Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77854
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳正宏
dc.contributor.authorHsin-Yi Wenen
dc.contributor.author溫心怡zh_TW
dc.date.accessioned2021-07-11T14:36:04Z-
dc.date.available2022-09-04
dc.date.copyright2017-09-04
dc.date.issued2017
dc.date.submitted2017-08-18
dc.identifier.citation中文部分
朱秋紅(2005)龜山島高鎂安山岩之岩漿成因,國立台灣大學地質科學研究所碩士論文,共99 頁。
吳文男(2010)菲律賓海板塊西緣聚合帶之孕震特性與大地應力,國立中央大學地球物理研究所博士論文,共130頁。
何孝恆(2001)台灣北部地區大屯火山群火山噴氣來源之探討,國立台灣大學地質科學研究所碩士論文,共80 頁。
李昭興(2001)台灣的海底火山,國家地理雜誌中文版創刊號。
李曉芬(2004)大屯火山區火山氣體成分及其冷凝水之氫氧同位素組成,國立台灣大學地質學研究所碩士論文,共83頁。
李曉芬(2011)大屯火山與菲律賓火山氣體成分之時空變化及其成因探討,國立台灣大學地質學研究所博士論文,共104頁。
林子瑜(2015)台灣北部大屯火山群底下震波速度異常討論,國立台灣大學地質學研究所碩士論文,共77頁。
高莉昕(2014)南沖繩海槽海底熱液噴泉之海水溶解氣體氦同位素組成,國立台灣大學地質學研究所碩士論文,共79 頁。
莊文星、陳汝勤(1989)台灣北部火山岩之定年與地球化學研究。經濟部中央地質調查所彙刊,5,125-166 頁。
陳中華(2010)琉球火山島弧鏈上的火山群。科學月刊(41),686-688 頁。
陳正宏(1990)台灣的火成岩,經濟部中央地質調查所,共137 頁。
黃愉珺(2013)台灣西南海域上部斜坡海底泥火篩氣體來源及甲烷通量,國立台灣大學地質學研究所碩士論文,共79頁。
楊燦堯(2000)陽明山國家公園大屯火山群噴氣之氦同位素比值研究。國家公園學報,10(1),73-94 頁。
楊燦堯、何孝恆、謝佩珊、劉念宗、陳于高、陳正宏(2003)大屯火山群火山氣體成份與來源之探討。國家公園學報,13 (1),127-156 頁。
鄒惠雯(2011)台灣北部地區大屯火山群火山噴氣之硫同位素組成,國立台灣大學地質學研究所碩士論文,共85頁。
謝佩珊(2000)台灣地區溫泉與泥火山氣體來源初探,國立台灣大學地質科學研究所碩士論文,共77 頁。
英文部分
Aiuppa, A., Bitetto, M., Francofonte, V., Velasquez, G., Parra, C.B., Giudice, G., Liuzzo, M., Moretti, R., Moussallam, Y.M., Peters, N., Tamburello, G., Valderrama, O.A. and Curtis, A., 2017. A CO2-gas precursor to the March 2015 Villarrica volcano eruption, Geochem. Geophys.Geosyst., 18 (6): 2120-2132.
Arai, R., Kodaira, S., Yuka, K., Takahashi, T., Miura, S. and Kaneda, Y., 2017. Crustal structure of the southern Okinawa Trough: Symmetrical rifting, submarine volcano, and potential mantle accretion in the continental back-arc basin. J Geophys. Res. Solid Earth, 122: 622-641.
Aramaki, S., 1984. Formation of the Aira Caldera, Southern Kyushu, approximately 22,000 years ago. J Geophys Res, 89 (Nb10): 8485-8501.
Benson, B.B. and Krause, D., 1980. Isotopic fractionation of helium during solution - a probe for the liquid-state. J Solution Chem, 9 (12): 895-909.
Belousov, A., Belousova, M., Chen, C.H., Zellmer, G.F., 2010. Deposits, character and timing of recent eruptions and gravitational collapses in Tatun Volcanic Group, northern Taiwan: hazard-related issues. J Volcanol. Geotherm. Res. 191, 205-221.
Capasso, G., Carapezza, M.L., Federico, C., Inguaggiato, S. and Rizzo, A., 2005. Geochemical monitoring of the 2002-2003 eruption at Stromboli volcano (Italy): precursory changes in the carbon and helium isotopic composition of fumarole gases and thermal waters. B. Volcanol, 68 (2): 118-134.
Chen, C.-H., Burr, G.S., Lin, S.B., 2010. Time of a near Holocene volcanic eruption in the Tatun Volcano Group, northern Taiwan: evidence from AMS radiocarbon dating of charcoal ash from sediments of the Sungshan Formation in Taipei basin. Terr. Atmos. Ocean. Sci. 21, 611-614.
Chen, C.H., Lee, T., Shieh, Y.N., Chen, C.H. and Hsu, W.Y., 1995. Magmatism at the onset of back-arc basin spreading in the Okinawa Trough. J Volcanol Geoth Res, 69 (3-4): 313-322.
Chen, C.H. and Wu, Y.J., 1971. Volcanic geology of the Tatun geothermal area, northern Taiwan. Proceedings of the Geological Society of China 14, 5–20.
Charlou, J.L., Dmitriev, L., Bougault, H. and Needham, H.D., 1988. Hydrothermal CH4 between 12-degrees-N and 15-degrees-N over the Mid-Atlantic Ridge. Deep-Sea Res, 35 (1): 121-131.
Chen, X.G., Zhang, H.Y., Li, X.H., Chen, C.T.A., Yang, T.F. and Ye, Y., 2016. The chemical and isotopic compositions of gas discharge from shallow-water hydrothermal vents at Kueishantao, offshore northeast Taiwan. Geochem J, 50 (4): 341-355.
Chen, Y.G., Wu, W.S., Chen, C.H. and Liu, T.K., 2001. A date for volcanic eruption inferred from a siltstone xenolith. Quaternary Sci Rev, 20 (5-9): 869-873.
Chung, S.L., Wang, S.L., Shinjo, R., Lee, C.S. and Chen, C.-H., 2000. Initiation of arc magmatism in an embryonic continental rifting zone of the southernmost part of Okinawa Trough. Terra Nova, 12: 225-230.
Clor, L.E., Fischer, T.P., Hilton, D.R., Sharp, Z.D. and Hartono, U., 2005. Volatile and N isotope chemistry of the Molucca Sea collision zone: tracing source components along the Sangihe Arc, Indonesia. Geochem Geophys Geosyst 6:Q03J14.
Converse, D.R., Holland, H.D. and Edmond, J.M., 1984. Flow-rates in the axial hot springs of the East Pacific Rise (21-degrees-N)─Implications for the heat-budget and the formation of massive sulfide deposits. Earth Planet Sc Lett, 69 (1): 159-175.
Corliss, J.B., Dymond, J., Gordon, L.I., Edmond, J.M., von Herzen, R.P., Ballard, R.D., Green, K., Williams, D., Bainbridge, A., Crane, K., van Andel, T.H., 1979. Submarine thermal springs on the Galapagos Rift. Science, 203:1073-1083
de Moor, J.M., Aiuppa, A., Pacheco, J., Avard, G., Kern, C., Liuzzo, M., Martinez, M., Giudice, G. and Fischer, T.P., 2016. Short-period volcanic gas precursors to phreatic eruptions: Insights from Pods Volcano, Costa Rica. Earth Planet Sc Lett, 442: 218-227.
Dissanayake, A.L., DeGraff, J.A., Yapa, P.D., Nakata, K., Ishihara, Y. and Yabe, I., 2012. Modeling the impact of CO2 releases in Kagoshima Bay, Japan. J Hydro-Environ Res, 6 (3): 195-208.
Etiope, G. and Klusman, R.W., 2002. Geologic emissions of methane to the atmosphere. Chemosphere, 49 (8): 777-789.
Etiope, G., Lassey, K.R., Klusman, R.W. and Boschi, E., 2008. Reappraisal of the fossil methane budget and related emission from geologic sources. Geophys Res Lett, 35 (9): L09307
Etiope, G. and Lollar, B.S., 2013. Abiotic methane on Earth. 51, Issue 2. Reviews of Geophysics, 51 (2): 276-299.
Fischer, T.P., 2008. Fluxes of volatiles (H2O, CO2, N2, Cl, F) from arc volcanoes. Geochem J, 42 (1): 21-38.
Fukuba, T., Noguchi, T. and Fuji, T. 2015. The Irabu Knoll: Hydrothermal site at the eastern edge of the Yaeyama graben. In: Subseafloor biosphere linked to hydrothermal system. TAIGA concept (eds Ishibashi, J., Okino, K. & Sunamura, M.): 337-359.
Gamo, T., Tsunogai, U., Ichibayashi, S., Chiba, H., Obata, H., Oomori, T., Noguchi, T., Baker, E.T., Doi, T., Maruo, M. and Sano, Y., 2010. Microbial carbon isotope fractionation to produce extraordinarily heavy methane in aging hydrothermal plumes over the southwestern Okinawa Trough. Geochem J, 44 (6): 477-487.
Gripp, A.E. and Gordon, R.G., 2002. Young tracks of hotspots and current plate velocities. Geophys J Int, 150 (2): 321-361.
Giggenbach, W.F., 1992. The composition of gases in geothermal and volcanic systems as a funtion of tectonic setting. Proc. Int’l Symp. Water-Rock Interaction 8, 873-878.
Goff, F. and McMurtry, G.M., 2000 Tritium and stable isotopes of magmatic waters. J Volcanol Geoth Res., 97: 347-396.
Hall, R., 2002, Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computerbased reconstructions, model and animations, J Asian Earth Sci., 20: 353-434.
Hayasaka, S., 1987. Geologic structure of Kagoshima Bay, south Kyushu, Japan. Mono. Assoc. Geol. Collab. 33: 225-233 (in Japanese with English abstract).
Hedenquist, J.W. and Lowenstern, J.B., 1994. The role of magmas in the formation of hydrothermal ore-deposits. Nature, 370 (6490): 519-527.
Hilton, D.R., Fischer, T.P. and Marty, B., 2002. Noble gases in subduction zones and volatile recycling. In: D. Porcelli, C.J. Ballentine and R. Wieler (Ed), Noble gases in geochemistry and cosmochemistry. Reviews in mineralogy and geochemistry. Mineralogical society of America, pp. 319-370.
Hirata, N., Kinoshita, H., Katao, H., Baba, H., Kaiho, Y., Koresawa, S., Ono, Y. and Hayashi, K., 1988. Report on DELP 1988 cruises in the Okinawa Trough. Part III. Crustal structure of the southern Okinawa Trough. Bull. Earthquake Res. Inst. Univ. Tokyo 66: 37–70.
Hocfs, J., 1980. Stable isotope geochemistry. Springer Berlin, 208 pp.
Horiguchi, K., Ueki, S., Sano, Y., Takahata, N., Hasegawa, A. and Igarashi, G., 2010. Geographical distribution of helium isotope ratios in northeastern Japan. Isl Arc, 19 (1): 60-70.
Hudson, A., Bender, M.L. and Graham, D.W., 1986. Iron enrichments in hydrothermal plumes over the East Pacific Rise. Earth Planet Sc Lett, 79 (3-4): 250-254.
Ishibashi. J.I., Ikegami, F., Tsuji, T. and Urabe, T., 2015. Hydrothermal activity in the Okinawa Trough back-arc basin: Geological background and hydrothermal mineralization. In: Ishibashi, J., Okino, K. & Sunamura, M. (eds), Subseafloor Biosphere Linked to Hydrothermal System. TAIGA concept: 337-359.
Ishibashi. J.I., Noguchi, T., Toki, T., Miyabe, S., Yamagami, S., Onishi, Y., Yamanaka, Y., Yokoyama, Y., Omori, E., Takahashi, Y., Hatada, K., Nakaguchi, Y., Yoshizaki, M., Konno, U., Shibuya, T., Takai, K., Inagaki, F. and Kawagucci, S., 2014. Diversity of fluid geochemistry affected by processes during fluid upwelling in active hydrothermal fields in the Izena Hole, the middle Okinawa Trough back-arc basin. Geochem. J, 48: 357-369.
Ishibashi, J., Sano, Y., Wakita, H., Gamo, T., Tsutsumi, M. and Sakai, H., 1995. Helium and Carbon Geochemistry of Hydrothermal Fluids from the Mid-Okinawa Trough Back-Arc Basin, Southwest of Japan. Chem Geol, 123 (1-4): 1-15.
Ishihara, K. and Yoshida, A., 1992. Configuration of the Philippine Sea slab and seismic activity in and around Kyushu. J Seismol Soc Jpn, 45: 45-51.
Ishizuka, O., Shimoda, G., Harigane, Y., Inoue, T., Arai, K., Sato, T., Katayama, H., Minami, H., Ohara, Y., 2014. Active submarine reararc volcanoes west of Iotorishima, Ryukyu arc. Programme and Abstracts of the volcanological society of Japan.
Javoy, M. Pineau, F. and Delorme, H., 1986. Carbon and nitrogen isotopes in the mantle. In: S. Dcutsch and A.W.Hofmann (Eds), Isotopes in Geology – Picciotto Volume. Chem. Geoi., 57: 41-62 (special issue).
Japan Coast Guard. 2013. The Submarine Volcano in Daiichi-Amami Knoll.火山噴火予知連絡会会報 第116 回 (in Japanese).
Jean-Baptiste, P., Allard, P., Bani, P., Garaebiti, E., Pelletier, B., Fourré, E., Metrich, N., 2009. Highly variable helium isotope ratios in the Vanuatu volcanic arc. Amer Geophys Union, Fall Meeting 2009, abstract #T21A-1774.
Karakuş, H. and Aydin, H. 2017. HNC-plot: an excel VBA for visualization of helium, nitrogen and CO2 isotope data of crustal and mantle gases. Earth Sci. Inform, 10:115-125.
Kawagucci, S. 2015. Fluid geochemistry of high-temperature hydrothermal fields in the Okinawa Trough. In: Ishibashi, J., Okino, K. & Sunamura, M. (eds), Subseafloor Biosphere Linked to Hydrothermal System. TAIGA concept 387-403.
Kawagucci, S., Okamura, K., Kiyota, K., Tsunogai, U., Sano, Y., Tamaki, K. and Gamo, T., 2008. Methane, manganese, and helium-3 in newly discovered hydrothermal plumes over the Central Indian Ridge, 18 degrees-20 degrees S. Geochem Geophy Geosy, 9.
Kawagucci, S., Shirai, K., Lan, T.F., Takahata, N., Tsunogai, U., Sano, Y. and Gamo, T., 2010. Gas geochemical characteristics of hydrothermal plumes at the HAKUREI and JADE vent sites, the Izena Cauldron, Okinawa Trough. Geochem J, 44(6): 507-518.
Kawagucci, S., Ueno, Y., Takai, K., Toki, T., Ito, M., Inoue, K., Makabe, A., Yoshida, N., Muramatsu, Y., Takahata, N., Sano, Y., Narita, T., Teranishi, G., Obata, H., Nakagawa, S., Nunoura, T. and Gamo, T., 2013. Geochemical origin of hydrothermal fluid methane in sediment-associated fields and its relevance to the geographical distribution of whole hydrothermal circulation. Chem Geol, 339: 213-225.
Kimura, M., 1996. Active rift system in the Okinawa Trough and its northeastern continuation. Bull Disas Prev Res Inst Kyoto Univ, 45: 27–38.
Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J.G., Dlugokencky, E.J., Bergamaschi, P., Bergmann, D., Blake, D.R., Bruhwiler, L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A., Heimann, M., Hodson, E.L., Houweling, S., Josse, B., Fraser, P.J., Krummel, P.B., Lamarque, J.F., Langenfelds, R.L., Le Quere, C., Naik, V., O'Doherty, S., Palmer, P.I., Pison, I., Plummer, D., Poulter, B., Prinn, R.G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell, D.T., Simpson, I.J., Spahni, R., Steele, L.P., Strode, S.A., Sudo, K., Szopa, S., van der Werf, G.R., Voulgarakis, A., van Weele, M., Weiss, R.F., Williams, J.E. and Zeng, G., 2013. Three decades of global methane sources and sinks. Nat Geosci, 6(10): 813-823.
Kim, K., Welhan, J., Craig, H., 1984. The hydrothermal vent fields at 13_N and 11_N on the East Pacific Rise: Alvin 1984 results. EOS 68:45.
Kizaki, K., 1986. Geology and Tectonics of the Ryukyu Islands. Tectonophysics, 125(1-3): 193-207.
Klingelhoefer, F., Lee, C.-S., Lin, J.-Y. and Sibuet, J.-C., 2009 Structure of the southernmost Okinawa Trough from reflection and wide-angle seismic data. Tectonophysics 446: 281–288. doi:10.1016/j.tecto.2007.11.031
Klinkhammer, G. and Hudson, A., 1986. Dispersal Patterns for Hydrothermal Plumes in the South-Pacific Using Manganese as a Tracer. Earth Planet Sc Lett, 79(3-4): 241-249.
Lee, C.S., Shor, G.G., Bibee, L.D., Lu, R.S. and Hilde, T.W.C., 1980. Okinawa Trough - Origin of a Back-Arc Basin. Mar Geol, 35(1-3): 219-241.
Lee, H.-F., Yang, T.F., Lan, T.F., Chen, C.-H., Song, S.-R. and Tsao, S., 2008. Temporal variations of gas compositions of fumaroles in the Tatun Volcano Group, northern Taiwan. J Volcanol Geoth Res, 178 (4): 624–635.
Lin, C.H., Konstantinou, K.I., Liang, W.T., Pu, H.C., Lin, Y.M., You, S.H., Huang, Y.P., 2005a. Preliminary analysis of volcanoseismic signals recorded at the Tatun Volcano Group, northern Taiwan. Geophys. Res. Lett. 32, L10313.
Lin, C.H., Konstantinou, K.I., Pu, H.C., Hsu, C.C., Lin, Y.M., 2005b. Preliminary results from seismic monitoring at the Tatun volcanic area of northern Taiwan. Terr. Atmos. Ocean. Sci. 16, 563–577.
Lin, C.H., 2016. Evidence for a magma reservoir beneath the Taipei metropolis of Taiwan from both S-wave shadows and P-wave delays. Sci Rep-Uk, 6.
Charlou, J.L., Dmitriev, L., Bougault, H. and Needham, H.D., 1988. Hydrothermal CH4 between 12-degrees-N and 15-degrees-N over the Mid-Atlantic Ridge. Deep-Sea Res, 35 (1): 121-131.
Liu, K.K., Chen, C.C., Shieh, Y.N., Chiang, S.C., 1984. Carbon, oxygen and hydrogen isotopes studies of Tatun geothermal area in Taipei. Report of Institute of Earth Sciences.Academia: ASIES-CR 8401:39. (in Chinese)
Lott, D.E., 2001. Improvements in noble gas separation methodology: A nude cryogenic trap. Geochem Geophy Geosy, 2.
Luff, R. and Wallmann, K., 2003. Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: Numerical modeling and mass balances. Geochim Cosmochim Ac, 67 (18): 3403-3421.
Lupton, J.E., Baker, E.T. and Massoth, G.J., 1999. Helium, heat, and the generation of hydrothermal event plumes at mid-ocean ridges. Earth Planet Sci Lett, 171 (3): 343-350.
Lupton, J.E. and Craig, H., 1981. A Major He-3 Source at 15-Degrees-S on the East Pacific Rise. Science, 214 (4516): 13-18.
Marty, B. and Humbert, F., 1997. Nitrogen and argon isotopes in oceanic basalts. Earth Planet Sc Lett, 152 (1-4): 101-112.
Marty, B. and Jambon, A., 1987. C/He-3 in Volatile Fluxes from the Solid Earth - Implications for Carbon Geodynamics. Earth Planet Sc Lett, 83 (1-4): 16-26.
Marty, B. and Tolstikhin, I.N., 1998. CO2 fluxes from mid-ocean ridges, arcs and plumes. Chem Geol, 145 (3-4): 233-248.
Matsuda, J., Matsumoto, T., Sumino, H., Nagao, K., Yamamoto, J., Miura, Y., Kaneoka, I., Takahata, N. and Sano, Y., 2002. The 3He/4He ratio of the new internal standared (HESJ). Geochem J, 36 (2): 191-195.
Matsumoto, T., Kinoshita, M., Nakamura, M., Sibuet, J.-C., Lee, C.-S., Hsu, S.K., Oomori, T., Shinjo, R., Hashimoto, Y., Hosoya, S., Imamura, M., Ito, M., Tukuda, K., Yagi, H., Tatekawa, K., Kagaya, I., Hokakubo, S., Okada, T., Kimura, M. 2001. Volcanic and hydrothermal activities and possible “segmentation” of the axial rifting in the westernmost part of the Okinawa Trough-preliminary results from the YOKOSUKA/SHINKAI6500 Lequios Cruise. JAMSTEC Deep Sea Res, 19: 95-107 (in Japanese with English abstract).
Mazor, E. and Wasserburg, G.j., 1965. Helium neon argon krypton and xenon in gas emanations from Yellowstone and Lassen volcanic National Parks. Geochim Cosmochim Ac, 29 (5): 443.
McCrory, P.A., Constantz, J.E., Hunt, A.G. and Blair, J.L., 2016. Helium as a tracer for fluids released from Juan de Fuca lithosphere beneath the Cascadia forearc, Geochem Geophys Geosyst, 17: 2434-2449.
Merlivat, L., Pineau, F., Javoy, M., 1987. Hydrothermal vent waters at 13_N on the East Pacific Rise: Isotopic composition and gas concentration. Earth Planet Sci Lett 84: 100-108.
Minami, H., Oikawa, M. and Ito, K., 2014. Newly discovered submarine volcano near the Tokara Islands. Report of hydrographic and oceanographic researches, 51: technical report.
Mitchell, E.C., Fischer, T.P., Hilton, D.R., Hauri, E.H., Shaw, A.M., de Moor, J.M., Sharp, Z.D. and Kazahaya, K., 2010. Nitrogen sources and recycling at subduction zones: Insights from the Izu-Bonin-Mariana arc. Geochem Geophy Geosy, 11: Q02X11.
Nagamune, T., 1987. Intermediate-depth earthquakes and tectonics of the Kyushu-Ryukyu region. J Seismol Soc Jpn, 40: 417-423.
Ohno, M., Sumino, H., Hernandez, P.A., Sato, T., Nagao, K., 2011. Helium isotopes in the Izu Peninsula, Japan: relation of magma and crustal activity. J Volcanol Geotherm Res, 199: 118-126.po
Okuno, M. 2002. Chronology of tephra layers in southern Kyushu, SW Japan, for the last 30,000 years. The Quaternary Res, 41: 225-236.
Ooki, M., T. Kagoshima, N. Takahata, J.-i. Ishibashi, T. Lan, Z. Guo, and Y. Sano (2016), Volatile element
isotopes of submarine hydrothermal mineral deposits in the Western Pacific, Geochem. Geophys. Geosyst., 17, 2128–2142,
Ossaka, J., 1991. Eruption of submarine volcanoes around Japan. Tokai University Press, Tokyo. 280 pp. (in Japanese).
Ossaka, J., Hirabayashi, J., Nogami, K., Kuroasaki, M. and Hashimoto, J., 1992. Variation of chemical composition of volcanic gases from the northern part of Kagoshima Bay. Proc. JAMSTEC Symp. Deep Sea Res, 8, 75-80 (in Japanese with English abstract).
Ozima, M. and Podosek, F.A., 1983. Noble gases geochemistry. Cambridge University Press, Cambridge.
Park, J.O., Tokuyama, H., Shinohara, M., Suyehiro, K. & Taira, A., 1998. Seismic record of tectonic evolution and backarc rifting in the southern Ryukyu island arc system. Tectonophysics, 294: 21–42.
Pineay, F. and Javoy, M., 1983. Carbon isotopes and conccntrations in mid-oceanic ridge basalts. Earth Planet Sci Lett, 62: 239-257.
Poreda, R. and Craig, H., 1989. Helium isotope ratios in circum-Pacific volcanic arcs. Nature. 338: 473-478.
Rizzo, A., Caracausi, A., Favara, R., Martelli, M., Paonita, A., Paternoster, M., Nuccio, P.M. and Rosciglione, A., 2006. New insights into magma dynamics during last two eruptions of Mount Etna as inferred by geochemical monitoring from 2002 to 2005. Geochem Geophy Geosy, 7.
Roulleau, E., Sano, Y., Takahata, N., Kawagucci, S. and Takahashi, H., 2013. He, N and C isotopes and fluxes in Aira caldera: Comparative study of hydrothermal activity in Sakurajima volcano and Wakamiko crater, Kyushu, Japan. J Volcanol Geoth Res, 258: 163-175.
Roulleau, E., Sano, Y., Takahata, N., Yang, F.T. and Takahashi, H.A., 2015. He, Ar, N and C isotope compositions in Tatun Volcanic Group (TVG), Taiwan: Evidence for an important contribution of pelagic carbonates in the magmatic source. J Volcanol Geoth Res, 303: 7-15.
Rubey, W.W., 1951. Geologic History of Sea Water - an Attempt to State the Problem. Geol Soc Am Bull, 62(9): 1111-1147.
Saegusa, S., Tsunogai, U., Nakagawa, F. and Kaneko, S., 2006. Development of a multibottle gas-tight fluid sampler WHATS II for Japanese submersibles/ROVs. Geofluids, 6(3): 234-240.
Sakamoto, H., 1985. The distribution of mercury, arsenic, and antimony in sediments of Kagoshima Bay. B Chem Soc Jpn, 58(2): 580-587.
Sano, Y. and Fischer, T.P., 2013. The analysis and interpretation of noble gases in modern hydrothermal system. In: P. Burnard (Ed.), The Noble Gases as Geochemical Tracers. Advances in Isotope Geochemistry. Springer-Verlag, pp. 249-317.
Sano, Y., Gamo, T., Notsu, K. and Wakita, H., 1995. Secular Variations of Carbon and Helium-Isotopes at Izu-Oshima Volcano, Japan. J Volcanol Geoth Res, 64 (1-2): 83-94.
Sano, Y., Gamo, T. and Williams, S.N., 1997. Secular variations of helium and carbon isotopes at Galeras volcano, Colombia. Js Volcanol Geotherm Res, 77: 255-265.
Sano, Y., Kagoshima, T., Takahata, N., Nishio, Y., Roulleau, E., Pinti, D.L. and Fischer, T.P., 2015. Ten-year helium anomaly prior to the 2014 Mt Ontake eruption. Sci Rep, 5: 13069.
Sano, Y. and Marty, B., 1995. Origin of carbon in fumarolic gas from island arcs. Chem Geol, 119 (1-4): 265-274.
Sano, Y., Marty, B. and Burnard, P., 2013. Noble gases in the atmosphere. In: P. Burnard (Ed.), The noble gases as geochemical tracers. Advances in isotope geochemistry. Springer-Verlag, pp. 17-31.
Sano, Y., Takahata, N., Nishio, Y., Fischer, T.P. and Williams, S.N., 2001. Volcanic flux of nitrogen from the Earth. Chem Geol, 171 (3-4): 263-271.
Sano, Y., Takahata, N. and Seno, T., 2006. Geographical distribution of 3He/4He ratios in the Chugoku district, southwestern Japan. Pure appl geophys, DOI 10.1007, s00024-006-0035-0.
Sano, Y. and Wakita, H., 1985. Geographical distribution of He-3/He-4 ratios in Japan -Implications for arc tectonics and incipient magmatism. J Geophys Res-Solid, 90 (Nb10): 8729-8741.
Sano, Y. and Williams, S.N., 1996. Fluxes of mantle and subducted carbon along convergent plate boundaries. Geophys Res Lett, 23(20): 2749-2752.
Shaw, A.M., Hilton, D.R., Fischer, T.P., Walker, J.A. and Alvarado, G.E., 2003. Contrasting He-C relationships in Nicaragua and Costa Rica: insights into C cycling through subduction zones. Earth Planet Sc Lett, 214: 499-513.
Shinjo, R., 2014. Geology and its development of the Ryukyu Island Arc: An example of geology of Okinawa Island, Central Ryukyus. J Japan Society of Civil Engineers, Ser. A2, Applied Mechanics (AM), 70 (2): I_3-I_11.
Shinjo, R., Chung, S.L., Kato, Y. and Kimura, M., 1999. Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: Implications for the evolution of a young, intracontinental back arc basin. J Geophys Res-Sol Ea, 104(B5): 10591-10608.
Shinjo, R., Woodhead, J.D. and Hergt, J.M., 2000. Geochemical variation within the northern Ryukyu Arc: magma source compositions and geodynamic implications. Contrib Mineral Petr, 140(3): 263-282.
Shinohara, H., Ohminato, T., Takeo, M., Tsuji, H. and Kazahaya, R., 2015. Monitoring of volcanic gas composition at Asama volcano, Japan, during 2004-2014. J Volcanol Geoth Res, 303: 199-208.
Shiono, K., Mikumo, T. and Ishikawa, Y., 1980. Tectonics of the Kyushu-Ryukyu arc as evidenced from seismicity and focal mechanism of shallow to intermediate-depth earthquakes. J. Phys Earth 28: 17-43.
Sibuet, J.-C., Hsu, S.-K., Shyu, C.-T., Liu, C.-S., 1995. Structural and kinematic evolutions of the Okinawa Trough backarc basin. In: Taylor, B. (Ed.), Backarc Basins: Tectonics and Magmatism. Plenum, New York, pp. 343–379.
Song, R.S., Yang, T.F., Yeh, Y.H., Tsao, S., Lo, H.J., 2000. The Tatun volcano group is active or extinct? Journal of the Geological Society of China 43, 521-534.
Sugimura, A. and Uyeda, S., 1973. “Island Arc”—Japan and its Environs. Amsterdam: Elsevier. 247 pp.
Speer, K.G. and Rona, P.A., 1989. A model of an atlantic and pacific hydrothermal plume. J Geophys Res-Oceans, 94(C5): 6213-6220.
Stephen, H. and Stephen, T., 1963. Solubilities of inorganic and organic compounds. I. Binary Systems, Part 1. Pergamon, London, 960 pp.
Suzuki, R., Ishibashi, J.I., Nakaseama, M., Konno, U., Tsunogai, U., Gena, K. and Chiba, H., 2008. Diverse range of mineralization induced by phase separation of hydrothermal fluid: Case study of the Yonaguni Knoll IV hydrothermal field in the Okinawa Trough back-arc basin. Resour Geol, 58(3): 267-288.
Takahashi, R., Shibata, T., Murayama, Y., Ogino, T. and Okazaki, N., 2015. Temporal changes in thermal waters related to volcanic activity of Tokachidake Volcano, Japan: implications for forecasting future eruptions. B. Volcanol, 77(1).
Teng, L.S., Chen, C‐H., Wang, W.S., Liu, T.K., Juang, W.S. and Chen, J.C., 1992. Plate kinematic model for late Cenozoic arc magmatism in northern Taiwan. Jour. Geol. Soc. China, 35: 1‐18.
Teng, L.S., 1996. Extensional collapse of the northern Taiwan mountain belt. Geology, 24(10): 949‐952.
Toki, T., Iwata, D., Tsunogai, U., Komatsu, D.D., Sano, Y., Takahata, N., Hamasaki, H. and Ishibashi, J.-I., 2017. J Volcan Geotherm Res, 330: 24-35.
Torgersen, T., 1989. Terrestrial helium degassing fluxes and the atmospheric helium budget - implications with respect to the degassing processes of continental-crust. Chem Geol, 79(1): 1-14.
Tsunogai, U., Yoshida, N. and Gamo, T., 2002. Carbon isotopic evidence of methane oxidation through sulfate reduction in sediment beneath cold seep vents on the seafloor at Nankai Trough. Mar Geol, 187 (1-2): 145-160.
Tsunogai, U., Yoshida, N., Ishibashi, J. and Gamo, T., 2000. Carbon isotopic distribution of methane in deep-sea hydrothermal plume, Myojin Knoll Caldera, Izu-Bonin arc: Implications for microbial methane oxidation in the oceans and applications to heat flux estimation. Geochim Cosmochim Ac, 64 (14): 2439-2452.
Umeda, K., Ogawa, Y., Asamori, K. and Oikawa, T., 2006. Aqueous fluids derived from a subducting slab: observed high 3He emanation and conductive anomaly in a non-volcanic region, Kii Peninsula southwest Japan. J Volcan Geotherm Res, 149: 47–61.
Umeda, K., McCrank, G.F. and Ninomiya, A., 2007. Helium isotopes as geochemical indicators of a serpentinized fore-arc mantle wedge. J Geophys Res-Solid Earth, 112 (B5): 9.
Van Soest, M. C., Hilton, D. R., Macpherson, C. G. and Mattey, D. P., 2002. Resolving sediment subduction and crustal contamination in the Lesser Antilles island arc: A combined He-O-Sr isotope approach. J Petrol, 43: 143–170.
Wakita, H. and Sano, Y., 1983. He-3/He-4 ratios in CH4-rich natural gases suggest magmatic origin. Nature, 305(5937): 792-794.
Watanabe, K., 2001 Mapping the hydrothermal activity area on the Hatoma Knoll in the southern Okinawa Trough. JAMSTEC Deepsea Res 19:87–94 (in Japanese with English abstract).
Wang, K.L., Chung, S.L. and Chen, C.H., 2002. Geochemical constraints on the petrogenesis of high-Mg basaltic andesites from the Northern Taiwan Volcanic Zone. Chem. Geol., 182, 513-528.
Wang, K.L., Chung, S.L., Chen, C.H., Shinjo, R., Yang, T.F. and Chen C-H., 1999. Post-collisional magmatism around northern Taiwan and its relation with opening of the Okinawa Trough. Tectonophysics, 308, 363-376.
Wang, K.L., Chung, S.L., O’Reilly, S.Y., Sun,S.S., Shinjo, R. and Chen, C.-H., 2004. Geochemical constraints for the genesis of post-collisional magmatism and the geodynamic evolution in the northern Taiwan region. J Petrol, 45: 975-1011.
Weiss, R.F., 1971. Solubility of helium and neon in water and seawater. J Chem Eng Data, 16(2): 235.
Welhan, J.A. and Craig, H. 1982. Biogenic methane in mid ocean ridge hydrothermal fluids. In: Gwillian WJ (ed), Deep-source-gas workshop technical proceedings, pp 122–129.
Welhan, J.A. and Craig, H. 1983. Methane, hydrogen and helium in hydrothermal fluids. In: Rona PA, Boström K, Laubier L, Smith KL (eds), Hydrothermal processes at seafloor spreading centers. NATO Conf/Ser IV, Mar Sci, vol 12, pp 391–409.
Welhan, J., Craig, H. and Kim K., 1984. Hydrothermal gases at 11_N and 13_N on the East Pacific Rise. EOS 65:45
Wen, H.Y., Sano, Y., Takahata, N., Tomonaga, Y., Ishida, A., Tanaka, K., Kagoshima, T., Shirai, K., Ishibashi, J.I., Yokose, H., Tsunogai, U. and Yang, T.F., 2016. Helium and methane sources and fluxes of shallow submarine hydrothermal plumes near the Tokara Islands, Southern Japan. Sci Rep, 6: 34126.
Wen, H.Y., Yang, T.F., Lan, T.F., Lee, H.F., Lin, C.H., Sano, Y. andChen, C.-H. 2016. Soil CO2 flux in hydrothermal areas of the Tatun Volcano Group, Northern Taiwan. J Volcanol Geoth Res, 321: 114-124.
Whiticar, M.J., 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geology, 161: 291-314.
Winn, C.D., Karl, D.M. and Massoth, G.J., 1986. Microorganisms in deep-sea hydrothermal Plumes. Nature, 320 (6064): 744-746.
Yang, T.F., 2008. Recent progress in the application of gas geochemistry: examples from Taiwan and 9th international Gas Geochemistry Conference. Geofluids, 8: 219-229.
Yang, T.F., Sano, Y. and Song, S.R., 1999. He-3/He-4 ratios of fumaroles and bubbling gases of hot springs in Tatun Volcano Group, North Taiwan. Nuovo Cimento C, 22 (3-4): 281-286.
Yang, T.F., Lan, T.F., Lee, H.F., Fu, C.C., Chuang, P.C., Lo, C.H., Chen, C.H., Chen, C.T.A. and Lee, C.S., 2005. Gas compositions and helium isotopic ratios of fluid samples around Kueishantao, NE offshore Taiwan and its tectonic implications. Geochem J, 39 (5): 469-480.
Yokose, H., Yoshimura, H., Morii, Y. and Kobayashi, T., 2010. Volcanic chain of the western of Okinawa Trough margin: discovery of a quaternary shoshonitic rock. in: Proceedings of Japan Geoscience Union Meting 2011, SCG086-28: abstract.
Yokoyama, I. and Ohkawa, S., 1986. The subsurface structure of the Aira caldera and its vicinity in southern Kyushu, Japan. J. Volcanol. Geotherm. Res., 30, 253-282.
Yu, Z., Zhai, S., Guo, Y. and Zong, T., 2016. Helium isotopes in volcanic rocks from the Okinawa Trough-implication of volatile recycling and crustal contamination. Geochem J, 51(S1): 376-386.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77854-
dc.description.abstract地球內部的熱液可藉由陸上火山與海底熱液活動釋放至大氣圈與水圈,而透過研究熱液來源和通量可提供氣體在大氣圈和水圈的演化訊息。本研究藉由分析琉球隱沒系統海域、九州南部和台灣北部火山群熱液中氣體組成(特別著重在甲烷和與氦氣),藉由氦、碳同位素成分以探討琉球隱沒系統的氣體地球化學特性和地體構造。調查地區由東北向西南包含九州南部的鹿兒島灣火山群、琉球隱沒系統北段的吐噶喇列島以及南段的伊良部海丘、鳩間海丘、第四与那國海丘和龜山島和台灣北部大屯火山群。
先透過聲納探測器產生水柱反射影像圖協助判定海底熱液噴出位置,隨即進行海底熱水樣本採集,同時量測海水溫度、濁度與酸鹼值等物理化學特性,由低酸鹼度和高濁度等異常特性,可視為海底熱液存在的佐證。鹿兒島灣若尊火山口(Wakamiko Crater)主要是受微生物氧化、消耗較輕的甲烷後的非生物來源甲烷;吐噶喇列島(Tokara Islands)地區的甲烷主要由熱作用形成。氦同位素表示鹿兒島灣若尊火山口是以隱沒型的地函氦氣為主,而在吐噶喇列島顯示受到較多的地殼訊號。氣體地球化學資料顯示吐噶喇列島海底火山在琉球隱沒系統中位於轉換帶,由火山前緣轉換成弧後張裂盆地的關鍵證據。
琉球隱沒系統南段的鳩間海丘(Hatoma Knoll)和第四与那國(Yonaguni Knoll Ⅳ)熱液中的氦氣屬於中洋脊(MOR)類型,主要由上部地函所貢獻。而伊良部海丘(Irabu Knoll)的熱液含有較多的地殼訊號,推測是因為上部地函熱液上湧與淺處地層中的沉積物質交互作用所致。位於最南端的龜山島,亦具有中洋脊類型的高氦同位比值。因此,南段在沖繩海槽在張裂環境下,主要是中洋脊類型熱液攜來的氦,會與淺處地殼類型熱液的氦出現不同程度的二次反應,使得熱液的氦同位素比值在各地有所不同,反映各熱液環境的特性。
台灣北部大屯火山群火山氣體組成和氦同位素屬板塊隱沒型來源,受到上部地函和地殼成分混合而成,地體構造上屬聚合性板塊交界的島弧類型。主要熱液活動區的火山氣體與土壤氣體之氦同位素以及氣體組成表示大屯火山群的逸氣系統可能有數個火山流體通道。大油坑和八煙熱液區的火山氣體是來自相同的通道,但在淺處產生分道,並於近地表地區發生次級反應造成碳同位素變化。四磺坪和焿子坪熱液區有另一個不同於大油坑地熱區的氣體通道,而出露地表的區域受控於地表的弱帶範圍。對應至九州南部的鹿兒島灣火山群中的櫻島火山和若尊火山口也有相似的逸氣型態,火山流體源自於同一個岩漿庫但有各自的逸氣通道彼此不相互干擾。
整合琉球隱沒系統在不同的地體構造單元上的氦同位素值,在弧前地區氦同位素值低,具有較多的氦-4氣體;而在島弧以及弧後盆地地區的氦同位素較高具隱沒型地函訊號。氦同位素比值於琉球隱沒系統出現自南北兩端向中段遞減:九州陸上與海底火山往南向吐噶喇列島海底火山以及南段的南沖繩海槽往中部沖繩海槽出現氦同位素比值降低,中部沖繩海槽卻有較多的地殼氦氣的訊號。琉球隱沒系統由東北端向西南端的火山熱液特性,可探討地體構造上的隱示:日本九州鹿兒島火山群與海底火山以及吐噶喇列島海底火山是屬火山前緣的琉球島弧,向南延伸到龜山島則轉為弧後張裂盆地的沖繩海槽,台灣北部大屯火山群又轉為島弧火山。
zh_TW
dc.description.abstractHydrothermal fluids emitted from seafloor vents and/or volcanoes generally form plumes which preserve the information about these fluids. Therefore, submarine hydrothermal plumes represent a means to observe and understand regional tectonic settings and fluid circulation. In this study, we report the volatile (helium and methane) geochemistry of hydrothermal plumes/fluids and volcanic gases related to the Ryukyu subduction system in the region stretching from southern Kyushu in southern Japan to northern Taiwan, in order to understand the geochemical characteristics of hydrothermal fluids in the Ryukyu subduction system.
Hydrothermal plumes were sampled by using a CTD-RMS system after analyzing water column images collected by multi-beam echo sounder surveys. The hydrothermal activity can be identified by low pH value and high turbidity in the water column near seafloor. Methane at the Wakamiko Crater in Kagoshima Bay is of abiotic origin but affected by isotopic fractionation through rapid microbial oxidation. The methane in the region of the Tokara Islands is a mix between abiotic methane similar to that found in the East Pacific Rise and thermogenic one. The helium isotopes suggest the presence of subduction-type mantle helium at the Wakamiko Crater, while a larger crustal component is found close to the Tokara Islands.
The hydrothermal fluid of Hatoma Knoll, Yonaguni Knoll Ⅳ, and Kueishantao in the southern Ryukyu subduction system are a typical MOR signature characterized by high 3He/4He. The Irabu hydrothermal fluid shows lower 3He/4He values which might be due to fluid-sediment interaction. Based on the gas composition and helium isotopes results, it is evidenced that the gas source in the Tatun Volcano Group is composed of upper mantle and crustal composition. The geographical distribution of 3He/4He ratios and carbon isotopes help in delineating the degassing model with several pathways of magmatic fluid transportation in different hydrothermal areas. It can be observed that there is a similar degassing system in the Aira caldera. The degassing activity is independent between the Sakurajima volcano and Wakamiko Crater, but both have the same magmatic source.
Compilation of the available data in the subduction system in Japan helps in characterizing crustal helium and microbial methane at the frontal arc region, and mantle helium and thermogenic methane at the volcanic arc region. The spatial variation of helium isotopic ratios in the Ryukyu subduction system exhibits two decreasing trends from northern and southern system to the central section, probably related to the depth of Ryukyu Trench due to the mount of terrestrial helium. The helium isotopes suggest the presence of subduction-type mantle helium at the Southern Kyushu volcano and Southern Ryukyu subduction system, while a larger crustal component is found close to the Northern and Central Ryukyu subduction system. This suggests that the Tokara Islands submarine volcanoes, and also the Jade and Hakurei hydrothermal systems are a key feature of the transition zone between the volcanic front and the spreading back-arc basin.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:36:04Z (GMT). No. of bitstreams: 1
ntu-106-D99224009-1.pdf: 4619936 bytes, checksum: 96588d73695633708bc2530a19113b97 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents第一章 緒論 1
1.1 前言 1
1.2 地質背景 4
1.3 研究動機與目的 7
第二章 研究方法 10
2.1 研究區域及採樣位置 10
2.2 採樣方法 19
2.2.1 陸上火山氣體採集 20
2.2.2 海底熱液採集 21
2.3 氣體組成 24
2.4 氦同位素組成分析 24
2.5 甲烷濃度與其碳同位素分析 26
2.6 氮同位素分析 27
第三章 分析結果 29
3.1 九州南部鹿兒島灣火山群之姶良火山臼若尊火山口 29
3.2 琉球隱沒系統北段之吐噶喇列島海域海底火山 30
3.3 琉球島弧南段 32
第四章 現今琉球島弧系統 45
4.1 琉球島弧北段海底火山熱液來源 45
4.1.1 氦氣 45
4.1.2 甲烷 48
4.2 琉球島弧中段 50
4.3 琉球島弧南段熱液來源 51
4.3.1 氦氣 51
4.3.2 氮氣 54
4.3.3 龜山島海底火山氣體之氦同位素時序變化 57
第五章 大屯火山群與鹿兒島灣火山群 60
5.1 大屯火山群 60
5.2 姶良火山臼 67
5.3 與九州南部火山群之比較 70
第六章 南九州-琉球-北台灣火山帶 72
6.1 琉球島弧系統之氦同位素空間分布 72
6.2 與其他島弧之比較 78
第七章 結論 80
第八章 參考文獻 82
dc.language.isozh-TW
dc.subject琉球隱沒系統zh_TW
dc.subject熱液zh_TW
dc.subject氦氣zh_TW
dc.subject甲烷zh_TW
dc.subject氣體地球化學特性zh_TW
dc.subjecthydrothermal fluiden
dc.subjectRyukyu subduction systemen
dc.subjectgas geochemical characteristicsen
dc.subjectmethaneen
dc.subjectheliumen
dc.title琉球隱沒系統中熱液之氣體地球化學特徵及其隱示zh_TW
dc.titleGas geochemical characteristics of hydrothermal fluids in the Ryukyu subduction system and their implicationsen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree博士
dc.contributor.oralexamcommittee劉聰桂,王詠絢,呂學諭,林立虹,王珮玲
dc.subject.keyword熱液,氦氣,甲烷,氣體地球化學特性,琉球隱沒系統,zh_TW
dc.subject.keywordhydrothermal fluid,helium,methane,gas geochemical characteristics,Ryukyu subduction system,en
dc.relation.page102
dc.identifier.doi10.6342/NTU201703817
dc.rights.note有償授權
dc.date.accepted2017-08-19
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-106-D99224009-1.pdf
  未授權公開取用
4.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved