard deviation, n = 4. **, *** represent p < 0.05, 0.001 vs. unmodified substrates. 69
Figure 3-13. Cell number ratio to TCPS for long-term stability of antifouling surface. (Normalization = cell number of sample / cell number of TCPS group.) Values = mean ± standard deviation, n = 4. 71
Figure 3-14. Cell morphology of L929 fibroblast cultured for 24 h on zwitterion modified PDMS with (a) EO sterilization, and (b) autoclaving. 72
Figure 3-15. Cell density of L929 fibroblast cultured for 24 h on zwitterion modified PDMS with (a) EO sterilization, and (b) autoclaving. Values = mean ± standard deviation, n = 4. *** represents p < 0.001 vs. unmodified PDMS with sterilization. 73
dc.language.isozh-TW
dc.title利用一步驟氨基丙二腈輔助兩性離子之共聚物的塗佈於抗污之應用zh_TW
dc.titleA One-step Aminomalononitrile Assisted Coating of Zwitterionic Copolymers for Antifouling Applicationsen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee游佳欣(Jiashing Yu),鍾仁傑(Ren-Jei Chung)
dc.subject.keyword兩性高分子,AMN,抗污,塗佈,植入物,異物反應,zh_TW
dc.subject.keywordzwittorionic polymer,aminomalononitrile,antifouling,coating,implant,foreign body reaction,en
dc.relation.page98
dc.identifier.doi10.6342/NTU201703399
dc.rights.note有償授權
dc.date.accepted2017-08-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-R04524050-1.pdf
  目前未授權公開取用
2.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved