請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77839完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳正剛 | |
| dc.contributor.author | Hui-Chi Chiang | en |
| dc.contributor.author | 江惠琦 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:35:47Z | - |
| dc.date.available | 2022-09-04 | |
| dc.date.copyright | 2017-09-04 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-20 | |
| dc.identifier.citation | [1] Stavros, A. T., Thickman, D., Rapp, C. L., Dennis, M. A., Parker, S. H., & Sisney, G. A. (1995). Solid breast nodules: use of sonography to distinguish between benign and malignant lesions. Radiology, 196(1), 123-134.
[2] Hummel, R. (1977). Image enhancement by histogram transformation. Computer graphics and image processing, 6(2), 184-195. [3] Pei, S. C., Zeng, Y. C., & Ding, J. J. (2006, October). Color images enhancement using weighted histogram separation. In Image Processing, 2006 IEEE International Conference on (pp. 2889-2892). IEEE. (Weighted Histogram Separation) [4] Obuchowski, N. A. (2003). Receiver operating characteristic curves and their use in radiology. Radiology, 229(1), 3-8. [5] Hanley, J. A. (1982). Characteristic (ROC) curvel. Radiology, 743(2). [6] Shao-Huan Yang(2012), “Quantification and Performance Analysis of Breast Tumor Sonographic Features” P.21~P.32, Chapter 2 [7] Shankar, P. M. (2000). A general statistical model for ultrasonic backscattering from tissues. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 47(3), 727-736. [8] Gonzalez, Rafael C.; Woods, Richard E. (2008). Digital Image Processing (3rd ed.). Prentice Hall. p. 128. ISBN 9780131687288 [9] Segyeong, J., et al., Computer-aided diagnosis of solid breast nodules: use of an artificial neural network based on multiple sonographic features. Medical [10] Giger, M.L., et al., Computerized analysis of lesions in US images of the breast. Academic Radiology, 1999. 6(11): p. 665-674. [11] Ling-Ying Chiu(2011), “Tumor Contour Automatic Margin Selection in Ultrasonic Imaging”. [12] 廖尹吟. (2009). 結合 Nakagami 參數和輪廓特徵進行乳房超音波的腫瘤分類. 清華大學生醫工程與環境科學系學位論文, 1-110. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77839 | - |
| dc.description.abstract | 超音波成像提供及時動態影像,有利於放射科專家或醫師即時針對特定影像區域分析並擷取影像。然而,依據操作者經驗、徒手掃描及超音波機器的特性,掃描影像結果的差異可以很大,因此收取的超音波影像缺少比較客觀的標準。傳統上,超音波影像皆是利用直方圖均化 (Histogram Equalization) 或是直方圖匹配 (Histogram Mapping) 方法來校正以獲取較客觀一致的影像,然而當影像內的明暗組織成分組成可以非常不同,若是將明暗成分組成不同的影像校正到固定直方圖下的明暗比例,將無法針對個別影像特性區分欲觀察的組織。
為了針對不同影像特性清楚區分欲觀察的組織,本研究提出標準參考直方圖轉換方法(Reference-Based Histogram Transformation)。首先,尋找每一張影像之標準參考影像區塊,再來,針對此標準參考影像區塊灰階值等比例擴展成灰階值範圍從0到255後,利用此擴展之標準參考影像區塊估計欲轉換的特定分配,再將擴展之標準參考影像區塊進行直方圖匹配(Histogram Mapping)到此特定分配,最後,將直方圖匹配後產生的灰階值轉換對應表應用於整張影像之校正。 本研究以台大醫院提供之266筆乳房腫瘤超音波影像做案例研究,其中包含194筆良性腫瘤和72筆惡性腫瘤,先以本研究之影像校正方法校正每張乳房超音波影像,再取得校正前後影像的乳房腫瘤的量化特徵如輪廓曲折程度量化指標及腫瘤後方回音量化指標,並透過接收者操作特徵曲線(Receiver Operative Characteristic Curve, ROC),比較影像校正前後的量化指標在判斷乳房腫瘤良惡性的表現。從案例研究結果可驗證,經過校正後的影像量化特徵指標判斷乳房腫瘤良惡性之AUC表現最佳可由校正前的0.679124提升至0.703393471。 | zh_TW |
| dc.description.abstract | Ultrasound imaging provides dynamic images, and it is good for Radiology expert or physician to capture instant images. However, due to machine scan image results affected by operator experience and the limitation of ultrasound image characteristics, the ultrasound image does not have objective criteria. Traditionally, histogram equalization or histogram mapping are used to get the consistency results. Nevertheless, the shading component of organization can be very different. It is difficult to distinguish the individual image organization, if the shading composition of organization is calibrated to the same Histogram.
In order to clearly distinguish the organization between different image characteristics, this thesis introduces a Reference-Based Histogram Transformation method. First, we look for the standard reference image block in each image, and then equally scale its original gray level value to interval from 0 to 255. Next, this research adjusts the extended standard reference image block to fit the specific distribution through Histogram Mapping and retrieve a gray level transformation table. Finally, we calibrate the whole image with the gray level transformation table and use the new image as the input of further medical analysis. To evaluate the performance of the novel method, this thesis uses 266 cases (72 malignant lesions and 194 benign lesions) provided by National Taiwan University Hospital (NTUH). This paper introduces the method to calibrate each Breast ultrasound image. Further, quantitative characteristics of breast cancer from the images can be extracted such as quantitative index of Margin Twists and Turns or Posterior Acoustic Shadow. Finally, the research compares the quantitative characteristics of the benign and malignant tumors before and after calibration by Receiver Operative Characteristic Curve (ROC). According to the research, it is proved that the best performance of AUC achieves 0.703393471 after the image calibration by Reference-Based Histogram Transformation. Keywords: Ultrasound Image, Image Calibration, Histogram Equalization, Histogram Matching, Clinical Breast Features, ROC performance. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:35:47Z (GMT). No. of bitstreams: 1 ntu-106-R04546025-1.pdf: 5826675 bytes, checksum: fa0afb1c90343164f0940261f277bc0e (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 II ABSTRACT III CONTENT V 圖目錄 VII 表目錄 XV 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機和目標 1 1.3 論文架構 3 第2章 文獻回顧 5 2.1超音波影像校正方法 5 2.1.1 直方圖均化(Histogram Equalization) 5 2.1.2 加權直方圖分離法 (Weighted Histogram Separation) 6 2.1.3 直方圖匹配 (Histogram Matching) 9 2.2乳房腫瘤特徵於醫學影像的成像特性 10 2.2.1 輪廓指標Margin Index 11 2.2.2 腫瘤組織內異質性指標 Interior Heterogeneous Index 14 2.2.3 後方回音指標 Posterior Acoustic Shadow Index 16 第3章 標準參考直方圖轉換方法(Reference-Based Histogram Transformation) 17 3.1 標準參考影像區塊(Reference Image Block ) 17 3.1.1 利用皮膚為標準參考影像區塊 17 3.1.2 利用統計條件尋找標準參考影像區塊 27 3.1.3 利用特定分配為條件尋找標準參考影像區塊 29 3.2 擴展之標準參考影像區塊直方圖匹配 30 Rayleigh匹配 34 Gamma匹配 36 Nakagami匹配 37 Weibull匹配 39 3.3 整張影像校正 40 第4章 個案研究 62 4.1 個案研究資料背景 62 4.2 應用標準參考直方圖轉換方法於乳癌超音波影像 64 第5章 結論與未來研究建議 71 文獻參考 72 附錄:不同機器收取超音波影像之影像校正 73 | |
| dc.language.iso | zh-TW | |
| dc.subject | 影像校正 | zh_TW |
| dc.subject | 直方圖匹配 | zh_TW |
| dc.subject | 超音波影像 | zh_TW |
| dc.subject | ROC績效 | zh_TW |
| dc.subject | 直方圖均化 | zh_TW |
| dc.subject | 乳房腫瘤臨床特性 | zh_TW |
| dc.subject | Ultrasound Image | en |
| dc.subject | ROC performance | en |
| dc.subject | Clinical Breast Features | en |
| dc.subject | Histogram Matching | en |
| dc.subject | Histogram Equalization | en |
| dc.subject | Image Calibration | en |
| dc.title | 透過直方圖匹配之灰階值超音波影像校正研究-以乳癌超音波影像為例 | zh_TW |
| dc.title | B-mode Ultrasound Image Calibration Based on Histogram Matching and Its Applications to Analysis of Ultrasound Breast Cancer Images | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭文宏,陳炯年 | |
| dc.subject.keyword | 超音波影像,影像校正,直方圖均化,直方圖匹配,乳房腫瘤臨床特性,ROC績效, | zh_TW |
| dc.subject.keyword | Ultrasound Image,Image Calibration,Histogram Equalization,Histogram Matching,Clinical Breast Features,ROC performance, | en |
| dc.relation.page | 76 | |
| dc.identifier.doi | 10.6342/NTU201704120 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工業工程學研究所 | zh_TW |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-R04546025-1.pdf 未授權公開取用 | 5.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
