請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77845完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴喜美 | |
| dc.contributor.author | Pei-Chi Wang | en |
| dc.contributor.author | 王姵琪 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:35:54Z | - |
| dc.date.available | 2022-09-04 | |
| dc.date.copyright | 2017-09-04 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-18 | |
| dc.identifier.citation | 柴岩。(1999)。糜子。北京: 中國農業出版社。
AACC. (2000). Approved Method of the American Association of Cereal Chemists. AACC Inc., MN USA. Annor, G. A. (2013). Millet starches: Structural characteristics and glycemic attributes. Ph.D. thesis. Guelph, Canada: University of Guelph. Arendt, E. K., & Zannini, E. (2013). Millet. 312-350. Beleia, A., Varrianno-Marston, E., & Hoseney, R. C. (1980). Characterization of starch from pearl millets. Cereal Chemistry, 57, 300-303. Blazek, J., & Copeland, L. (2008). Pasting and swelling properties of wheat flour and starch in relation to amylose content. Carbohydrate Polymers, 71(3), 380-387. Britton, George, Liaaen-Jensen, Synnove, Pfander, & Hanspeter. (2004). Carotenoids Handbook. Basel, Switzerland: Birkhäuser Buléon, A., Colonna, P., Planchot, V., & Ball, S. (1998). Starch granules: structure and biosynthesis. International Journal of Biological Macromolecules, 23, 85-112. Carcea, M., & Acquistucci, R. (1997). Isolation and physicochemical characterization of fonio (Digitaria exilis Stapf) starch. Starch, 49, 131-135. Choi, H., Kim, W., & Shin, M. (2004). Properties of Korean amaranth starch compared to waxy millet and waxy sorghum starches. Starch, 56(10), 469-477. Chung, H.-J., Liu, Q., Donner, E., Hoover, R., Warkentin, T. D., & Vandenberg, B. (2008). Composition, Molecular Structure, Properties, and In Vitro Digestibility of Starches from Newly Released Canadian Pulse Cultivars. Cereal Chemistry Journal, 85(4), 471-479. Chung, H.-J., Liu, Q., Lee, L., & Wei, D. (2011). Relationship between the structure, physicochemical properties and in vitro digestibility of rice starches with different amylose contents. Food Hydrocolloids, 25(5), 968-975. Cooke, D., & Gidley, M. J. (1992). Loss of crystalline and molecular order during starch gelatinisation: origin of the enthalpic transition. Carbohydrate Research, 227, 103-112. Debet, M. R., & Gidley, M. J. (2006). Three classes of starch granule swelling: Influence of surface proteins and lipids. Carbohydrate Polymers, 64(3), 452-465. Englyst, H. N., Kingman, S. M., & Cummings, J. H. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46, S33-S50. FAO (1995). Sorghum and millets in human nutrition. Rome: FAO. FAOSTAT. (2001). MILLET: Post-harvest Operations. Fujita, S., Morita, T., & Fujiyama, G. (1993). The study of melting temperature and enthalpy of starch from rice, barley, wheat, foxtail- and proso-millets. Starch, 45, 436-441. Granfeldt, Y., Björck, I., Drews, A., & Tovar, J. (1992). An in vitro procedure based on chewing to predict metabolic response to starch in cereal and legume products. European Journal of Clinical Nutrition, 46, 649-660. Habiyaremye, C., Matanguihan, J. B., D'Alpoim Guedes, J., Ganjyal, G. M., Whiteman, M. R., Kidwell, K. K., & Murphy, K. M. (2016). Proso Millet (Panicum miliaceum L.) and Its Potential for Cultivation in the Pacific Northwest, U.S.: A Review. Front Plant Sci, 7, 1961. Hanashiro, I., Abe, J.-i., & Hizukuri, S. (1996). A periodic distribution of the chain length of amylopectin as revealed by high-performance anion-exchange chromatography. Carbohydrate Research, 283, 151-159. Huang, Y. C., & Lai, H. M. (2010). Noodle quality affected by different cereal starches. Journal of Food Engineering, 97(2), 135-141. Huang, Y. C., & Lai, H. M. (2014). Characteristics of the starch fine structure and pasting properties of waxy rice during storage. Food Chem, 152, 432-439. Huber, K. C., & BeMiller, J. N. (2001). Location of sites of reaction within starch granules. Cereal Chemistry, 78, 173-180. Jane, J., Chen, Y. Y., Lee, L. F., McPherson, A. E., Wong, K. S., Radosavljevic, M., & Kasemsuwan, T. (1999). Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chemistry, 76, 629-637. Jenkins, P. J., & Donald, A. M. (1995). The influence of amylose on starch granule structure. Int. J. Biol. Macromo, 17, 315-321. Jideani, A. I., & Akingbala, J. O. (1993). Some physicochemical properties of Acha (Digitaria exilis Stapf) and Iburu (Digitaria iburua Stapf) grains. Journal of the Science of Food and Agriculture, 63, 369-374. Juliano, B., Perez, C. M., Baios, L., & Laguna. (1990). Crystallinity of raw rice starch granules as indexed by corrosion with hydrochloric acid and amylase. Starch, 42, 49-52. Kalinova, J., & Moudry, J. (2006). Content and quality of protein in proso millet (Panicum miliaceum L.) varieties. Plant Foods Hum Nutr, 61(1), 45-49. Kumari, S. K., & Thayumanavan, B. (1998). Characterization of starches of proso, foxtail, barnyard, kodo, and little millets. Plant Foods for Human Nutrition, 53, 47-56. Lakshmi Kumari, P., & Sumathi, S. (2002). Effect of consumption of finger millet on hyperglycemia in non-insulin dependent diabetes mellitus (NIDDM) subjects. Plant Foods for Human Nutrition, 57(3), 205-213. Laohaphatanaleart, K., Piyachomkwan, K., Sriroth, K., Santisopasri, V., & Bertoft, E. (2009). A Study of the Internal Structure in Cassava and Rice Amylopectin. Starch - Stärke, 61(10), 557-569. Lehmann, U., & Robin, F. (2007). Slowly digestible starch – its structure and health implications: a review. Trends in Food Science & Technology, 18(7), 346-355. Li, L., Jiang, H., Campbell, M., Blanco, M., & Jane, J.-l. (2008). Characterization of maize amylose-extender (ae) mutant starches. Part I: Relationship between resistant starch contents and molecular structures. Carbohydrate Polymers, 74(3), 396-404. Liu, M.-x., Zhang, Z.-w., Ren, G.-x., Zhang, Q., Wang, Y.-y., & Lu, P. (2016). Evaluation of selenium and carotenoid concentrations of 200 foxtail millet accessions from China and their correlations with agronomic performance. Journal of Integrative Agriculture, 15(7), 1449-1457. Liu, R. H. (2007). Whole grain phytochemicals and health. Journal of Cereal Science, 46(3), 207-219. Liu, Y., Bailey, T. B., & White, P. J. (2010). Individual and interactional effects of beta-glucan, starch, and protein on pasting properties of oat flours. J Agric Food Chem, 58(16), 9198-9203. Lu, H., Zhang, J., Liu, K.-b., Wu, N., Li, Y., Zhou, K., Ye, M., Zhang, T., Zhang, H., Yang, X., Shen, L., Xu, D., & Li, Q. (2009). Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proceedings of the National Academy of Sciences, 106, 7367-7372. Lu, H., Zhang, J., Wu, N., Liu, K. B., Xu, D., & Li, Q. (2009). Phytoliths analysis for the discrimination of Foxtail millet (Setaria italica) and Common millet (Panicum miliaceum). PLoS One, 4(2), e4448. Lumdubwong, N., & Seib, P. A. (2000). Rice starch isolation by alkaline protease digestion of wet-milled rice flour. Journal of Cereal Science, 31, 63-74. Moros, E. E., Darnoko, D., Cheryan, M., Perkins, E. G., & Jerrell, J. (2002). Analysis of xanthophylls in corn by HPLC. Journal of Agricultural and Food Chemistry, 50(21), 5787-5790. Morrison, W. R., & Karkalas, J. (1990). Starch. methods in plant biochemistry. Carbohydrates, In P. M. Dey (Ed.), 323-352 Mua, J. P., & Jackson, D. S. (1997). Fine structure of corn amylose and amylopectin fractions with various molecular weights. Journal of Agricultural and Food Chemistry, 45, 3840-3847. Nishizawa, N., Sato, D., Ito, Y., Nagasawa, T., Hatakeyama, Y., Choi, M.-R., Choi, Y.-Y., & Wei, Y. M. (2014). Effects of Dietary Protein of Proso Millet on Liver Injury Induced byD-galactosamine in Rats. Bioscience, Biotechnology, and Biochemistry, 66(1), 92-96. Noda, T., Nishiba, Y., Sato, T., & Suda, I. (2003). Properties of starches from several low-amylose rice cultivars. Cereal Chemistry, 80, 193-197. Noda, T., Takahata, Y., Sato, T., Suda, I., Morishita, T., Ishiguro, K., & Yamakawa, O. (1998). Relationships between chain length distribution of amylopectin and gelatinization properties within the same botanical origin for sweet potato and buckwheat. Carbohydrate Polymers, 37, 153–158. Osborne, T. B. (1907). The Proteins of the Wheat Kernel. Washington DC: Carnegie Institute of Washington. Pérez, S., & Bertoft, E. (2010). The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch - Stärke, 62(8), 389-420. Park, I.-M., Ibáñez, A. M., Zhong, F., & Shoemaker, C. F. (2007). Gelatinization and Pasting Properties of Waxy and Non-waxy Rice Starches. Starch - Stärke, 59(8), 388-396. Park, Y., Brinton, L. A., Subar, A. F., Hollenbeck, A., & Schatzkin, A. (2009). Dietary fiber intake and risk of breast cancer in postmenopausal women: the National Institutes of Health-AARP Diet and Health Study. Am J Clin Nutr, 90(3), 664-671. Peat, S., Whelan, W. J., & Thomas, G. J. (1956). The enzymic synthesis and degradation of starch. Part XXII. Evidence of multiple branching in waxy-maize starch.. A correlation. Journal of Chemical Society, 3025-3030. Perry, A., Rasmussen, H., & Johnson, E. J. (2009). Xanthophyll (lutein, zeaxanthin) content in fruits, vegetables and corn and egg products. Journal of Food Composition and Analysis, 22(1), 9-15. Ravindran, G. (1991). Studies on millets: Proximate composition, mineral composition, and phytate and oxalate contents. Food Chem., 39, 99–107. Saleh, A. S. M., Zhang, Q., Chen, J., & Shen, Q. (2013). Millet Grains: Nutritional Quality, Processing, and Potential Health Benefits. Comprehensive Reviews in Food Science and Food Safety, 12(3), 281-295. Sandhu, K. S., Singh, N., & Malhi, N. S. (2007). Some properties of corn grains and their flours I: Physicochemical, functional and chapati-making properties of flours. Food Chemistry, 101(3), 938-946. Sasaki, T., & Matsuki, J. (1998). Effect of wheat starch structure on swelling power. Cereal Chemistry, 75, 525-529. Shahidi, F., & Chandrasekara, A. (2013). Millet grain phenolics and their role in disease risk reduction and health promotion: A review. Journal of Functional Foods, 5(2), 570-581. Shandera, D. L. (1996). Effect of corn wet-milling conditions (sulfur dioxide, lactic acid, and steeping temperature) on starch functionality. Cereal Chemistry, 73(5), 632. Shen, R., Yang, S., Zhao, G., Shen, Q., & Diao, X. (2015). Identification of carotenoids in foxtail millet (Setaria italica) and the effects of cooking methods on carotenoid content. Journal of Cereal Science, 61, 86-93. Shobana, S., & Malleshi, N. G. (2007). Preparation and functional properties of decorticated finger millet (Eleusine coracana). Journal of Food Engineering, 79(2), 529-538. Srichuwong, S., Sunarti, T., Mishima, T., Isono, N., & Hisamatsu, M. (2005). Starches from different botanical sources I: Contribution of amylopectin fine structure to thermal properties and enzyme digestibility. Carbohydrate Polymers, 60(4), 529-538. Taylor, J. R. N., & Emmambux, M. N. (2008). Gluten-free cereal products and beverage from millet. In E. K. Arendt & F. D. Bello (Eds.), Gluten-free cereal products and beverages (pp. 119-148). Tester, R. F., & Karkalas, J. (2003). Carbohydrates: Interactions with other food components. In B. Caballero, L. Trugo, & P. Finglas (Eds.). In Encyclopaedia of Food Sciences and Nutrition. Academic Press (Ed. in Chief), (pp. 875-881). Tester, R. F., Karkalas, J., & Qi, X. (2004). Starch—composition, fine structure and architecture. Journal of Cereal Science, 39(2), 151-165. Tester, R. F., & Morrison, W. R. (1990). Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose and lipids. Cereal Chemistry, 67, 551-557. Uthumporn, U., Zaidul, I. S. M., & Karim, A. A. (2010). Hydrolysis of granular starch at sub-gelatinization temperature using a mixture of amylolytic enzymes. Food and Bioproducts Processing, 88(1), 47-54. Wang, S., & Copeland, L. (2013). Molecular disassembly of starch granules during gelatinization and its effect on starch digestibility: a review. Food Funct, 4(11), 1564-1580. Wang, Y.-J., Truong, V.-D., & Wang, L. (2003). Structures and rheological properties of corn starch as affected by acid hydrolysis. Carbohydrate Polymers, 52(3), 327-333. Wang, Y.-J., White, P., & Pollak, L. (1993). Cereal Chemistry, 70(2), 199-203. Wu, H., & Corke, H. (1999). Genetic Diversity in Physical Properties of Starch from a World Collection ofAmaranthus. Cereal Chemistry Journal, 76(6), 877-883. Wu, H. C. H., & Sarko, A. (1978). The double-helical molecular structure of crystalline A-amylose. Carbohydrate Research, 61, 27–40. Yanez, G. A., & Walker, C. E. (1986). Effect of tempering parameters on extraction and ash of proso millet flours, and partial characterization of proso starch Cereal Chemistry, 63, 164-167. Yoo, S.-H., & Jane, J.-l. (2002). Molecular weights and gyration radii of amylopectins determined by high-performance size-exclusion chromatography equipped with multi-angle laser-light scattering and refractive index detectors. Carbohydrate Polymers, 49, 307-314. You, S., & Izydorczyk, M. S. (2002). Molecular characteristics of barley starches with variable amylose content. Carbohydrate Polymers, 49, 33-42. Zhang, L., Liu, R., & Niu, W. (2014). Phytochemical and antiproliferative activity of proso millet. PLoS One, 9(8), e104058. Zhu, F. (2014). Structure, physicochemical properties, and uses of millet starch. Food Research International, 64, 200-211. Zhu, L.-J., Liu, Q.-Q., Wilson, J. D., Gu, M.-H., & Shi, Y.-C. (2011). Digestibility and physicochemical properties of rice (Oryza sativa L.) flours and starches differing in amylose content. Carbohydrate Polymers, 86(4), 1751-1759. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77845 | - |
| dc.description.abstract | 本研究旨在探討由中國不同地區來源的39種黃米(proso millet)品種之澱粉及全穀粉的理化性質。首先,分別以酸法及鹼法分離黃米澱粉,經由蛋白質含量測定、高效能分子篩層析儀(high-performance size-exclusion chromatography, HPSEC)及高效能陰離子層析儀(high-performance anion exchange chromatography, HPAEC)測定其純度、澱粉分子量與其支鏈澱粉微結構,並以掃描式電子顯微鏡(scanning electron microscopy, SEM)觀察澱粉粒大小與形態。結果顯示,酸法分離黃米澱粉過程可能會造成澱粉分子降解,而以0.1% NaOH浸泡穀粉24 h接續過濾及離心等步驟之鹼法分離之澱粉有較低蛋白質含量及較高收率,且分離出澱粉粒的外觀及澱粉分子變化不大,因此為較佳的澱粉分離方法。第二部分為將13個品種之糯性黃米及23個品種之稉性黃米依穀粉性質分群,包括以碘呈色方法測定直鏈澱粉含量及以快速糊液黏度測定儀(Rapid Visco Analyser, RVA)分析穀粉於水中及硝酸銀中之糊液黏度性質,以評估穀粉中酵素活性之影響。據此,將黃米樣品分類為糯性7組及稉性10組,每組中挑選一代表樣品,進一步進行澱粉及全穀粉之物化性質分析以及性質間的相關性分析。結果顯示,直鏈澱粉含量為影響黃米澱粉及全穀粉性質最重要的參數,在糯性黃米品種中,直鏈澱粉含量與糊液黏度性質及膨潤性質有顯著相關;稉性黃米之直鏈澱粉含量則與熱性質、糊液黏度性質、膨潤性質及消化性質參數有顯著相關。支鏈澱粉鏈長分佈也會影響黃米性質,糯性黃米品種中,以示差掃描熱分析儀(differential scanning calorimetry, DSC)測得澱粉糊化熱焓值(ΔH)與支鏈澱粉短鏈(DP 6-12)之含量呈負相關(r = -0.827),與長鏈(DP > 37)含量呈正相關(r = 0.814)。與精白稻米澱粉相比,糯性黃米與稉性黃米澱粉有較低的快速消化性澱粉(rapid digestible starch, RDS)。烹煮過的黃米與稻米穀粉的推估升糖指數(estimated glycemic index, eGI)則無顯著差異。主成分分析(Principle component analysis, PCA)結果顯示,七組糯性黃米代表樣品之穀粉及澱粉性質有明顯差異;在稉性黃米樣品中,Ningmi11 (no. 14)及Jinshu6 (no. 34)與其他品種間性質差異較大。在PCA score圖中,相同地區來源的穀粉樣品有相近的分布關係,如Ningmi14 (no. 10)和Ningmi11 (no. 14),顯示PCA分析可能可作為一個辨別黃米樣品地理起源的方式。 | zh_TW |
| dc.description.abstract | The purpose of this study was to investigate the physicochemical properties of proso millet starch and flour of 39 varieties collected from different regions in China. First, a suitable method for starch isolation was needed to be established. Thus, both acidic and alkaline methods were tested and protein content, morphology, molecular weight and side-chain length distribution of isolated starches were determined by using Kjedahl method, scanning electron microscopy (SEM), high-performance size-exclusion chromatography (HPSEC) and high-performance anion exchange chromatography (HPAEC), respectively. The results indicated that the acidic hydrolysis of proso millet starch molecules during isolation process was suspected. Steeping the proso millet flour in 0.1% NaOH followed by isolating its starch with filtration and centrifuration steps was chosen because the low protein content, high yield and insignificant changes on the morphology and molecular characters of isolated starches could be obtained. In the second part of this study, 13 varieties of waxy proso millet and 23 varieties of nonwaxy proso millet were differenciated by their amylose content and pasting properties of flours. Pasting properties of flour samples were analyzed in both water and AgNO3 (aq), the later was used to evaluate the pasting properties with limited influences of endogeneous enzymes in flour. Seven groups of waxy proso millets and 10 groups of nonwaxy proso millets were classified according to the viscographic patterns of flour. The physicochemical properties of isolated starch and the ground flour of one representative sample from every group were determined. The results indicated that the amylose content has the highest correlation to the pasting properties and swelling power of waxy proso millet starch, and the amylose content was correlated to the thermal, pasting, swelling and digestible properties of nonwaxy proso millet starch. The enthalphy value (ΔH) determined by differential scanning calorimetry (DSC) was negatively correlated to the amount of short chains (DP 6-12) of amylopectin (r = -0.827) of waxy proso millet starch but positively correlated to the amount of long chains (DP > 37) of amylopectin. (r = 0.814). The amount of rapid digestible starch (RDS) in proso millet starch was less than in rice starch. There was no significant difference in the estimated glycemic index (eGI) between the cooked rice and the cooked proso millet flour. Principle component analysis (PCA) showed that there were disdinguished properties among the 7 varieties of waxy proso millets selected from each group. Ningmi11 (no. 14) and Jinshu6 (no. 34), two nonwaxy proso millets had different PCA score were different from other cultivars. Proso millet flours milled from the varieties collected from the same origin might have similar score in PCA analysis indicating that PCA analysis may be a useful tool to identify the geographic origins of proso millet samples. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:35:54Z (GMT). No. of bitstreams: 1 ntu-106-R04623027-1.pdf: 6066016 bytes, checksum: a8738756608ae2dfb166907a6f7b109b (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract II 目錄 IV 表目錄 VIII 圖目錄 X 第一章、前言 1 第二章、文獻探討 2 2.1 小米(Millet) 2 2.1.1 小米介紹 2 2.1.2 小米種類 2 2.1.3 小米的機能性成分及營養價值 4 2.1.4 小米之常見加工方式 7 2.2 糜子 7 2.2.1 中國糜子起源及發展介紹 7 2.2.2 糜子簡介 8 2.2.3 黃米的機能性成分及營養價值 11 2.3 澱粉 12 2.3.1 澱粉分子結構 12 2.3.2 澱粉顆粒構造及結晶型態 13 2.3.3 支鏈澱粉微細結構 15 2.3.4 黃米澱粉性質 15 2.3.5 黃米澱粉分離方法 16 第三章、材料與方法 18 3.1 試驗架構 18 3.2 材料與化學試劑 19 3.2.1 試驗材料 19 3.2.2 化學試劑 21 3.3 樣品製備 21 3.3.1 黃米穀粉製備 21 3.3.2 黃米澱粉分離方法建立 21 3.3.2.1 酸法 21 3.3.2.2 鹼法 22 3.3.2.2.1 以穀粒浸泡 22 3.3.2.2.2 以榖粉浸泡 22 3.4 分析方法 23 3.4.1 一般成分 23 3.4.1.1 水分含量 23 3.4.1.2 粗蛋白含量 23 3.4.1.3 粗脂肪含量 23 3.4.1.4 灰分含量 23 3.4.2 掃描式電子顯微鏡觀察 23 3.4.3 糊液黏度性質 24 3.4.4 視直鏈澱粉含量 25 3.4.5 λmax 25 3.4.6 碘染色及混摻判定 26 3.4.7 澱粉分子結構分析 26 3.4.7.1 平均分子量測定 26 3.4.7.2 支鏈澱粉之鏈長分布 27 3.4.8 熱性質 28 3.4.9 澱粉膨潤性質 28 3.4.10 總澱粉含量 29 3.4.11 澱粉體外消化性質 29 3.4.12 推估升糖指數 30 3.4.13 總黃色素含量 31 3.4.14 葉黃素種類及含量 31 3.4.15 α–amylase活性 32 3.4.16 統計分析 32 第四章、結果與討論 33 4.1 黃米澱粉分離方法建立 33 4.1.1 蛋白質含量與產率 33 4.1.2 澱粉糊液黏度性質 35 4.1.3 澱粉顆粒外觀形態 36 4.1.4 澱粉分子結構 39 4.2. 樣品分類依據 41 4.2.1 直鏈澱粉含量 41 4.2.2 混摻判定 43 4.2.3 穀粉糊液黏度測定-硝酸銀濃度影響 46 4.2.4 糯性黃米分類 48 4.2.5 稉性黃米分類 53 4.3 糯性黃米之理化性質 59 4.3.1 澱粉性質 59 4.3.1.1 澱粉分子結構 59 4.3.1.2 熱性質 63 4.3.1.3 糊液黏度性質 64 4.3.1.4 膨潤性質 66 4.3.1.5 體外消化性質 69 4.3.2 穀粉性質 70 4.3.2.1 一般成分、直鏈澱粉含量及α-澱粉酶活性 70 4.3.2.2 總黃色素及類胡蘿蔔素含量 72 4.3.2.3 推估升糖指數 73 4.4 稉性黃米之理化性質 74 4.4.1 澱粉性質 74 4.4.1.1 澱粉分子結構 74 4.4.1.2 熱性質 77 4.4.1.3 糊液黏度性質 78 4.4.1.4 膨潤性質 80 4.4.1.5 體外消化性質 82 4.4.2 穀粉性質 83 4.4.2.1 一般成分、直鏈澱粉含量及α-澱粉酶活性 83 4.4.2.2 總黃色素及類胡蘿蔔素含量 85 4.4.2.3 推估升糖指數 86 4.5 糯性及稉性黃米理化性質綜合分析 87 4.5.1 糯性黃米理化性質分析 87 4.5.1.1 糯性黃米澱粉理化性質之相關性分析 87 4.5.1.2 糯性黃米穀粉理化性質之相關性分析 89 4.5.1.3 糯性黃米澱粉及穀粉理化性質之相關性分析 91 4.5.1.4 糯性黃米之主成分分析 93 4.5.2 稉性黃米理化性質分析 96 4.5.2.1 稉性黃米澱粉理化性質之相關性分析 96 4.5.2.2 稉性黃米穀粉理化性質之相關性分析 98 4.5.2.3 稉性黃米澱粉及穀粉理化性質之相關性分析 100 4.5.2.4 稉性黃米之主成分分析 102 4.5.3 糯性與稉性黃米理化性質分析 105 4.5.3.1 糯性與稉性黃米澱粉理化性質之相關性分析 105 4.5.3.2 糯性與稉性黃米穀粉理化性質之相關性分析 107 4.5.3.3 糯性與稉性黃米澱粉及穀粉理化性質之相關性分析 109 第五章、結論 111 第六章、參考文獻 113 附錄 119 | |
| dc.language.iso | zh-TW | |
| dc.subject | 黃米(脫殼糜子) | zh_TW |
| dc.subject | 澱粉微結構 | zh_TW |
| dc.subject | 理化性質 | zh_TW |
| dc.subject | 全穀粉 | zh_TW |
| dc.subject | 化學計量學 | zh_TW |
| dc.subject | proso millet | en |
| dc.subject | chemometrics | en |
| dc.subject | starch microstructure | en |
| dc.subject | physicochemical property | en |
| dc.subject | whole grain flour | en |
| dc.title | 糜子澱粉及穀粉理化性質之研究 | zh_TW |
| dc.title | Physicochemical properties of proso millet (Panicum miliaceum) starch and flour | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張永和,呂廷璋,郭孟怡 | |
| dc.subject.keyword | 黃米(脫殼糜子),澱粉微結構,理化性質,全穀粉,化學計量學, | zh_TW |
| dc.subject.keyword | proso millet,starch microstructure,physicochemical property,whole grain flour,chemometrics, | en |
| dc.relation.page | 120 | |
| dc.identifier.doi | 10.6342/NTU201704057 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-20 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-R04623027-1.pdf 未授權公開取用 | 5.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
