Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77847
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃筱鈞(Hsiao-Chun Huang)
dc.contributor.authorDa-Wei Linen
dc.contributor.author林大惟zh_TW
dc.date.accessioned2021-07-11T14:35:56Z-
dc.date.available2022-09-04
dc.date.copyright2017-09-04
dc.date.issued2017
dc.date.submitted2017-08-18
dc.identifier.citationBandwar RP, Ma N, Emanuel SA, Anikin M, Vassylyev DG, Patel SS, McAllister WT. 2007. The transition to an elongation complex by T7 RNA polymerase is a multistep process. The Journal of biological chemistry 282: 22879-22886.
Ben-Yehuda S, Losick R. 2002. Asymmetric cell division in B. subtilis involves a spiral-like intermediate of the cytokinetic protein FtsZ. Cell 109: 257-266.
Berg HC, Turner L. 1995. Cells of Escherichia coli swim either end forward. Proceedings of the National Academy of Sciences of the United States of America 92: 477-479.
Bowman GR, Comolli LR, Gaietta GM, Fero M, Hong SH, Jones Y, Lee JH, Downing KH, Ellisman MH, McAdams HH et al. 2010. Caulobacter PopZ forms a polar subdomain dictating sequential changes in pole composition and function. Molecular microbiology 76: 173-189.
Bowman GR, Perez AM, Ptacin JL, Ighodaro E, Folta-Stogniew E, Comolli LR, Shapiro L. 2013a. Oligomerization and higher-order assembly contribute to sub-cellular localization of a bacterial scaffold. Molecular microbiology 90.
-. 2013b. Oligomerization and higher-order assembly contribute to sub-cellular localization of a bacterial scaffold. Molecular microbiology 90: 776-795.
Cai X. 2007. Exact stochastic simulation of coupled chemical reactions with delays. The Journal of chemical physics 126: 124108.
Chau AH, Walter JM, Gerardin J, Tang C, Lim WA. 2012. Designing synthetic regulatory networks capable of self-organizing cell polarization. Cell 151: 320-332.
Collins KD, Lacal J, Ottemann KM. 2014. Internal sense of direction: sensing and signaling from cytoplasmic chemoreceptors. Microbiology and molecular biology reviews : MMBR 78: 672-684.
Curtis PD, Brun YV. 2010. Getting in the loop: regulation of development in Caulobacter crescentus. Microbiology and molecular biology reviews : MMBR 74: 13-41.
Delebecque CJ, Silver PA, Lindner AB. 2012. Designing and using RNA scaffolds to assemble proteins in vivo. Nature protocols 7: 1797-1807.
Dobrzynski M, Rodriguez JV, Kaandorp JA, Blom JG. 2007. Computational methods for diffusion-influenced biochemical reactions. Bioinformatics (Oxford, England) 23: 1969-1977.
Drawert B, Lawson MJ, Petzold L, Khammash M. 2010. The diffusive finite state projection algorithm for efficient simulation of the stochastic reaction-diffusion master equation. The Journal of chemical physics 132: 074101.
Ebersbach G, Briegel A, Jensen GJ, Jacobs-Wagner C. 2008. A self-associating protein critical for chromosome attachment, division, and polar organization in caulobacter. Cell 134: 956-968.
Elf J, Ehrenberg M. 2004. Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases. Systems biology 1: 230-236.
Eswaramoorthy P, Winter PW, Wawrzusin P, York AG, Shroff H, Ramamurthi KS. 2014. Asymmetric division and differential gene expression during a bacterial developmental program requires DivIVA. PLoS genetics 10: e1004526.
Good MC, Zalatan JG, Lim WA. 2011. Scaffold Proteins: Hubs for Controlling the Flow of Cellular Information. Science (New York, NY) 332: 680-686.
Gruber TM, Gross CA. 2003. Multiple sigma subunits and the partitioning of bacterial transcription space. Annual review of microbiology 57: 441-466.
Hattne J, Fange D, Elf J. 2005. Stochastic reaction-diffusion simulation with MesoRD. Bioinformatics (Oxford, England) 21: 2923-2924.
Holmes JA, Follett SE, Wang H, Meadows CP, Varga K, Bowman GR. 2016. Caulobacter PopZ forms an intrinsically disordered hub in organizing bacterial cell poles. Proceedings of the National Academy of Sciences of the United States of America 113: 12490-12495.
Kapust RB, Tozser J, Fox JD, Anderson DE, Cherry S, Copeland TD, Waugh DS. 2001. Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein engineering 14: 993-1000.
Laloux G, Jacobs-Wagner C. 2013. Spatiotemporal control of PopZ localization through cell cycle-coupled multimerization. The Journal of cell biology 201: 827-841.
Lampoudi S, Gillespie DT, Petzold LR. 2009. The multinomial simulation algorithm for discrete stochastic simulation of reaction-diffusion systems. The Journal of chemical physics 130: 094104.
Li G, Young KD. 2012. Isolation and identification of new inner membrane-associated proteins that localize to cell poles in Escherichia coli. Molecular microbiology 84: 276-295.
Markson JS, Elowitz MB. 2014. Synthetic Biology of Multicellular Systems: New Platforms and Applications for Animal Cells and Organisms. ACS synthetic biology 3: 875-876.
Martinac B, Rohde PR, Cranfield CG, Nomura T. 2013. Patch clamp electrophysiology for the study of bacterial ion channels in giant spheroplasts of E. coli. Methods in molecular biology (Clifton, NJ) 966: 367-380.
Muller DK, Martin CT, Coleman JE. 1988. Processivity of proteolytically modified forms of T7 RNA polymerase. Biochemistry 27: 5763-5771.
Neeli-Venkata R, Startceva S, Annila T, Ribeiro AS. 2016. Polar Localization of the Serine Chemoreceptor of Escherichia coli Is Nucleoid Exclusion-Dependent. Biophysical journal 111: 2512-2522.
Paintdakhi A, Parry B, Campos M, Irnov I, Elf J, Surovtsev I, Jacobs-Wagner C. 2016. Oufti: an integrated software package for high-accuracy, high-throughput quantitative microscopy analysis. Molecular microbiology 99: 767-777.
Perez AM, Mann TH, Lasker K, Ahrens DG, Eckart MR, Shapiro L. 2017. A Localized Complex of Two Protein Oligomers Controls the Orientation of Cell Polarity. mBio 8.
Pröschel M, Detsch R, Boccaccini AR, Sonnewald U. 2015. Engineering of Metabolic Pathways by Artificial Enzyme Channels. Frontiers in Bioengineering and Biotechnology 3.
Quan J, Tian J. 2011. Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nature protocols 6: 242-251.
Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK. 2001. Sequence complexity of disordered protein. Proteins 42: 38-48.
Santos TM, Lin TY, Rajendran M, Anderson SM, Weibel DB. 2014. Polar localization of Escherichia coli chemoreceptors requires an intact Tol-Pal complex. Molecular microbiology 92: 985-1004.
Schaerli Y, Gili M, Isalan M. 2014. A split intein T7 RNA polymerase for transcriptional AND-logic. Nucleic Acids Research 42: 12322-12328.
Scheu K, Gill R, Saberi S, Meyer P, Emberly E. 2014. Localization of aggregating proteins in bacteria depends on the rate of addition. Frontiers in microbiology 5: 418.
Schrader JM, Li GW, Childers WS, Perez AM, Weissman JS, Shapiro L, McAdams HH. 2016. Dynamic translation regulation in Caulobacter cell cycle control. Proceedings of the National Academy of Sciences of the United States of America 113: E6859-6867.
Segall-Shapiro TH. 2014. A ‘resource allocator’ for transcription based on a highly fragmented. 10: 742.
Sharma UK, Chatterji D. 2010. Transcriptional switching in Escherichia coli during stress and starvation by modulation of sigma activity. FEMS microbiology reviews 34: 646-657.
Shetty RP, Endy D, Knight TF, Jr. 2008. Engineering BioBrick vectors from BioBrick parts. Journal of biological engineering 2: 5.
Shis DL, Bennett MR. 2013. Library of synthetic transcriptional AND gates built with split T7 RNA polymerase mutants. Proceedings of the National Academy of Sciences of the United States of America 110: 5028-5033.
Stylianidou S, Kuwada N J, Wiggins P A. 2014. Cytoplasmic Dynamics Reveals Two Modes of Nucleoid-Dependent Mobility. Biophysical journal 107: 2684-2692.
Subramanian K, Paul MR, Tyson JJ. 2015. Dynamical Localization of DivL and PleC in the Asymmetric Division Cycle of Caulobacter crescentus: A Theoretical Investigation of Alternative Models. PLoS Computational Biology 11.
Subramanian K, Tyson JJ. 2017. Spatiotemporal Models of the Asymmetric Division Cycle of Caulobacter crescentus. Results and problems in cell differentiation 61: 23-48.
Treuner-Lange A, Sogaard-Andersen L. 2014. Regulation of cell polarity in bacteria. The Journal of cell biology 206: 7-17.
van Baarle S, Celik IN, Kaval KG, Bramkamp M, Hamoen LW, Halbedel S. 2013. Protein-protein interaction domains of Bacillus subtilis DivIVA. Journal of bacteriology 195: 1012-1021.
Wehr MC, Laage R, Bolz U, Fischer TM, Grunewald S, Scheek S, Bach A, Nave KA, Rossner MJ. 2006. Monitoring regulated protein-protein interactions using split TEV. Nature methods 3: 985-993.
Wu CF, Chiou JG, Minakova M, Woods B, Tsygankov D, Zyla TR, Savage NS, Elston TC, Lew DJ. 2015. Role of competition between polarity sites in establishing a unique front. eLife 4.
Wu LJ, Feucht A, Errington J. 1998. Prespore-specific gene expression in Bacillus subtilis is driven by sequestration of SpoIIE phosphatase to the prespore side of the asymmetric septum. Genes & development 12: 1371-1380.
Yin YW, Steitz TA. 2002. Structural basis for the transition from initiation to elongation transcription in T7 RNA polymerase. Science (New York, NY) 298: 1387-1395.
Young JW, Locke JCW, Altinok A, Rosenfeld N, Bacarian T, Swain PS, Mjolsness E, Elowitz MB. 2012. Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy. Nature protocols 7: 80-88.
劉陽. 2015. 在大腸桿菌中構建基於細胞極性蛋白質支架的合成生物學平臺. in 分子與細胞生物學研究所, pp. 1-113. 臺灣大學.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77847-
dc.description.abstract為了在大腸桿菌(Escherichia coli)細胞中建立細胞的不對稱性,我們利用星月鼠桿菌(Caulobacter crescentus)中的PopZ與SpmX蛋白設計基因線路,其中,PopZ能夠聚合成為大分子並即化在細胞的其中一端,同時能夠招募SpmX形成極化的複合蛋白。根據這項特性,本研究將SpmX作為轉接器,能透過PopZ與SpmX的交互作用,攜帶任一與之融合的蛋白至細胞具有PopZ聚集之處。配合隨機模型的幫助,我們了解到類核區排擠效應(nucleoid occlusion)有相當程度的影響了PopZ的極化過程,並引導我們如何調控PopZ的極化。在先前的結果中發現,PopZ即便是在E. coli中也能形成單極化的聚集,且能招募SpmX,這項結果使我們確信PopZ/SpmX平台的設計方向理應能夠操控任何蛋白的分布,但為了證明並演示PopZ/SpmX平台的應用性,我們根據雙分子螢光互補試驗(Bimolecular Fluorescence Complementation assay, BIFC)讓分割成兩部分的eYFP能藉由我們的平台而能重組並能激發其螢光,在顯微鏡觀察的結果能發現eYFP的螢光甚至與PopZ的位置重疊。我們接著使用類似的策略,將PopZ/SpmX平台配合分割成兩部分的T7 RNA聚合酶或TEV蛋白酶,設計出兩種基因模組,前者能誘導基因在細胞空間中不對稱表達,後者則是被限制在細胞極端才能剪切特定胺基酸序列。然而在目前的結果中,仍無法在蛋白質的層級觀察到基因於空間中不對稱的表達,我們尚須需要找尋合適的報導系統,例如直接標定T7 RNA聚合酶發生轉錄之位置。最後,我們嘗試模仿星月鼠桿菌不對稱分裂的過程,在將要分裂的細胞兩端堆積不同的蛋白質組成,而我們則是利用抑制PopZ的表達,以使子細胞與母細胞之間產生形態上的不同,這項結果成功地在顯微鏡下連續紀錄中發現。藉由學習細胞中已存在的機制,配合合成生物學的方法與概念,證實了PopZ/SpmX平台能幫助我們操縱蛋白在細胞中不均勻的分布,進而產生細胞的不對稱性,且由於恢復split eYFP功能的完成,我們更是期待能利用PopZ/SpmX平台在細胞空間中產生不對稱的功能,甚至令分裂後的子細胞展現出與母細胞完全不同的功能性。zh_TW
dc.description.abstractTo implement cellular asymmetry in E. coli, we designed a spatiotemporal regulatory circuit based on a pair of interacting proteins, PopZ and SpmX, cloned from Caulobacter crescentus. Here, PopZ serves as the actuator capable of self-assembling at one pole of a cell, and SpmX is responsible for recruiting protein of interesting (POI) to the pole with the PopZ foci. With a stochastic computational model, we showed that nucleoid occlusion is critical for the polarity of PopZ, and provided insights into how to control the polarity. Bimolecular Fluorescence Complementation assay (BIFC) was used to demonstrate the ability of our PopZ/SpmX platform to recruit and assemble split eYFP at the pole with unipolarized PopZ. We then tested if the platform can be used to recruit and assemble other split proteins to execute asymmetric functions. Split T7 RNA polymerase and split TEV protease were chosen to implement asymmetric gene expression and peptide cleavage, respectively. In the case of split T7 RNA polymerase, although we have not yet observed asymmetric gene expression at the protein level, it is possible that the asymmetry can be reported with other assays, for instance by monitoring transcription. Finally, we tried to realize asymmetric cell division, i.e. difference in cell fates/morphologies between two daughter cells, by differentially depositing proteins at two poles of a predivisional cell. We showed that after a PopZ focus has formed at a single pole, with a regulatory circuit we can block PopZ expression to generate two distinct daughters, i.e. the PopZ focus was inherited by only one of the two daughter cells. In sum, with lessons from nature and paradigms of synthetic biology, we have characterized a platform to promote cellular asymmetry by manipulating the spatial distribution of proteins. With the success in functionalizing split eYFP, we are hopeful that the platform can be used to promote asymmetric functions and ultimately, functional difference between two dividing daughters.en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:35:56Z (GMT). No. of bitstreams: 1
ntu-106-R04b43015-1.pdf: 5153594 bytes, checksum: 784a286ca9b85f210ddfee68cad5648a (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 I
摘要 III
Abstract IV
Contents VI
Figure List VIII
Table List IX
Appendix List X
Chapter 1. Introduction 1
1.1 The importance of cellular asymmetry 1
1.2 Asymmetric sporulation in Bacillus subtilis 3
1.3 Asymmetric cell division for life cycle of Caulobacter crescentus 4
1.4 Split T7 RNA polymerase 9
1.5 Split TEV protease 10
1.6 PopZ/SpmX platform in Escherichia coli 11
Chapter 2. Material and method 13
2.1 Conventional bacterial culture 13
2.1.1 Media 13
2.1.2 Bacteria stock 13
2.1.3 Bacteria strain 13
2.1.4 Antibiotics usage 14
2.2 DNA methods 14
2.2.1 Transformation 15
2.2.2 Plasmid DNA purification 16
2.2.3 Restriction enzyme digestion 16
2.2.4 PCR methods with different polymerase 16
2.2.5 PCR clean up 19
2.2.6 Agarose gel electrophoresis 19
2.2.7 Gel extraction 19
2.2.8 Ligation of one insert and vector 19
2.2.9 DNA assembly strategies 20
2.2.10 Primers and plasmids used in this study 23
2.3 Imaging recording with microscope 28
2.4 Statistical analysis 29
2.5 Simulation model setting and analysis functions 30
2.5.1 Construction of cell space 31
2.5.2 Extending Gillespie algorithm for construction of volume-excluding model 32
2.5.3 Analytic functions for modelling results 38
2.5.4 Parameters 39
2.6 Preparation of giant spheroplast of E. coli 40
Chapter 3. Result 41
3.1 Design concept of PopZ/SpmX platform 41
3.2 PopZ dynamics in Escherichia coli 41
3.2.1 Reproduce PopZ’s unipolarity as previous work 41
3.2.2 Modeling of PopZ dynamics in Escherichia coli 42
3.2.3 The relation of controllable parameters for promoting unipolarity 43
3.2.4 Details of unipolarity 45
3.2.5 Possible effects on cell polarity 46
3.3 Using SpmX as an adaptor for symmetric protein distribution 47
3.3.1 Co-expression of PopZ and SpmX in E. coli 47
3.3.2 Modifying SpmX as a suitable adaptor 48
3.3.3 Micron level cellular photovoltaic unit (MCPU) 49
3.3.4 Functionalizing PopZ/SpmXΔC platform by reassembling split proteins 50
3.4 Asymmetric gene expression module 51
3.4.1 Split T7 RNA polymerase 51
3.4.2 Confirmation of nonspecific interaction between split T7 RNAP and PopZ 53
3.4.3 Split T7 RNAP activity affected by SpmXΔC fusion strategy 53
3.4.4 Modifying reporter protein for detection of T7 RNAP activity in real time 54
3.4.5 Decreasing the expression of split T7 RNAP 55
3.5 Spatial-specific protein scissor at cell pole 57
3.6 Artificially asymmetric morphology between mother and daughter cells 58
3.7 Conclusion 59
Chapter 4. Discussion and future work 63
Figures 66
Appendix 85
References 89
dc.language.isoen
dc.title利用調控時間與空間的蛋白質平台在大腸桿菌細胞中建立人工的不對稱性zh_TW
dc.titleConstruction of a spatiotemporal regulatory platform for synthetic asymmetry in Escherichia colien
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周信宏(Hsin-Hung Chou),許昭萍(Chao-Ping Hsu)
dc.subject.keyword細胞不對稱性,PopZ,SpmX,體積排擠效應隨機模型,合成生物系統,細胞不對稱分裂,zh_TW
dc.subject.keywordCell asymmetry,PopZ,SpmX,Excluded-volume stochastic model,Synthetic biological system,Asymmetric cell division,en
dc.relation.page93
dc.identifier.doi10.6342/NTU201703995
dc.rights.note有償授權
dc.date.accepted2017-08-19
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-R04b43015-1.pdf
  目前未授權公開取用
5.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved